JPH11229097A - Nonoriented silicon steel sheet reduced in core loss - Google Patents

Nonoriented silicon steel sheet reduced in core loss

Info

Publication number
JPH11229097A
JPH11229097A JP10046303A JP4630398A JPH11229097A JP H11229097 A JPH11229097 A JP H11229097A JP 10046303 A JP10046303 A JP 10046303A JP 4630398 A JP4630398 A JP 4630398A JP H11229097 A JPH11229097 A JP H11229097A
Authority
JP
Japan
Prior art keywords
iron loss
ppm
steel sheet
less
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10046303A
Other languages
Japanese (ja)
Inventor
Yoshihiko Oda
善彦 尾田
Nobuo Yamagami
伸夫 山上
Akira Hiura
昭 日裏
Yasushi Tanaka
靖 田中
Atsushi Chino
淳 千野
Katsumi Yamada
克美 山田
Hideki Matsuoka
秀樹 松岡
Noritaka Takahashi
紀隆 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10046303A priority Critical patent/JPH11229097A/en
Publication of JPH11229097A publication Critical patent/JPH11229097A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably provide a nonoriented silicon steel sheet reduced in core loss. SOLUTION: This steel sheet has a composition consisting of, by weight, <=0.005% C, <=4.0% Si, 0.05-1.0% Mn, <=0.2% P, <=0.005% (including 0%) N, 0.1-1.0% Al, <=0.001% (including 0%) S, at least either of Sb and Sn in an amount satisfying Sb+Sn/2=0.001 to 0.05%, <=0.005% (including 0%) Ti, and the balance essentially Fe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄損が低く、電気
機器に使用される電気材料として好適な無方向性電磁鋼
板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having low iron loss and suitable as an electrical material used for electrical equipment.

【0002】[0002]

【従来の技術】近年、電気機器の省エネルギーの観点よ
り、より鉄損の低い電磁鋼板が求められるようになって
きている。この鉄損を低減するためには結晶粒の粗大化
が効果的であり、低鉄損が特に要求されるSi+Al量が1
〜3%程度の中・高級グレードの無方向性電磁鋼板にお
いては、仕上焼鈍温度を1000℃程度まで高めたり、焼鈍
時のラインスピードを下げ、焼鈍時間を長くすることに
より結晶粒の粗大化を図っている。
2. Description of the Related Art In recent years, electromagnetic steel sheets with lower iron loss have been required from the viewpoint of energy saving of electrical equipment. In order to reduce the iron loss, it is effective to increase the crystal grain size.
For medium- and high-grade non-oriented electrical steel sheets of up to about 3%, coarsening of crystal grains can be achieved by increasing the finish annealing temperature to about 1000 ° C, reducing the line speed during annealing, and lengthening the annealing time. I'm trying.

【0003】仕上焼鈍時の粒成長性を良好にするために
は、鋼板中の介在物、析出物量を低減することが効果的
である。このため、これまで介在物、析出物を無害化す
ることが試みられており、特に高級材ではMnSの析出防
止の観点からS量を低減させる試みがなされてきた。
In order to improve the grain growth during finish annealing, it is effective to reduce the amount of inclusions and precipitates in the steel sheet. For this reason, attempts have been made to render the inclusions and precipitates harmless, and particularly in high-grade materials, attempts have been made to reduce the S content from the viewpoint of preventing precipitation of MnS.

【0004】例えば、特公昭56−22931号公報に
は、Si:2.5〜3.5%、Al:0.3〜1.0%の鋼においてS:
50ppm以下、O:25ppm以下とすることにより鉄損を低下
させる技術が開示されている。
[0004] For example, Japanese Patent Publication No. 56-22931 discloses that in steel containing 2.5% to 3.5% of Si and 0.3% to 1.0% of Al, S:
There is disclosed a technique for reducing iron loss by reducing the content of iron to 50 ppm or less and O: 25 ppm or less.

【0005】また、特公平2−50190号公報には、
Si:2.5〜3.5%、Al:0.25〜1.0%の鋼においてS:15p
pm以下、O:20ppm以下、N:25ppm以下とすることによ
り鉄損を低下させる技術が開示されている。
In Japanese Patent Publication No. 2-50190,
Si: 2.5-3.5%, Al: 0.25-1.0% steel: S: 15p
There is disclosed a technique for reducing iron loss by setting the pm or less, O: 20 ppm or less, and N: 25 ppm or less.

【0006】さらに特開平5−140647号公報に
は、Si:2.0〜4.0%、Al:0.10〜2.0%の鋼において
S:30ppm以下、Ti、Zr、Nb、Vをそれぞれ50ppm以下と
することにより鉄損を低下させる技術が開示されてい
る。
Further, Japanese Patent Application Laid-Open No. 5-140647 discloses that, in a steel containing 2.0% to 4.0% of Si and 0.10% to 2.0% of Al, S: 30 ppm or less and Ti, Zr, Nb, and V each being 50 ppm or less. Techniques for reducing iron loss have been disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかし、これらいずれ
の技術においても、S量を10ppm以下とした高級グレー
ドの鋼板の鉄損値は、W15/50=2.4W/kg程度(板厚0.5
mm)であり、これ以上の低鉄損は達成されていないのが
現状である。単純に考えると、S量を少なくしていけば
鋼中のMnSの量が減り、これに伴って結晶粒の成長が容
易になるので、鉄損はどんどん低下していくように思わ
れる。しかしながら、現実には、S量の低下に伴う鉄損
の低下は、S量が10ppm程度となると飽和し、前記のよ
うな鉄損値が限界である。
However, in any of these techniques, the iron loss value of a high-grade steel sheet having an S content of 10 ppm or less is about W 15/50 = 2.4 W / kg (sheet thickness 0.5
mm), and no further low iron loss has been achieved. To put it simply, it seems that reducing the amount of S reduces the amount of MnS in the steel, which facilitates the growth of crystal grains, and thus the iron loss seems to decrease more and more. However, in reality, the decrease in iron loss due to the decrease in the amount of S is saturated when the amount of S is about 10 ppm, and the iron loss value as described above is the limit.

