JPH1192890A - Nonoriented silicon steel sheet low in core loss and its production - Google Patents

Nonoriented silicon steel sheet low in core loss and its production

Info

Publication number
JPH1192890A
JPH1192890A JP9273359A JP27335997A JPH1192890A JP H1192890 A JPH1192890 A JP H1192890A JP 9273359 A JP9273359 A JP 9273359A JP 27335997 A JP27335997 A JP 27335997A JP H1192890 A JPH1192890 A JP H1192890A
Authority
JP
Japan
Prior art keywords
steel sheet
ppm
iron loss
nitride
core loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9273359A
Other languages
Japanese (ja)
Inventor
Atsushi Chino
淳 千野
Katsumi Yamada
克美 山田
Yoshihiko Oda
善彦 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9273359A priority Critical patent/JPH1192890A/en
Priority to US09/041,335 priority patent/US6139650A/en
Priority to CA 2232129 priority patent/CA2232129C/en
Priority to KR1019980009115A priority patent/KR100268612B1/en
Priority to CN98105708A priority patent/CN1083494C/en
Priority to EP98104900A priority patent/EP0866144B1/en
Priority to DE69832313T priority patent/DE69832313T2/en
Publication of JPH1192890A publication Critical patent/JPH1192890A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce core loss in a steel sheet by allowing it to have a specified compsn. contg. Si, Mn, Al, S, and the balance substantial Fe and regulating the content of nitride in a region at a specified distance from the surface of the steel sheet after finish annealing to a specified value or below. SOLUTION: This steel sheet contains, by weight, <=4.0% Si, 0.05 to 1.0% Mn, 0.1 to 1.0% Al and <=0.001% S. Then, the content of nitride in a region within 30 μm from the surface of the steel sheet after finish annealing is regulated to <=300 ppm. As for S as the contained element, in the case it is regulated to 0.001%, namely, to >=10 ppm, its remarkable core loss resistance can be attained, but, even if it is furthermore reduced, reduction in the core loss is made mild, and the core loss can not be regulated to <=2.4 W/kg. This is because a nitriding layer remarkably formed in the region of S<=10 ppm disturbs the growth of the crystal grains in the surface layer part to suppress reduction in the core loss. Therefore, the nitriding layer in the surface layer part of the steel sheet is removed by pickling after finish annealing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄損が少なく、電
気機器に使用される電気材料として好適な無方向性電磁
鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having low iron loss and suitable as an electrical material used for electrical equipment.

【0002】[0002]

【従来の技術】近年、電気機器の省エネルギーの観点よ
り、より鉄損の低い電磁鋼板が求められるようになって
きている。この鉄損を低減するためには結晶粒の粗大化
が効果的であり、低鉄損が特に要求されるSi+Al量が1
〜3%程度の中・高級グレードの無方向性電磁鋼板にお
いては、仕上焼鈍温度を1000℃程度まで高めたり、焼鈍
時のラインスピードを下げ、焼鈍時間を長くすることに
より結晶粒の粗大化を図っている。
2. Description of the Related Art In recent years, electromagnetic steel sheets with lower iron loss have been required from the viewpoint of energy saving of electrical equipment. In order to reduce the iron loss, it is effective to increase the crystal grain size.
For medium- and high-grade non-oriented electrical steel sheets of up to about 3%, coarsening of crystal grains can be achieved by increasing the finish annealing temperature to about 1000 ° C, reducing the line speed during annealing, and lengthening the annealing time. I'm trying.

【0003】仕上焼鈍時の粒成長性を良好にするために
は、鋼板中の介在物、析出物量を低減することが効果的
である。このため、これまで介在物、析出物を無害化す
ることが試みられており、特に高級材ではMnSの析出防
止の観点からS量を低減させる試みがなされてきた。
In order to improve the grain growth during finish annealing, it is effective to reduce the amount of inclusions and precipitates in the steel sheet. For this reason, attempts have been made to render the inclusions and precipitates harmless, and particularly in high-grade materials, attempts have been made to reduce the S content from the viewpoint of preventing precipitation of MnS.

【0004】例えば、特公昭56−22931号公報に
は、Si:2.5 〜3.5%、Al:0.3〜1.0%の鋼において
S:50ppm以下、O:25ppm以下とすることにより鉄損を
低下させる技術が開示されている。
[0004] For example, Japanese Patent Publication No. 56-22931 discloses a technique for reducing iron loss by reducing S: 50 ppm or less and O: 25 ppm or less in a steel of Si: 2.5 to 3.5% and Al: 0.3 to 1.0%. Is disclosed.