【0008】本発明はこのような事情に鑑みなされたも
のであり、安定して鉄損の低い電磁鋼板を提供すること
を目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an electromagnetic steel sheet having a stable and low iron loss.

【0009】[0009]

【課題を解決するための手段】本発明の骨子は、Sを10
ppm以下の極微量に制御しても鉄損が下がらないのは、
微量S領域において顕著な窒化層が表面領域に形成され
るためであるという新しい知見に基づき、SbとSnの少な
くとも一方をSb+Sn/2で0.001〜0.05%含有させ、さらに
Ti含有量を0.005%以下に制限することによって窒化物
の形成を抑制し、鉄損を低下させるものである。
The gist of the present invention is that S is 10
The iron loss does not decrease even if it is controlled to a trace amount of ppm or less.
Based on a new finding that a remarkable nitride layer is formed in the surface region in the trace S region, at least one of Sb and Sn is contained in 0.001 to 0.05% by Sb + Sn / 2,
By limiting the Ti content to 0.005% or less, the formation of nitrides is suppressed and iron loss is reduced.

【0010】すなわち、前記課題は、重量%で、C:0.
005%以下、Si:4.0%以下、Mn:0.05〜1.0%、P:0.2
%以下、N:0.005%以下(0を含む)、Al:0.1〜1.0
%、S:0.001%以下(0を含む)、SbとSnの少なくと
も一方をSb+Sn/2で0.001〜0.05%、Ti:0.005%以下
(0を含む)を含み、残部が実質的にFeであることを特
徴とする鉄損の低い無方向性電磁鋼板により解決され
る。
[0010] That is, the above-mentioned problem is expressed by:
005% or less, Si: 4.0% or less, Mn: 0.05 to 1.0%, P: 0.2
%, N: 0.005% or less (including 0), Al: 0.1 to 1.0
%, S: 0.001% or less (including 0), at least one of Sb and Sn is 0.001 to 0.05% by Sb + Sn / 2, Ti: 0.005% or less (including 0), and the balance is substantially Fe The problem is solved by a non-oriented electrical steel sheet having low iron loss.

【0011】そして、この中で、Sb+Sn/2の量を0.001〜
0.005%とすることにより、際立って鉄損を低下させる
ことができる。
The amount of Sb + Sn / 2 is adjusted to 0.001 to
By setting the content to 0.005%, iron loss can be significantly reduced.

【0012】ここに、「残部が実質的Feである」とは、
本発明の作用効果を無くさない範囲で不可避不純物をは
じめその他の微量元素を含むものが権利範囲に入ること
を意味する。なお、以下の説明において、鋼の成分を示
す%は全て重量%を意味し、ppmも重量ppmを意味する。
Here, "the balance is substantially Fe" means:
This means that those containing inevitable impurities and other trace elements fall within the scope of the right as long as the functions and effects of the present invention are not lost. In the following description, all the percentages indicating the components of steel mean weight%, and ppm also means weight ppm.

【0013】(発明に至る経緯とS、Sb、Snの限定理
由)本発明者等は、鉄損に及ぼすSの影響を調査するた
め、C:0.0025%、Si:2.85%、Mn:0.20%、P:0.01
0%、Al:0.31%、N:0.0021%とし、S量をtr.〜15pp
mの範囲で変化させた鋼を実験室にて真空溶解し、熱延
後、酸洗を行った。引き続きこの熱延板に75%H2−25
%N2雰囲気で830℃×3hrの熱延板焼鈍を施し、その
後、板厚0.5mmまで冷間圧延し、25%H2−75%N2雰囲
気で900℃×1min間の仕上焼鈍を行った。図1に、この
ようにして得られたサンプルのS量と鉄損W15/50の関
係を示す(図1の×印)。ここで、磁気測定は25cmエプ
スタイン法により行った。
(Circumstances leading to the invention and the reasons for limiting S, Sb, Sn) The present inventors investigated the effect of S on iron loss, so that C: 0.0025%, Si: 2.85%, Mn: 0.20% , P: 0.01
0%, Al: 0.31%, N: 0.0021%, and the S amount is tr.
The steel changed in the range of m was melted in a laboratory in a vacuum, hot-rolled, and then pickled. 75% H 2 -25
% N subjected to hot band annealing of 830 ° C. × 3 hr at 2 atmosphere, then cold rolled to a thickness of 0.5 mm, subjected to finish annealing between 900 ° C. × 1min at 25% H 2 -75% N 2 atmosphere Was. FIG. 1 shows the relationship between the S content of the sample thus obtained and the iron loss W 15/50 (marked by X in FIG. 1). Here, the magnetic measurement was performed by a 25 cm Epstein method.

【0014】図1より、Sを10ppm以下とした場合に大
幅な鉄損低減が達成され、S=10ppm付近に臨界点があ
ることがわかる。これは、S量低減により粒成長性が向
上したためである。このことから、本発明においてはS
の範囲を10ppm以下に限定する。
FIG. 1 shows that when S is set to 10 ppm or less, a significant reduction in iron loss is achieved, and there is a critical point near S = 10 ppm. This is because grain growth was improved by reducing the amount of S. From this, in the present invention, S
Is limited to 10 ppm or less.

【0015】しかしながら、S量が10ppm以下となる
と、鉄損の低下は緩やかとなり、S量をtr. としても、
鉄損を2.4W/kg以下とすることはできない。
However, when the amount of S is 10 ppm or less, the iron loss decreases gradually, and even if the amount of S is tr.
Iron loss cannot be less than 2.4 W / kg.

【0016】本発明者等は、S=10ppm以下の極低S材
において鉄損の低減が阻害されるのは、MnS以外の未知
の要因によるものではないかと考え、光学顕微鏡にて組
織観察を行った。その結果、S≦10ppm の領域で鋼板表
層に顕著な窒化層が認められた。これに対し、S>10pp
m の領域では窒化層は軽微となっていた。
The present inventors consider that the reason why the reduction of iron loss is inhibited by the extremely low S material of S = 10 ppm or less may be due to unknown factors other than MnS. went. As a result, a remarkable nitrided layer was observed in the surface layer of the steel sheet in the region of S ≦ 10 ppm. On the other hand, S> 10pp
In the region of m, the nitrided layer was slight.

【0017】このS量低減に伴う窒化反応促進の原因に
関しては次のように考えられる。すなわち、Sは表面お
よび粒界に濃化しやすい元素であることから、S>10pp
mの領域では、Sが雰囲気中から鋼板表層への窒素の吸
着を抑制しており、このため窒化層は生成しない。一
方、S≦10ppmの領域ではSによる窒素吸着の抑制効果
が低下するため、窒化層が鋼板表層に生成する。
The cause of the acceleration of the nitridation reaction accompanying the reduction of the amount of S is considered as follows. That is, since S is an element easily concentrated on the surface and the grain boundaries, S> 10 pp
In the region of m, S suppresses adsorption of nitrogen from the atmosphere to the surface layer of the steel sheet, so that no nitrided layer is formed. On the other hand, in the region where S ≦ 10 ppm, the effect of suppressing the adsorption of nitrogen by S is reduced, so that a nitride layer is formed on the surface layer of the steel sheet.

【0018】本発明者等は、この表層領域に発生する窒
化層が結晶粒の成長を妨げ、鉄損の低下を抑制するので
はないかと考えた。このような考えのもとに、本発明者
等は、窒素の吸着を抑制する元素でS以外のものを含有
させることにより、窒化層の生成を抑制し、結晶粒の成
長を促して鉄損を低下させるという着想を抱き、このよ
うな元素について種々の検討を加えた結果、Sbが有効で
あることを発見した。
The present inventors have thought that the nitride layer generated in the surface layer region may hinder the growth of crystal grains and suppress the reduction of iron loss. Based on this idea, the inventors of the present invention have proposed an element that suppresses the adsorption of nitrogen by containing elements other than S, thereby suppressing the formation of a nitrided layer and promoting the growth of crystal grains to reduce iron loss. Based on the idea of reducing Sb, various studies were conducted on such elements, and as a result, it was found that Sb was effective.

【0019】図1に、前記×印で示したサンプルの成分
に40ppmのSbを含有したサンプルについて、同一の条件
で試験を行った結果を○印で示す。Sbの鉄損低減効果に
着目すると、S>10ppm の領域では、Sb含有により鉄損
は0.02〜0.04W/kg程度しか低下しないが、S≦10ppm
の領域では0.2W/kg程度低下しており、Sbによる鉄損
低減効果は、S量が少ない場合に顕著に認められる。ま
た、このサンプルではS量によらず窒化層は認められな
かった。このことから、Sbが鋼板表層部に濃化して窒素
の吸着を抑制し、その結果、結晶粒の成長が妨げられな
かったので鉄損が低下したものと考えられる。
FIG. 1 shows the results of a test conducted under the same conditions with respect to a sample containing 40 ppm of Sb in the components of the sample indicated by the symbol x. Focusing on the iron loss reduction effect of Sb, in the region of S> 10 ppm, iron loss is reduced only by about 0.02 to 0.04 W / kg due to Sb content, but S ≦ 10 ppm
In the region, the iron loss is reduced by about 0.2 W / kg, and the effect of reducing iron loss by Sb is remarkably observed when the amount of S is small. In this sample, no nitrided layer was observed regardless of the S content. From this, it is considered that Sb was concentrated in the surface layer of the steel sheet to suppress adsorption of nitrogen, and as a result, growth of crystal grains was not hindered, so that iron loss was reduced.

【0020】次にSb量の最適含有量を調査するため、
C:0.0026%、Si:2.70%、Mn:0.20%、P:0.020
%、Al:0.30%、S:0.0004%、N:0.0020%とし、Sb
量をtr.〜700ppmで変化させた鋼を実験室にて真空溶解
し、熱延後、酸洗を行った。引き続きこの熱延板に75%
2%−25%N2雰囲気830℃×3hrの熱延板焼鈍を施
し、その後、板厚0.5mmまで冷間圧延し、25%H2−75%
2雰囲気で900℃×1minの仕上焼鈍を行った。図2
に、Sb量と鉄損W15/50の関係を示す。
Next, in order to investigate the optimum Sb content,
C: 0.0026%, Si: 2.70%, Mn: 0.20%, P: 0.020
%, Al: 0.30%, S: 0.0004%, N: 0.0020%, Sb
The steel whose amount was changed from tr. To 700 ppm was melted in a laboratory in a vacuum, hot-rolled, and then pickled. Continue to add 75%
Subjected to hot rolled sheet annealing of H 2% -25% N 2 atmosphere 830 ° C. × 3 hr, then cold rolled to a thickness of 0.5mm, 25% H 2 -75%
Finish annealing was performed at 900 ° C. × 1 min in a N 2 atmosphere. FIG.
The following shows the relationship between the Sb content and the iron loss W 15/50 .

【0021】図2より、Sb含有量が10ppm以上の領域で
鉄損が低下し、従来の電磁鋼板では得られなかったW
15/50=2.25〜2.35W/kgが達成されることがわかる。
しかし、Sbをさらに添加し、Sb>50ppm となった場合に
は、鉄損は再び増大することもわかる。しかしながら、
増加したとしても、少なくとも700ppmまでのSb量におい
ては、従来の電磁鋼板では得られなかったW15/50=2.2
5〜2.35W/kgが達成されている。
FIG. 2 shows that iron loss is reduced in the region where the Sb content is 10 ppm or more, and W which cannot be obtained with the conventional magnetic steel sheet.
It can be seen that 15/50 = 2.25 to 2.35 W / kg is achieved.
However, when Sb is further added and Sb> 50 ppm, the iron loss increases again. However,
Even if it increases, at least the Sb content up to 700 ppm, W 15/50 = 2.2 which cannot be obtained with the conventional electrical steel sheet
5 to 2.35 W / kg has been achieved.