【0005】また、特公平2−50190号公報には、
Si:2.5〜3.5%、Al:0.25〜1.0%の鋼においてS:15p
pm以下、O:20ppm以下、N:25ppm以下とすることによ
り鉄損を低下させる技術が開示されている。
In Japanese Patent Publication No. 2-50190,
Si: 2.5-3.5%, Al: 0.25-1.0% steel: S: 15p
There is disclosed a technique for reducing iron loss by setting the pm or less, O: 20 ppm or less, and N: 25 ppm or less.

【0006】さらに特開平5−140647号公報に
は、Si:2.0〜4.0%、Al:0.10〜2.0%の鋼において
S:30ppm以下、Ti、Zr、Nb、Vをそれぞれ50ppm以下と
することにより鉄損を低下させる技術が開示されてい
る。
Further, Japanese Patent Application Laid-Open No. 5-140647 discloses that, in a steel containing 2.0% to 4.0% of Si and 0.10% to 2.0% of Al, S: 30 ppm or less and Ti, Zr, Nb, and V each being 50 ppm or less. Techniques for reducing iron loss have been disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかし、これらいずれ
の技術においても、S量を10ppm以下とした高級グレー
ドの鋼板の鉄損値は、W15/50=2.4W/kg程度(板厚0.5
mm)であり、これ以上の低鉄損は達成されていないのが
現状である。単純に考えると、S量を少なくしていけば
鋼中のMnSの量が減り、これに伴って結晶粒の成長が容
易になるので、鉄損はどんどん低下していくように思わ
れる。しかしながら、現実には、S量の低下に伴う鉄損
の低下は、S量が10ppm程度となると飽和し、前記のよ
うな鉄損値が限界である。
However, in any of these techniques, the iron loss value of a high-grade steel sheet having an S content of 10 ppm or less is about W 15/50 = 2.4 W / kg (sheet thickness 0.5
mm), and no further low iron loss has been achieved. To put it simply, it seems that reducing the amount of S reduces the amount of MnS in the steel, which facilitates the growth of crystal grains, and thus the iron loss seems to decrease more and more. However, in reality, the decrease in iron loss due to the decrease in the amount of S is saturated when the amount of S is about 10 ppm, and the iron loss value as described above is the limit.

【0008】本発明はこのような事情に鑑みなされたも
のであり、鉄損の低い電磁鋼板を提供することを課題と
する。
The present invention has been made in view of such circumstances, and has as its object to provide an electromagnetic steel sheet with low iron loss.

【0009】[0009]

【課題を解決するための手段】本発明の骨子は、Sを10
ppm以下の極微量に制御しても鉄損が下がらないのは、
微量S領域において顕著な窒化層が表面領域に形成され
るためであるという新しい知見に基づき、仕上焼鈍後の
鋼板表面での窒化物量を所定の範囲に抑制することによ
り、鉄損の低い無方向性電磁鋼板を得るものである。
The gist of the present invention is that S is 10
The iron loss does not decrease even if it is controlled to a trace amount of ppm or less.
Based on the new finding that a remarkable nitride layer is formed in the surface region in the trace S region, the amount of nitride on the steel sheet surface after the finish annealing is suppressed to a predetermined range, so that the iron loss is low. The purpose is to obtain a conductive electrical steel sheet.

【0010】すなわち、前記課題は、重量%でSi:4.0
%以下、Mn:0.05〜1.0%、Al:0.1〜1.0%、S:0.001
%以下(0を含む)を含有し、残部が実質的にFeであ
り、かつ、仕上焼鈍後の鋼板の表面より30μm以内の領
域での窒化物量が300ppm以下であることを特徴とする鉄
損の低い無方向性電磁鋼板(請求項1)により解決され
る。
[0010] That is, the problem is that Si: 4.0% by weight.
% Or less, Mn: 0.05 to 1.0%, Al: 0.1 to 1.0%, S: 0.001
% Or less (including 0), and the balance is substantially Fe, and the amount of nitride in a region within 30 μm from the surface of the steel sheet after finish annealing is 300 ppm or less. The problem is solved by a non-oriented electrical steel sheet having a low value.