【0022】このSb>50ppmの領域での鉄損増大原因を
調査するため、光学顕微鏡による組織観察を行った。そ
の結果、表層細粒組織は認められなかったものの、平均
結晶粒径が若干小さくなっていた。この原因は明確では
ないが、Sbが粒界に偏析しやすい元素であるため、Sbの
粒界ドラッグ効果により粒成長性が低下したものと考え
られる。
In order to investigate the cause of the increase in iron loss in the region where Sb> 50 ppm, the structure was observed with an optical microscope. As a result, although the surface layer fine grain structure was not recognized, the average crystal grain size was slightly smaller. Although the cause is not clear, it is considered that since Sb is an element that is easily segregated at the grain boundary, the grain growth property is reduced by the grain boundary drag effect of Sb.

【0023】以上のことより、本発明においては、Sbを
10ppm以上に限定し、経済的な理由から500ppm以下に限
定する。しかし、前記の理由により、Sbを50ppm以下と
することがより好ましい。さらに、20ppm以上40ppm以下
とすることが望ましい。
As described above, in the present invention, Sb is
It is limited to 10 ppm or more, and is limited to 500 ppm or less for economic reasons. However, for the above-mentioned reason, it is more preferable that Sb be 50 ppm or less. Further, it is desirable that the content be 20 ppm or more and 40 ppm or less.

【0024】発明者らは、さらに別の元素の含有により
同様の効果が得られないかどうかを研究し、Snの効果に
着目して試験を行った。まず、前記試験と同様に、鉄損
に及ぼすSの影響を調査するため、C:0.0020%、Si:
2.85%、Mn:0.18%、P:0.01%、Al:0.30%、N:0.
0018%、Ti:0.0020%とし、S量をtr. 〜15ppmの範囲
で変化させた鋼を実験室にて真空溶解し、熱延後、酸洗
を行った。引き続きこの熱延板に75%H2−25%N2雰囲
気で830℃×3hrの熱延板焼鈍を施し、その後、板厚0.5
mmまで冷間圧延し、25%H2−75%N2雰囲気で900℃×
1minの仕上焼鈍を行った。図3に、このようにして得
られたサンプルのS量と鉄損W15/50の関係を示す(図
3の×印)。ここで、磁気測定は25cmエプスタイン法に
より行った。
The inventors have studied whether the same effect can be obtained by the addition of another element, and conducted a test focusing on the effect of Sn. First, in order to investigate the effect of S on iron loss, as in the above test, C: 0.0020%, Si:
2.85%, Mn: 0.18%, P: 0.01%, Al: 0.30%, N: 0.
0018%, Ti: 0.0020%, and steel in which the S content was changed in the range of tr. To 15 ppm was melted in a vacuum in a laboratory, hot rolled, and then pickled. Subsequently, the hot-rolled sheet is subjected to hot-rolled sheet annealing at 830 ° C. for 3 hours in an atmosphere of 75% H 2 -25% N 2.
Cold rolled to 900 mm in a 25% H 2 -75% N 2 atmosphere
Finish annealing was performed for 1 min. FIG. 3 shows the relationship between the S content of the sample thus obtained and the iron loss W 15/50 (marked by x in FIG. 3). Here, the magnetic measurement was performed by a 25 cm Epstein method.

【0025】図3からも、Sを10ppm以下とした場合に
大幅な鉄損低減が達成され、S=10ppm 付近に臨界点が
あり、かつ、S量が10ppm以下となると、鉄損の低下は
緩やかとなり、S量をtr.としても、鉄損を2.4W/kg以
下とすることはできないことが確認される。
FIG. 3 also shows that when S is set to 10 ppm or less, a significant reduction in iron loss is achieved. When there is a critical point near S = 10 ppm and when the amount of S is 10 ppm or less, the reduction in iron loss does not increase. It is confirmed that the iron loss cannot be reduced to 2.4 W / kg or less even if the amount of S is tr.

【0026】図3に、前記×印で示したサンプルの成分
に 60ppmのSnを含有させたサンプルについて同一の条件
で試験を行った結果を○印で示す。Snの鉄損低減効果に
着目すると、S>10ppmの領域では、Sn含有により鉄損
は0.02〜0.04W/kg程度しか低下しないが、S≦10ppm
の領域では0.2 W/kg程度低下しており、S量が少ない
場合にSnの鉄損低減効果は顕著に認められる。また、こ
のサンプルではS量によらず窒化層は認められなかっ
た。このことから、Snが鋼板表層部に濃化して窒素の吸
着を抑制し、その結果、結晶粒の成長が妨げられなかっ
たので鉄損が低下したものと考えられる。
FIG. 3 shows the results of a test conducted under the same conditions on a sample in which 60 ppm of Sn was added to the components of the sample indicated by the symbol x, and the result is indicated by the symbol ○. Focusing on the iron loss reduction effect of Sn, in the region of S> 10 ppm, the iron loss is reduced only by about 0.02 to 0.04 W / kg due to the inclusion of Sn, but S ≦ 10 ppm
In the region of the above, it is reduced by about 0.2 W / kg, and when the amount of S is small, the effect of reducing iron loss of Sn is remarkably recognized. In this sample, no nitrided layer was observed regardless of the S content. From this, it is considered that Sn was concentrated in the surface layer portion of the steel sheet to suppress adsorption of nitrogen, and as a result, growth of crystal grains was not hindered, so that iron loss was reduced.

【0027】次にSn量の最適含有量を調査するため、
C:0.0025%、Si:2.72%、Mn:0.20%、P:0.020
%、Al:0.30%、S:0.0002%、N:0.0020%、Ti:0.
0010%としSn量をtr. 〜1400ppmの範囲で変化させた鋼
をラボ溶解し、熱延後、酸洗を行った。引き続きこの熱
延板に75%H2−25%N2雰囲気で830℃×3hrの熱延板
焼鈍を施し、その後、板厚0.5mmまで冷間圧延し、25%
2−75%N2雰囲気で900℃×1minの仕上焼鈍を行っ
た。図4に、Sn量と鉄損W15/50の関係を示す。
Next, in order to investigate the optimum Sn content,
C: 0.0025%, Si: 2.72%, Mn: 0.20%, P: 0.020
%, Al: 0.30%, S: 0.0002%, N: 0.0020%, Ti: 0.
A steel having a Sn content of 0010% and varied in the range of tr. To 1400 ppm was melted in a laboratory, hot-rolled, and then pickled. Subsequently, the hot-rolled sheet is annealed at 830 ° C. for 3 hours in a 75% H 2 -25% N 2 atmosphere, and then cold-rolled to a sheet thickness of 0.5 mm,
Finish annealing was performed at 900 ° C. for 1 minute in an H 2 -75% N 2 atmosphere. FIG. 4 shows the relationship between the Sn amount and the iron loss W15 / 50 .