【0011】また、前記鉄損の低い無方向性電磁鋼板
は、前記成分の鋼板を、仕上焼鈍後に酸洗により、仕上
焼鈍後の鋼板の表面より30μm以内の領域での窒化物量
を300ppm以下に調整すること(請求項2)により簡単に
製造できる。
Further, the non-oriented electrical steel sheet having a low iron loss is characterized in that the steel sheet of the above-mentioned component is pickled after finish annealing to reduce the nitride content in a region within 30 μm from the surface of the steel sheet after finish annealing to 300 ppm or less. Adjustment (claim 2) enables easy manufacture.

【0012】ここに、「残部が実質的Feである」とは、
本発明の作用効果を妨げない範囲で不可避不純物以外の
微量元素を含むものが権利範囲に入ることを意味する。
なお、以下の説明において、鋼の成分を示す%は全て重
量%を意味し、ppmも重量ppmを意味する。
Here, "the balance is substantially Fe" means:
This means that those containing trace elements other than the inevitable impurities are within the scope of the right within a range not to impair the effects of the present invention.
In the following description, all the percentages indicating the components of steel mean weight%, and ppm also means weight ppm.

【0013】(発明に至る経緯と、S、窒化物量の限定
理由)本発明者等は、鉄損に及ぼすSの影響を調査する
ため、C:0.0025%、Si:2.75%、Mn:0.20%、P:0.
010%、Al:0.31%、N:0.0018%とし、S量をtr.〜15
ppmの範囲で変化させた鋼をラボ溶解し、熱延後、酸洗
を行った。引き続きこの熱延板に75%H2−25%N2雰囲
気で830℃×3hrの熱延板焼鈍を施し、その後、板厚0.5
mmまで冷間圧延し、10%H2−90%N2雰囲気で900℃×
2min間の仕上焼鈍を行った。図1に、このようにして
得られたサンプルのS量と鉄損W15/50の関係を示す
(図1の×印)。ここで、磁気測定は25cmエプスタイン
法により行った。
(Circumstances leading to the invention and the reasons for limiting the amounts of S and nitrides) The present inventors investigated the effect of S on iron loss, so that C: 0.0025%, Si: 2.75%, and Mn: 0.20% , P: 0.
010%, Al: 0.31%, N: 0.0018%, and the S amount is tr.
The steel changed in the ppm range was melted in a laboratory, hot rolled, and then pickled. Subsequently, the hot-rolled sheet is subjected to hot-rolled sheet annealing at 830 ° C. for 3 hours in an atmosphere of 75% H 2 -25% N 2.
cold rolled to 900 mm in a 10% H 2 -90% N 2 atmosphere.
Finish annealing was performed for 2 minutes. FIG. 1 shows the relationship between the S content of the sample thus obtained and the iron loss W 15/50 (marked by X in FIG. 1). Here, the magnetic measurement was performed by a 25 cm Epstein method.

【0014】図1より、Sを10ppm以下とした場合に大
幅な鉄損低減(W15/50=2.5W/kg)が達成され、S=
10ppm付近に臨界点があることがわかる。これは、S量
低減により粒成長性が向上したためである。このことか
ら、本発明においてはSの範囲を10ppm以下、望ましく
は5ppm以下に限定する。
FIG. 1 shows that a significant reduction in iron loss (W 15/50 = 2.5 W / kg) is achieved when S is set to 10 ppm or less.
It can be seen that there is a critical point around 10 ppm. This is because grain growth was improved by reducing the amount of S. For this reason, in the present invention, the range of S is limited to 10 ppm or less, preferably 5 ppm or less.

【0015】しかしながら、S量が10ppm以下となる
と、鉄損の低下は緩やかとなり、S量をtr.としても、
鉄損を2.4W/kg以下とすることはできない。
However, when the S content is 10 ppm or less, the iron loss decreases gradually, and even if the S content is tr.
Iron loss cannot be less than 2.4 W / kg.

【0016】本発明者等は、S=10ppm以下の極低S材
において鉄損の低減が阻害されるのは、MnS以外の未知
の要因によるものではないかと考え、光学顕微鏡にて組
織観察を行った。その結果、S≦10ppmの領域で鋼板表
層に顕著な窒化層が認められた。これに対し、S>10pp
mの領域では窒化層は軽微となっていた。この窒化層
は、窒化雰囲気で行った熱延板焼鈍時及び仕上焼鈍時に
生じたものと考えられる。
The present inventors consider that the reason why the reduction of iron loss is inhibited by the extremely low S material of S = 10 ppm or less may be due to unknown factors other than MnS. went. As a result, a remarkable nitride layer was recognized on the surface layer of the steel sheet in the region of S ≦ 10 ppm. On the other hand, S> 10pp
In the region of m, the nitrided layer was slight. This nitrided layer is considered to have been generated during hot rolled sheet annealing and finish annealing performed in a nitriding atmosphere.

【0017】このS量低減に伴う窒化反応促進の原因に
関しては次のように考えられる。すなわち、Sは表面お
よび粒界に濃化しやすい元素であることから、S>10pp
mの領域では、Sが鋼板表面に濃化し、熱延板焼鈍時お
よび仕上焼鈍時において雰囲気中から鋼板表層への窒素
の吸着を抑制している。このため窒化層は生成しないか
生成しても極わずかである。一方、S≦10ppmの領域で
はSによる窒素吸着の抑制効果が低下するため、窒化層
が鋼板表層に生成する。
The cause of the acceleration of the nitridation reaction accompanying the reduction of the amount of S is considered as follows. That is, since S is an element easily concentrated on the surface and the grain boundaries, S> 10 pp
In the region of m, S is concentrated on the surface of the steel sheet to suppress adsorption of nitrogen from the atmosphere to the surface layer of the steel sheet during hot-rolled sheet annealing and finish annealing. For this reason, a nitrided layer is not generated, or is generated very little. On the other hand, in the region where S ≦ 10 ppm, the effect of suppressing the adsorption of nitrogen by S is reduced, so that a nitride layer is formed on the surface layer of the steel sheet.

【0018】本発明者等は、このS≦10ppmの領域で顕
著に生じる窒化層が鋼板表層部の結晶粒の成長を妨げ、
鉄損の低下を抑制するのではないかと考えた。
The inventors of the present invention have found that the nitrided layer which is remarkably generated in the region of S ≦ 10 ppm hinders the growth of crystal grains on the surface layer of the steel sheet,
We thought that the reduction of iron loss might be suppressed.

【0019】このような考えのもとに、本発明者等は、
鋼板表層部の窒化物層を所定の範囲にコントロールでき
れば、極低S材の鉄損はさらに低下するのではないかと
考えた。
Based on the above idea, the present inventors,
It was considered that if the nitride layer in the surface layer of the steel sheet could be controlled within a predetermined range, the iron loss of the extremely low S material would be further reduced.

【0020】そこで、図1中に×印で示したサンプルと
同一の素材を用い、同様に仕上焼鈍を施したサンプルに
酸洗処理を施し、表面窒化層を完全に除去した後、鉄損
を測定した。その結果を図1に○印で示す。
Therefore, the same material as the sample indicated by the symbol x in FIG. 1 was used, and the sample which was similarly subjected to finish annealing was subjected to pickling treatment to completely remove the surface nitrided layer. It was measured. The result is shown by a circle in FIG.

【0021】酸洗処理による鉄損低減効果に着目する
と、S>10ppmの領域では、酸洗処理により鉄損は0.02
〜0.04W/kg程度しか低下しないが、S≦10ppmの領域
では、酸洗処理により鉄損は0.20W/kg程度低下してお
り、S量が少ない場合に酸洗処理による鉄損低減効果は
顕著に認められる。
Focusing on the iron loss reduction effect of the pickling treatment, in the region of S> 10 ppm, the iron loss by the pickling treatment is 0.02%.
The iron loss is reduced by about 0.20 W / kg by the pickling treatment in the region of S ≦ 10 ppm, and the iron loss reduction effect by the pickling treatment is small when the amount of S is small. Prominently observed.

【0022】以上のことより、極低S電磁鋼板において
は、Sが高い電磁鋼板の場合と異なり、鋼板表層部の窒
化層を低減させることにより、鉄損が大幅に低下するこ
とが判明した。
From the above, it has been found that, unlike the case of the magnetic steel sheet having a high S, the iron loss is significantly reduced in the ultra-low S magnetic steel sheet by reducing the nitrided layer in the steel sheet surface portion.