【0028】図4より、Sn含有量が20ppm以上の領域で
鉄損が低下し、従来の電磁鋼板では得られなかったW
15/50=2.25〜2.35W/kgが達成されることがわかる。
しかし、Snをさらに添加し、Sn>100ppm となった場合
には、鉄損は再び増大することもわかる。しかしなが
ら、増加したとしても、少なくとも1400ppmまでのSn量
においては、従来の電磁鋼板では得られなかったW
15/50=2.25〜2.35W/kgが達成されている。
FIG. 4 shows that iron loss is reduced in the region where the Sn content is 20 ppm or more, and W which cannot be obtained with the conventional magnetic steel sheet.
It can be seen that 15/50 = 2.25 to 2.35 W / kg is achieved.
However, when Sn is further added and Sn> 100 ppm, the iron loss increases again. However, even if it increases, at least the Sn amount up to 1400 ppm cannot be obtained with the conventional magnetic steel sheet.
15/50 = 2.25 to 2.35 W / kg has been achieved.

【0029】このSn>100 ppm の領域での鉄損増大原因
を調査するため、光学顕微鏡による組織観察を行った。
その結果、表層細粒組織は認められなかったものの、平
均結晶粒径が若干小さくなっていた。この原因は明確で
はないが、Snが粒界に偏析しやすい元素であるため、Sn
の粒界ドラッグ効果により粒成長性が低下したものと考
えられる。また、このサンプルにおいても、S量によら
ず窒化層は認められなかった。これはSnが鋼板表層部に
濃化し窒素の吸着を抑制したためと考えられる。
In order to investigate the cause of the increase in iron loss in the region where Sn> 100 ppm, the structure was observed with an optical microscope.
As a result, although the surface layer fine grain structure was not recognized, the average crystal grain size was slightly smaller. Although the cause is not clear, since Sn is an element that easily segregates at the grain boundary, Sn
It is considered that the grain growth was reduced due to the grain boundary drag effect. Also in this sample, no nitrided layer was observed regardless of the amount of S. This is considered to be because Sn concentrated in the surface layer of the steel sheet and suppressed the adsorption of nitrogen.

【0030】以上のことより、本発明においては、Snを
20ppm以上に限定し、経済的な理由から1000ppm以下に限
定する。しかし、前述の理由から、Snの上限を100ppmと
することがより好ましい。さらに、40ppm以上80ppm以下
とすることが好ましい。
As described above, in the present invention, Sn is
Limit to 20 ppm or more, and limit to 1000 ppm or less for economic reasons. However, for the reasons described above, it is more preferable to set the upper limit of Sn to 100 ppm. Further, the content is preferably 40 ppm or more and 80 ppm or less.

【0031】このSnとSbの鉄損に及ぼす影響の違いは以
下のように理解できる。すなわち、Snは偏析係数がSbよ
りも小さいため、表面偏析により窒化を抑えるために
は、Sbの2倍程度の量が必要となる。このため、Snは20
ppm以上の添加により鉄損が低下することとなる。一
方、Snの粒界偏析によるドラッグ効果により鉄損が増大
し始める添加量も、Sbに比べSnの偏析係数が小さいこと
より、2倍程度となる。
The difference between the effects of Sn and Sb on iron loss can be understood as follows. That is, since Sn has a segregation coefficient smaller than that of Sb, an amount about twice as large as that of Sb is required to suppress nitriding due to surface segregation. Therefore, Sn is 20
Addition of ppm or more will reduce iron loss. On the other hand, the addition amount at which iron loss starts to increase due to the drag effect due to the grain boundary segregation of Sn is also about twice as large as the segregation coefficient of Sn is smaller than that of Sb.

【0032】以上述べてきたように、SbとSnが窒化を抑
制するメカニズムは同一である。このためSbとSnを同時
に添加しても同様の窒化抑制効果を得ることができる。
ただし、SnがSbと同一の効果を発揮するためにはSbの2
倍の添加量が必要となる。
As described above, the mechanism by which Sb and Sn suppress nitriding is the same. For this reason, even when Sb and Sn are added simultaneously, the same nitriding suppression effect can be obtained.
However, in order for Sn to exhibit the same effect as Sb, 2
A double addition amount is required.

【0033】よって、本発明においては、SbとSnをまと
めて扱い、このうち少なくとも一方を(Sb+Sn/2)で0.
001〜0.05%含有することに限定することにした。なお
(Sb+Sn/2)を0.001〜0.005%に限定することが更に好
ましい。
Therefore, in the present invention, Sb and Sn are treated collectively, and at least one of them is expressed as (Sb + Sn / 2).
It was decided to limit the content to 001-0.05%. It is more preferable to limit (Sb + Sn / 2) to 0.001 to 0.005%.

【0034】(Tiの限定理由)次に、本鋼種の製造安定
性を調査するため、C:0.0025%、Si:2.85%、Mn:0.
20%、P:0.01%、Al:0.31%、N:0.0021%、S:0.
0003%、Sb:40ppmとした鋼を10チャージ実機にて溶解
し、熱延後、酸洗を行った。引き続きこの熱延板に75%
2−25%N2雰囲気で830℃×3hrの熱延板焼鈍を施
し、その後、板厚0.5mmまで冷間圧延し、25%H2−75%
2雰囲気で900℃×1minの仕上焼鈍を行った。その結
果、鉄損は2.2〜2.6W/kgと大きくばらつくことが判明
した。
(Reason for Limiting Ti) Next, in order to investigate the production stability of the present steel type, C: 0.0025%, Si: 2.85%, Mn: 0.2%.
20%, P: 0.01%, Al: 0.31%, N: 0.0021%, S: 0.
0003%, Sb: 40 ppm steel was melted by a 10-charge actual machine, hot rolled, and then pickled. Continue to add 75%
Hot rolled sheet annealing at 830 ° C for 3 hours in an H 2 -25% N 2 atmosphere, and then cold rolling to a sheet thickness of 0.5mm, 25% H 2 -75%
Finish annealing was performed at 900 ° C. × 1 min in a N 2 atmosphere. As a result, it was found that iron loss varied greatly from 2.2 to 2.6 W / kg.