【0023】次に、鋼板表層部の窒化物量と鉄損との関
係を調査するため、C:0.0020%、Si:2.75%、Mn:0.
20%、P:0.012%、Al:0.30%、S:0.0003%、N:
0.0017%とした鋼をラボ溶解し、熱延後、酸洗を行っ
た。引き続きこの熱延板に75%H2−25%N2雰囲気で83
0℃×3hrの熱延板焼鈍を施し、その後、板厚0.50〜0.5
5mmまで冷間圧延し、10%H2−90%N2雰囲気で930℃×
2min間の仕上焼鈍を行った。
Next, in order to investigate the relationship between the amount of nitride in the surface layer of the steel sheet and the iron loss, C: 0.0020%, Si: 2.75%, Mn: 0.
20%, P: 0.012%, Al: 0.30%, S: 0.0003%, N:
The steel of 0.0017% was melted in a laboratory, pickled after hot rolling. Subsequently, the hot rolled sheet was subjected to 83% H 2 -25% N 2 atmosphere.
Hot rolled sheet annealing at 0 ° C x 3hrs, then a sheet thickness of 0.50 ~ 0.5
And cold rolled to 5 mm, 930 ° C. × in 10% H 2 -90% N 2 atmosphere
Finish annealing was performed for 2 minutes.

【0024】その後、酸洗処理時間を種々変えることに
より、鋼板表層部の窒化物量を変化させた鋼板を作製
し、25cmエプスタイン法により磁気特性を測定した。こ
こで、酸洗処理後の板厚は、全て0.5mmとなるように調
整した。
Thereafter, a steel sheet was produced in which the amount of nitride on the surface layer of the steel sheet was changed by changing the pickling time variously, and the magnetic properties were measured by the 25 cm Epstein method. Here, the plate thickness after the pickling treatment was all adjusted to be 0.5 mm.

【0025】図2に、酸洗処理後の鋼板表面から30μm
以内の領域での窒化物量とW15/50の関係を示す。な
お、本鋼種においては、窒化物はAlN、Si34、TiNで
あった。鋼板表面から30μmの範囲に注目したのは、こ
の範囲に窒化物の8〜9割が存在しており、それ以上の
深さでは窒化物の量が非常に少なくなっているので、鋼
板表面から30μmの範囲で窒化物量を評価すれば十分で
あると考えたためである。
FIG. 2 shows that 30 μm from the surface of the steel sheet after the pickling treatment.
Shows the relationship between the amount of nitride and W 15/50 in the region within. In this steel type, the nitrides were AlN, Si 3 N 4 , and TiN. Attention was paid to the range of 30 μm from the surface of the steel plate because 80 to 90% of the nitride exists in this range, and the amount of nitride is extremely small at a depth greater than that, so This is because it was considered that it was sufficient to evaluate the amount of nitride in the range of 30 μm.

【0026】図2より、鋼板表層部30μmでの窒化物量
が300ppm以下の場合に鉄損が低下し、W15/50=2.25W
/kgが達成されることがわかる。
FIG. 2 shows that when the nitride content at the surface layer portion of the steel sheet of 30 μm is 300 ppm or less, the iron loss decreases, and W 15/50 = 2.25 W
/ Kg is achieved.

【0027】以上のことより、本発明においては、鋼板
表面より30μm以内の領域での窒化物量を300ppm以下に
限定する。
From the above, in the present invention, the amount of nitride in a region within 30 μm from the steel sheet surface is limited to 300 ppm or less.

【0028】(その他の成分の限定理由)次に、その他
の成分の限定理由について説明する。 Si: Siは鋼板の固有抵抗を上げるために有効な元素で
あるが、4.0%を超えると飽和磁束密度の低下に伴い磁
束密度が低下するため上限を4.0%とする。 Mn: Mnは熱間圧延時の赤熱脆性を防止するために、0.
05%以上必要であるが、1.0%以上になると磁束密度を
低下させるので0.05〜1.0%とする。 Al: AlはSiと同様、固有抵抗を上げるために有効な元
素であるが、1.0%を超えると飽和磁束密度の低下に伴
い磁束密度が低下するため上限を1.0%とする。また、
0.1%未満の場合にはAlNが微細化し粒成長性が低下す
るため下限を0.1%とする。
(Reasons for Limiting Other Components) Next, the reasons for limiting other components will be described. Si: Si is an effective element for increasing the specific resistance of the steel sheet. However, if it exceeds 4.0%, the magnetic flux density decreases with a decrease in the saturation magnetic flux density, so the upper limit is set to 4.0%. Mn: Mn is 0.1% to prevent red hot brittleness during hot rolling.
It is required to be not less than 05%, but if it is not less than 1.0%, the magnetic flux density is reduced. Al: Al is an element effective for increasing the specific resistance, like Si, but if it exceeds 1.0%, the magnetic flux density decreases with a decrease in the saturation magnetic flux density, so the upper limit is set to 1.0%. Also,
If it is less than 0.1%, the lower limit is set to 0.1% because AlN becomes finer and the grain growth is reduced.

【0029】(製造方法)本発明においては、S及び鋼
板表層部の窒化物量が所定の範囲内であれば、製造方法
は、無方向性電磁鋼板を製造する通常の方法でかまわな
い。すなわち、転炉で吹練した溶鋼を脱ガス処理して所
定の成分に調整し、引き続き鋳造、熱間圧延を行う。熱
間圧延時の仕上焼鈍温度、巻取り温度は特に規定する必
要はなく、通常の無方向性電磁鋼板を製造する範囲の温
度でかまわない。また、熱延後の熱延板焼鈍は行っても
良いが必須ではない。次いで1回の冷間圧延、もしくは
中間焼鈍をはさんだ2回以上の冷間圧延により所定の板
厚とした後に、最終焼鈍を行う。
(Manufacturing method) In the present invention, as long as the amount of S and the nitride in the surface layer portion of the steel sheet are within a predetermined range, the manufacturing method may be an ordinary method of manufacturing a non-oriented electrical steel sheet. That is, the molten steel blown in the converter is degassed to adjust to a predetermined component, and then casting and hot rolling are performed. The finish annealing temperature and the winding temperature at the time of hot rolling do not need to be particularly specified, and may be a temperature in a range where a normal non-oriented electrical steel sheet is manufactured. In addition, hot-rolled sheet annealing after hot-rolling may be performed, but is not essential. Next, final cold-rolling or cold-rolling two or more times with intermediate annealing to obtain a predetermined sheet thickness is performed, followed by final annealing.

【0030】鋼板表層部の窒化物量を所定の範囲内にす
る方法は特に規定する必要はなく、例えば、仕上焼鈍後
酸洗により鋼板表層部の窒化層を取り除くことにより達
成される。
The method for controlling the amount of nitride in the surface layer of the steel sheet within a predetermined range does not need to be particularly defined. For example, the method is achieved by removing the nitride layer in the surface layer of the steel sheet by pickling after finish annealing.

【0031】[0031]

【実施例】表1に示す鋼を用い、転炉で吹練した後に脱
ガス処理を行うことにより所定の成分に調整後鋳造し、
スラブ加熱温度1160℃で1hr加熱した後、板厚2.0mmま
で熱間圧延を行った。熱間圧延時の仕上げ温度は750
℃、巻取り温度は610℃とし、830℃×180minの熱延板焼
鈍を施した。次に、この熱延板を酸洗し、その後、板厚
0.50〜0.55mmまで冷間圧延を行い、920℃×2minの仕上
焼鈍を行った。
EXAMPLES The steels shown in Table 1 were cast into a given component after being degassed after being blown in a converter,
After heating at a slab heating temperature of 1160 ° C. for 1 hour, hot rolling was performed to a sheet thickness of 2.0 mm. Finishing temperature during hot rolling is 750
° C, the winding temperature was 610 ° C, and hot-rolled sheet annealing at 830 ° C for 180 minutes was performed. Next, the hot-rolled sheet is pickled and then
Cold rolling was performed to 0.50 to 0.55 mm, and finish annealing at 920 ° C. × 2 min was performed.

【0032】仕上焼鈍後、酸洗処理を行い、酸洗処理時
間を種々変えることにより、鋼板表層部の窒化物量を変
化させた。そして、鋼板表面から30μmの範囲の窒化物
量を測定した。窒化物はAlNであった。
After the finish annealing, pickling was performed, and the amount of nitride in the surface layer of the steel sheet was changed by variously changing the pickling time. Then, the amount of nitride in a range of 30 μm from the steel sheet surface was measured. The nitride was AlN.

【0033】磁気測定は25cmエプスタイン試験片を用い
て行った((L+C)/2)。各鋼板における鋼板表面
から30μmの範囲の窒化物の量と、磁気特性(鉄損W
15/50と磁束密度B50)を表1に併せて示す。
The magnetic measurement was performed using a 25 cm Epstein test piece ((L + C) / 2). The amount of nitride in the range of 30 μm from the steel sheet surface of each steel sheet and the magnetic properties (iron loss W
15/50 and magnetic flux density B 50 ) are also shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】表1からわかるように、本発明鋼であるN
o.1〜No.3の鋼板においては、仕上焼鈍後の鉄損W
15/50が非常に低い。
As can be seen from Table 1, the steel of the present invention, N
o-No. 3 steel loss W after finish annealing
15/50 is very low.