【0035】その原因を調査するため、仕上焼鈍後のサ
ンプルより薄膜を作製し、TEM観察を行った。その結
果、鉄損の低いサンプルにおいては微細な析出物は認め
られなかったが、鉄損の高いサンプルについては50nm程
度のTiNが観察された。このことより、鉄損のばらつき
の原因は、微細TiNの析出によるものであることが明ら
かとなった。
In order to investigate the cause, a thin film was prepared from the sample after the finish annealing, and TEM observation was performed. As a result, fine precipitates were not observed in the sample with low iron loss, but about 50 nm of TiN was observed in the sample with high iron loss. From this, it became clear that the cause of the variation in iron loss was due to the precipitation of fine TiN.

【0036】そこで、Tiが粒成長性に及ぼす影響を調査
するため、C:0.0015%、Si:2.87%、Mn:0.20%、
P:0.01%、Al:0.31%、N:0.0021%、S:0.0003
%、Sb:40ppmとし、Ti含有量を種々変えた鋼を実験室
にて真空溶解し、熱延後、酸洗を行った。引き続きこの
熱延板に75%H2−25%N2雰囲気で830℃×3hrの熱延
板焼鈍を施し、その後、板厚0.5mmまで冷間圧延し、25
%H2−75%N2雰囲気で900℃×1minの仕上焼鈍を行っ
た。
In order to investigate the effect of Ti on the grain growth, C: 0.0015%, Si: 2.87%, Mn: 0.20%,
P: 0.01%, Al: 0.31%, N: 0.0021%, S: 0.0003
%, Sb: 40 ppm, and steels with variously changed Ti contents were vacuum-melted in a laboratory, hot-rolled, and then pickled. Subsequently, the hot-rolled sheet was annealed at 830 ° C. for 3 hours in a 75% H 2 -25% N 2 atmosphere, and then cold-rolled to a sheet thickness of 0.5 mm.
Finish annealing was performed at 900 ° C. × 1 min in a% H 2 -75% N 2 atmosphere.

【0037】図5は、このようにして得られたサンプル
のTi含有量と仕上焼鈍後の鉄損W15/50の関係を示した
ものである。図5より、Ti含有量が50ppm以下となった
ときに、鉄損W15/50は2.35W/kg以下となり、安定し
て低鉄損を得ることが可能なことがわかる。以上のこと
より、本発明においては、Ti含有量を50ppm以下に限定
する。なお、20ppm以下とすることがより好ましい。
FIG. 5 shows the relationship between the Ti content of the sample thus obtained and the iron loss W 15/50 after the finish annealing. FIG. 5 shows that when the Ti content is 50 ppm or less, the iron loss W 15/50 is 2.35 W / kg or less, and a low iron loss can be stably obtained. From the above, in the present invention, the Ti content is limited to 50 ppm or less. It is more preferable that the content be 20 ppm or less.

【0038】(その他の成分の限定理由)次に、その他
の成分の限定理由について説明する。 C: Cは磁気時効の問題があるため0.005%以下とす
る。 Si: Siは鋼板の固有抵抗を上げるために有効な元素で
あるが、4.0%を超えると飽和磁束密度の低下に伴い磁
束密度が低下するため上限を4.0%とする。 Mn: Mnは熱間圧延時の赤熱脆性を防止するために、0.
05%以上必要であるが、1.0 %以上になると磁束密度を
低下させるので0.05〜1.0%とする。 P: Pは鋼板の打ち抜き性を改善するために必要な元
素であるが、0.2%を超えて添加すると鋼板が脆化する
ため0.2%以下とする。
(Reasons for Limiting Other Components) Next, reasons for limiting other components will be described. C: C is 0.005% or less because of the problem of magnetic aging. Si: Si is an effective element for increasing the specific resistance of the steel sheet. However, if it exceeds 4.0%, the magnetic flux density decreases with a decrease in the saturation magnetic flux density, so the upper limit is set to 4.0%. Mn: Mn is 0.1% to prevent red hot brittleness during hot rolling.
It is required to be at least 05%, but if it is at least 1.0%, the magnetic flux density will be reduced. P: P is an element necessary for improving the punching property of the steel sheet, but if added in excess of 0.2%, the steel sheet will be embrittled, so that the content is set to 0.2% or less.

【0039】N: Nは、含有量が多い場合にはAlNの
析出量が多くなり、鉄損を増大させるため0.005%以下
とする。 Al: AlはSiと同様、固有抵抗を上げるために有効な元
素であるが、1.0%を超えると飽和磁束密度の低下に伴
い磁束密度が低下するため上限を1.0%とする。また、
0.1%未満の場合にはAlNが微細化し粒成長性が低下す
るため下限を0.1%とする。
N: N is set to 0.005% or less in order to increase the amount of AlN and increase iron loss when the content of N is large. Al: Al is an element effective for increasing the specific resistance, like Si, but if it exceeds 1.0%, the magnetic flux density decreases with a decrease in the saturation magnetic flux density, so the upper limit is set to 1.0%. Also,
If it is less than 0.1%, the lower limit is set to 0.1% because AlN becomes finer and the grain growth is reduced.

【0040】(製造方法)本発明においては、S、Sb+
Sn/2、Tiをはじめ、所定の成分が所定の範囲内であれ
ば、製造方法は、無方向性電磁鋼板を製造する通常の方
法でかまわない。すなわち、転炉で吹練した溶鋼を脱ガ
ス処理して所定の成分に調整し、引き続き鋳造、熱間圧
延を行う。熱間圧延時の仕上焼鈍温度、巻取り温度は特
に規定する必要はなく、通常の無方向性電磁鋼板を製造
する範囲の温度でかまわない。また、熱延後の熱延板焼
鈍は行ってもよいが必須ではない。次いで一回の冷間圧
延、もしくは中間焼鈍をはさんだ2回以上の冷間圧延に
より所定の板厚とした後に、最終焼鈍を行う。
(Manufacturing method) In the present invention, S, Sb +
As long as predetermined components including Sn / 2 and Ti are within a predetermined range, the production method may be a normal method for producing a non-oriented electrical steel sheet. That is, the molten steel blown in the converter is degassed to adjust to a predetermined component, and then casting and hot rolling are performed. The finish annealing temperature and the winding temperature at the time of hot rolling do not need to be particularly specified, and may be a temperature in a range where a normal non-oriented electrical steel sheet is manufactured. In addition, hot-rolled sheet annealing after hot rolling may be performed, but is not essential. Next, final cold-rolling or cold-rolling two or more times with intermediate annealing to obtain a predetermined sheet thickness is performed, followed by final annealing.

【0041】[0041]

【実施例】鋼転炉で吹練した後に脱ガス処理を行うこと
により、表1に示す所定の成分(表1の成分値は重量
%)に調整後鋳造し、スラブを1200℃で1hr加熱した
後、板厚2.0mmまで熱間圧延した。熱延仕上げ温度は800
℃とした。巻取り温度は550℃とし、熱延後表1に示す
条件で熱延板焼鈍を施した。熱延板焼鈍の雰囲気は、75
%H2−25%N2とした。次にこの熱延板を酸洗し、その
後、板厚0.5mmまで冷間圧延を行い、25%H2−75%N2
雰囲気中で表1に示す仕上焼鈍条件で焼鈍を行った。磁
気測定は25cmエプスタイン試験片を用いて行った((L
+C)/2)。各鋼板の磁気特性(鉄損W15/50と磁束
密度B50)を表1に併せて示す。
[Example] By degassing after blowing in a steel converter, the components were adjusted to predetermined components shown in Table 1 (the component values in Table 1 are% by weight) and cast, and the slab was heated at 1200 ° C for 1 hour. After that, hot rolling was performed to a sheet thickness of 2.0 mm. Hot rolling finishing temperature is 800
° C. The winding temperature was 550 ° C., and after hot rolling, the sheet was annealed under the conditions shown in Table 1. The atmosphere for hot-rolled sheet annealing is 75
% H 2 -25% N 2 . Next, the hot-rolled sheet is pickled and then cold-rolled to a sheet thickness of 0.5 mm, and 25% H 2 -75% N 2
Annealing was performed in the atmosphere under the finish annealing conditions shown in Table 1. The magnetic measurement was performed using a 25 cm Epstein test piece ((L
+ C) / 2). Table 1 also shows the magnetic properties (iron loss W 15/50 and magnetic flux density B 50 ) of each steel sheet.

【0042】表1をみると分かるように、No.1〜No.13
の本発明鋼においては、比較鋼に比して、鉄損W15/50
が低く、かつ磁束密度B50が高い。
As can be seen from Table 1, No. 1 to No. 13
In the steel of the present invention, compared to the comparative steel, iron loss W 15/50
And the magnetic flux density B50 is high.

【0043】これに対し、No.14の鋼板は、S含有量が
本発明の範囲より高く、Sb+Sn/2量が本発明の範囲より
低く、Ti含有量が本発明の範囲より高いため、鉄損W
15/50の値が非常に高い。No.15の鋼板は、Sb+Sn/2量が
本発明の範囲より低く、Ti含有量が本発明の範囲より高
いため、やはり鉄損W15/50の値が非常に高い。No.16の
鋼板は、Ti含有量が本発明の範囲を超えているので、鉄
損W15/50の値が高い。No.17の鋼板は、Sb+Sn/2量が本
発明の範囲より高いので、鉄損W15/50の値がやや高く
なっている。
On the other hand, the steel sheet No. 14 has an S content higher than the range of the present invention, a Sb + Sn / 2 content lower than the range of the present invention, and a Ti content higher than the range of the present invention, Loss W
The value of 15/50 is very high. The steel sheet No. 15 also has a very high value of iron loss W15 / 50 because the Sb + Sn / 2 content is lower than the range of the present invention and the Ti content is higher than the range of the present invention. The steel sheet of No. 16 has a high iron loss W 15/50 since the Ti content exceeds the range of the present invention. In the steel sheet No. 17, since the Sb + Sn / 2 content was higher than the range of the present invention, the value of the iron loss W15 / 50 was slightly higher.

【0044】No.18の鋼板は、C含有量が本発明の範囲
を超えているので、鉄損が高くなっているばかりか磁気
時効の問題を有している。No.19の鋼板は、Si含有量が
本発明の範囲を超えているので、鉄損W15/50は低くな
っているものの、磁束密度B50が低下している。No.20
の鋼板は、Mn含有量が本発明の範囲を超えているので、
鉄損W15/50が高くなっている。No.21の鋼板は、Al含有
量が本発明の範囲を下回っているので、鉄損W15/50
きわめて高くなっている。No.22の鋼板は、Al含有量が
本発明の範囲を超えているので、鉄損W15/50は低いも
のの、磁束密度B50が低下している。No.23の鋼板は、
N含有量が本発明の範囲を超えているので、鉄損W
15/50が高くなっている。
Since the C content exceeds the range of the present invention, the steel sheet No. 18 not only has a high iron loss but also has a problem of magnetic aging. In the No. 19 steel sheet, since the Si content exceeds the range of the present invention, the iron loss W 15/50 is low, but the magnetic flux density B 50 is low. No.20
Since the steel sheet has a Mn content beyond the scope of the present invention,
Iron loss W 15/50 is higher. The steel sheet No. 21 has an extremely high iron loss W 15/50 because the Al content is below the range of the present invention. Since the steel content of No. 22 has an Al content beyond the range of the present invention, the iron loss W 15/50 is low, but the magnetic flux density B 50 is low. No.23 steel plate
Since the N content exceeds the range of the present invention, the iron loss W
15/50 is higher.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【発明の効果】以上説明したごとく、本発明において
は、無方向性電磁鋼板の成分を、重量%で、C:0.005
%以下、Si:4.0%以下、Mn:0.05〜1.0%、P:0.2%
以下、N:0.005%以下(0を含む)、Al:0.1〜1.0
%、S:0.001%以下(0を含む)、SbとSnの少なくと
も一方をSb+Sn/2で0.001〜0.05%、Ti:0.005%以下
(0を含む)を含み、残部が実質的にFeであるようにし
ているので、鉄損が少なく、磁束密度の高い無方向性電
磁鋼板が、安定して得られる。
As described above, in the present invention, the components of the non-oriented electrical steel sheet are expressed in terms of% by weight as C: 0.005.
%, Si: 4.0% or less, Mn: 0.05-1.0%, P: 0.2%
Hereinafter, N: 0.005% or less (including 0), Al: 0.1 to 1.0
%, S: 0.001% or less (including 0), at least one of Sb and Sn is 0.001 to 0.05% by Sb + Sn / 2, Ti: 0.005% or less (including 0), and the balance is substantially Fe Therefore, a non-oriented electrical steel sheet having a small iron loss and a high magnetic flux density can be stably obtained.