【0036】これに対し、No.4とNo.5の鋼板は、Sの
含有量が本発明の範囲より多いので、鉄損W15/50が非
常に高くなっている。
On the other hand, in the steel sheets No. 4 and No. 5, since the S content is larger than the range of the present invention, the iron loss W 15/50 is extremely high.

【0037】また、No.6とNo.7の鋼板は、鋼板表面か
ら30μmの範囲の窒化物量が本発明の範囲より多いの
で、鉄損W15/50が高くなっている。
Further, in the steel sheets No. 6 and No. 7, since the amount of nitride in the range of 30 μm from the steel sheet surface is larger than the range of the present invention, the iron loss W 15/50 is high.

【0038】No.8の鋼板は、Siの含有量が本発明の範
囲より多いので、鉄損W15/50は低いものの、磁束密度
50が低くなっている。
[0038] The steel sheet No. 8 has a higher content of Si than the range of the present invention, so that the iron loss W15 / 50 is low, but the magnetic flux density B50 is low.

【0039】No.9の鋼板は、Mnの含有量が本発明の範
囲より多いので、磁束密度B50が低くなっている。
[0039] No.9 of steel sheet, so the Mn content is larger than the range of the present invention, the magnetic flux density B 50 is low.

【0040】No.10の鋼板は、Alの含有量が本発明の範
囲より多いので、鉄損W15/50は低いものの、磁束密度
50が低くなっている。
Since the steel sheet No. 10 has a higher Al content than the range of the present invention, the iron loss W 15/50 is low, but the magnetic flux density B 50 is low.

【0041】[0041]

【発明の効果】以上説明したように、本発明は、重量%
でSi:4.0%以下、Mn:0.05〜1.0%、Al:0.1〜1.0%、
S:0.001%以下(0を含む)を含有し、残部が実質的
にFeであり、かつ、仕上焼鈍後の鋼板の表面より30μm
以内の領域での窒化物量が300ppm以下であることを特徴
とする無方向性電磁鋼板あるので、磁性焼鈍後の鉄損が
低いという甲かを有する。
As described above, according to the present invention, the weight%
With Si: 4.0% or less, Mn: 0.05-1.0%, Al: 0.1-1.0%,
S: contains 0.001% or less (including 0), the balance is substantially Fe, and 30 μm from the surface of the steel sheet after finish annealing
Since the non-oriented electrical steel sheet has a nitride content of 300 ppm or less in the region within, the iron loss after magnetic annealing is low.

【0042】また、仕上焼鈍後に酸洗により、仕上焼鈍
後の鋼板の表面より30μm以内の領域での窒化物量を30
0ppm以下に調整すれば、この鉄損が低い無方向性電磁鋼
板を簡単に製造できる。
Further, the amount of nitride in a region within 30 μm from the surface of the steel sheet after the finish annealing is reduced by pickling after the finish annealing.
When the content is adjusted to 0 ppm or less, a non-oriented electrical steel sheet having a low iron loss can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】S量と、仕上焼鈍後の磁気特性との関係を示す
図である。
FIG. 1 is a diagram showing the relationship between the amount of S and magnetic properties after finish annealing.