【0047】本発明に係る無方向性電磁鋼板は、モータ
やトランスのコア等、鉄損が低いことが要求される電気
材料として、広く用いるのに好適である。
The non-oriented electrical steel sheet according to the present invention is suitable for being widely used as an electric material which is required to have low iron loss, such as a motor or a transformer core.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Sと仕上げ焼鈍後の磁気特性(鉄損)との関係
を示す図である。
FIG. 1 is a diagram showing a relationship between S and magnetic properties (iron loss) after finish annealing.

【図2】Sb量と仕上げ焼鈍後の磁気特性(鉄損)との関
係を示す図である。
FIG. 2 is a graph showing the relationship between the amount of Sb and magnetic properties (iron loss) after finish annealing.

【図3】Sと仕上げ焼鈍後の磁気特性(鉄損)との関係
を示す図である。
FIG. 3 is a diagram showing a relationship between S and magnetic properties (iron loss) after finish annealing.

【図4】Sn量と仕上げ焼鈍後の磁気特性(鉄損)との関
係を示す図である。
FIG. 4 is a diagram showing the relationship between the amount of Sn and magnetic properties (iron loss) after finish annealing.

【図5】Ti量と仕上げ焼鈍後の磁気特性(鉄損)との関
係を示す図である。
FIG. 5 is a graph showing the relationship between the amount of Ti and magnetic properties (iron loss) after finish annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 靖 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 千野 淳 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 山田 克美 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 松岡 秀樹 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 高橋 紀隆 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Yasushi Tanaka, Inventor: 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Atsushi Chino, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan (72) Inventor Katsumi Yamada 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Nihon Kokan Co., Ltd. (72) Hideki Matsuoka 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan (72) Inventor Noritaka Takahashi 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.005%以下、Si:4.0%
以下、Mn:0.05〜1.0%、P:0.2%以下、N:0.005%
以下(0を含む)、Al:0.1〜1.0%、S:0.001%以下
(0を含む)、SbとSnの少なくとも一方をSb+Sn/2で0.0
01〜0.05%、Ti:0.005%以下(0を含む)を含み、残
部が実質的にFeであることを特徴とする鉄損の低い無方
向性電磁鋼板。
1. C: 0.005% or less, Si: 4.0% by weight%
Mn: 0.05 to 1.0%, P: 0.2% or less, N: 0.005%
Or less (including 0), Al: 0.1 to 1.0%, S: 0.001% or less (including 0), at least one of Sb and Sn is 0.0 by Sb + Sn / 2.
Non-oriented electrical steel sheet with low iron loss, containing 01-0.05%, Ti: 0.005% or less (including 0), and the balance being substantially Fe.
JP10046303A 1998-02-13 1998-02-13 Nonoriented silicon steel sheet reduced in core loss Pending JPH11229097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10046303A JPH11229097A (en) 1998-02-13 1998-02-13 Nonoriented silicon steel sheet reduced in core loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10046303A JPH11229097A (en) 1998-02-13 1998-02-13 Nonoriented silicon steel sheet reduced in core loss

Publications (1)

Publication Number Publication Date
JPH11229097A true JPH11229097A (en) 1999-08-24

Family

ID=12743438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10046303A Pending JPH11229097A (en) 1998-02-13 1998-02-13 Nonoriented silicon steel sheet reduced in core loss

Country Status (1)

Country Link
JP (1) JPH11229097A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674136A (en) * 2013-11-28 2015-06-03 Posco公司 Non-oriented electrical steel sheet excellent in magnetic permeability and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674136A (en) * 2013-11-28 2015-06-03 Posco公司 Non-oriented electrical steel sheet excellent in magnetic permeability and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2000256751A (en) Production of non-oriented silicon steel sheet low in core loss
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JP2000328207A (en) Silicon steel sheet excellent in nitriding and internal oxidation resistances
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
JPH11229097A (en) Nonoriented silicon steel sheet reduced in core loss
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
JPH1192890A (en) Nonoriented silicon steel sheet low in core loss and its production
JPH1112700A (en) Non-oriented electrical sheet having low iron loss
JPH11124626A (en) Production of nonoriented silicon steel sheet reduced in iron loss
JPH11302741A (en) Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss
JP3766745B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JPH11315327A (en) Manufacture of non-oriented silicon steel sheet with low iron loss, and non-oriented silicon steel sheet with low iron loss
JPH11315326A (en) Manufacture of nonoriented silicon steel sheet with low iron loss, and nonoriented silicon steel sheet with low iron loss
JP2000319767A (en) Nonoriented silicon steel sheet low in core loss and exciting effective electric current
JPH1046245A (en) Manufacture of nonoriented magnetic steel sheet reduced in iron loss after magnetic annealing
JPH1088297A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH11229098A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH11189824A (en) Production of nonoriented silicon steel sheet with low iron loss
JPH1161259A (en) Manufacture of nonoriented silicon steel sheet with low iron loss
JPH1192892A (en) Nonoriented silicon steel sheet with low iron loss
JPH11199930A (en) Production of nonoriented silicon steel sheet with low iron loss, and nonoriented silicon steel sheet with low iron loss