【図2】鋼板表面より30μmの領域での窒化物量と仕上
焼鈍後の磁気特性との関係を示す図である。
FIG. 2 is a graph showing a relationship between an amount of nitride in a region 30 μm from a steel sheet surface and magnetic properties after finish annealing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%でSi:4.0%以下、Mn:0.05〜1.0
%、Al:0.1〜1.0%、S:0.001%以下(0を含む)を
含有し、残部が実質的にFeであり、かつ、仕上焼鈍後の
鋼板の表面より30μm以内の領域での窒化物量が300ppm
以下であることを特徴とする鉄損の低い無方向性電磁鋼
板。
(1) Si: 4.0% or less by weight%, Mn: 0.05 to 1.0
%, Al: 0.1 to 1.0%, S: 0.001% or less (including 0), the balance being substantially Fe, and the amount of nitride in a region within 30 μm from the surface of the steel sheet after finish annealing. Is 300ppm
Non-oriented electrical steel sheet with low iron loss, characterized by the following.
【請求項2】 重量%でSi:4.0%以下、Mn:0.05〜1.0
%、Al:0.1〜1.0%、S:0.001%以下(0を含む)を
含有し、残部が実質的にFeである鉄損の低い無方向性電
磁鋼板の製造方法であって、仕上焼鈍後に酸洗により、
仕上焼鈍後の鋼板の表面より30μm以内の領域での窒化
物量を300ppm以下に調整することを特徴とする鉄損の低
い無方向性電磁鋼板の製造方法。
2. Si: 4.0% or less by weight%, Mn: 0.05 to 1.0% by weight
%, Al: 0.1 to 1.0%, S: 0.001% or less (including 0), the balance being substantially Fe, a method for producing a non-oriented electrical steel sheet having a low iron loss, and after finish annealing By pickling,
A method for producing a non-oriented electrical steel sheet having a low iron loss, wherein a nitride amount in a region within 30 μm from a surface of a steel sheet after finish annealing is adjusted to 300 ppm or less.
JP9273359A 1997-03-18 1997-09-22 Nonoriented silicon steel sheet low in core loss and its production Pending JPH1192890A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP9273359A JPH1192890A (en) 1997-09-22 1997-09-22 Nonoriented silicon steel sheet low in core loss and its production
US09/041,335 US6139650A (en) 1997-03-18 1998-03-12 Non-oriented electromagnetic steel sheet and method for manufacturing the same
CA 2232129 CA2232129C (en) 1997-03-18 1998-03-16 Non-oriented electromagnetic steel sheet and method for manufacturing the same
KR1019980009115A KR100268612B1 (en) 1997-03-18 1998-03-17 Method of producing non oriented silicon steel sheets having an excellent electromagnetic property
CN98105708A CN1083494C (en) 1997-03-18 1998-03-17 Non-oriented electrical steel sheet and method for manufacturing the same
EP98104900A EP0866144B1 (en) 1997-03-18 1998-03-18 Non-oriented electromagnetic steel sheet and method for manufacturing the same
DE69832313T DE69832313T2 (en) 1997-03-18 1998-03-18 Non-oriented electromagnetic steel sheet and method for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9273359A JPH1192890A (en) 1997-09-22 1997-09-22 Nonoriented silicon steel sheet low in core loss and its production

Publications (1)

Publication Number Publication Date
JPH1192890A true JPH1192890A (en) 1999-04-06

Family

ID=17526808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9273359A Pending JPH1192890A (en) 1997-03-18 1997-09-22 Nonoriented silicon steel sheet low in core loss and its production

Country Status (1)

Country Link
JP (1) JPH1192890A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021242A (en) * 2016-08-05 2018-02-08 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet, manufacturing method of nonoriented electromagnetic steel sheet and manufacturing method of motor core
JP2018021241A (en) * 2016-08-05 2018-02-08 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet, manufacturing method of nonoriented electromagnetic steel sheet and manufacturing method of motor core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021242A (en) * 2016-08-05 2018-02-08 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet, manufacturing method of nonoriented electromagnetic steel sheet and manufacturing method of motor core
JP2018021241A (en) * 2016-08-05 2018-02-08 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet, manufacturing method of nonoriented electromagnetic steel sheet and manufacturing method of motor core

Similar Documents

Publication Publication Date Title
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
JP3386742B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JPH1192890A (en) Nonoriented silicon steel sheet low in core loss and its production
JP2000328207A (en) Silicon steel sheet excellent in nitriding and internal oxidation resistances
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JP3458682B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same
JPH11158550A (en) Production of nonoriented silicon steel sheet excellent in magnetic property after stress relieving annealing
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
JP3169490B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
JPH1112700A (en) Non-oriented electrical sheet having low iron loss
JPH11124626A (en) Production of nonoriented silicon steel sheet reduced in iron loss
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH05279742A (en) Manufacture of silicon steel sheet having high magnetic flux density
JPH11229097A (en) Nonoriented silicon steel sheet reduced in core loss
JPH11302741A (en) Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss
JPH11315327A (en) Manufacture of non-oriented silicon steel sheet with low iron loss, and non-oriented silicon steel sheet with low iron loss
JPH1161259A (en) Manufacture of nonoriented silicon steel sheet with low iron loss

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040712