JPH1112701A - Nonoriented silicon steel sheet with low iron loss - Google Patents

Nonoriented silicon steel sheet with low iron loss

Info

Publication number
JPH1112701A
JPH1112701A JP9186055A JP18605597A JPH1112701A JP H1112701 A JPH1112701 A JP H1112701A JP 9186055 A JP9186055 A JP 9186055A JP 18605597 A JP18605597 A JP 18605597A JP H1112701 A JPH1112701 A JP H1112701A
Authority
JP
Japan
Prior art keywords
iron loss
steel sheet
less
ppm
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9186055A
Other languages
Japanese (ja)
Inventor
Yoshihiko Oda
善彦 尾田
Nobuo Yamagami
伸夫 山上
Yasushi Tanaka
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9186055A priority Critical patent/JPH1112701A/en
Publication of JPH1112701A publication Critical patent/JPH1112701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a steel sheet with lower iron loss after finish annealing by providing a composition containing C, Si, Mn, P, N, Zr, S, Sb, and Sn each by an amount not higher than a specific value or in a specific range and making the balance essentially Fe. SOLUTION: This steel sheet has a composition consisting of, by weight, <=0.005% C, <=4% Si, <=0.05% Mn, <=0.2% P, <=0.005% (including 0%) N, 0.005-0.1% Zr, <=0.001% (including 0%) S, and the balance essentially Fe and satisfying Sb+Sn/2=0.001 to 0.05%. At this time, it is preferable, in particular, that Sb+Sn/2=0.001 to 0.005% is satisfied. Further, it is preferable that Sn is not contained and Sb content is 0.001-0.05%, and it is particularly preferable that Sn is not contained and Sb content is 0.001-0.005%. Moreover, it is preferable that Sb is not contained and Sn content is 0.002-0.1%, and it is particularly preferable that Sb is not contained and Sn content is 0.002-0.01%. By this method, the nonoriented silicon steel sheet widely used for electric materials requiring low iron loss, such as transformer iron core and motor core, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気材料として用
いられるのに好適な、鉄損の低い無方向性電磁鋼板に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having a low iron loss and suitable for use as an electrical material.

【0002】[0002]

【従来の技術】近年、電気機器の省エネルギーの観点よ
り、より鉄損の低い電磁鋼板が求められるようになって
いる。この鉄損を低減するためには結晶粒の粗大化が効
果的であり、低鉄損が特に要求されるSi+Al量が1〜3
%程度の中・高級グレードの無方向性電磁鋼板において
は、仕上焼鈍温度を1000℃程度まで高めたり、焼鈍時の
ラインスピードを下げ、焼鈍時間を長くすることにより
結晶粒の粗大化を図っている。
2. Description of the Related Art In recent years, electromagnetic steel sheets having lower iron loss have been demanded from the viewpoint of energy saving of electric equipment. In order to reduce the iron loss, it is effective to increase the crystal grain size.
% Of medium- and high-grade non-oriented electrical steel sheets, increase the finish annealing temperature to about 1000 ° C, lower the line speed during annealing, and increase the annealing time to increase the grain size. I have.

【0003】この仕上焼鈍時の粒成長性を良好にするた
めには、鋼板中の介在物、析出物量を低減することが効
果的である。このため、これまで介在物、析出物を無害
化することが試みられており、特に高級材ではMnSの析
出防止の観点からS量を低減させる試みがなされてき
た。
In order to improve the grain growth during the finish annealing, it is effective to reduce the amount of inclusions and precipitates in the steel sheet. For this reason, attempts have been made to render the inclusions and precipitates harmless, and particularly in high-grade materials, attempts have been made to reduce the S content from the viewpoint of preventing precipitation of MnS.

【0004】例えば、特公昭56−22931号公報に
は、Si:2.5〜3.5%、Al:0.3〜1.0%の鋼においてS:
50ppm以下、O:25ppm以下とすることにより鉄損を低下
させる技術が開示されている。
[0004] For example, Japanese Patent Publication No. 56-22931 discloses that in steel containing 2.5% to 3.5% of Si and 0.3% to 1.0% of Al, S:
There is disclosed a technique for reducing iron loss by reducing the content of iron to 50 ppm or less and O: 25 ppm or less.

【0005】また、特公平2−50190号公報には、
Si:2.5〜3.5%、Al:0.25〜1.0%の鋼においてS:15p
pm以下、O:20ppm以下、N:25ppm以下とすることによ
り鉄損を低下させる技術が開示されている。
In Japanese Patent Publication No. 2-50190,
Si: 2.5-3.5%, Al: 0.25-1.0% steel: S: 15p
There is disclosed a technique for reducing iron loss by setting the pm or less, O: 20 ppm or less, and N: 25 ppm or less.

【0006】さらに特開平5−140674号公報に
は、Si:2.0〜4.0%、Al:0.10〜2.0%の鋼において
S:30ppm以下、Ti、Zr、Nb、Vをそれぞれ50ppm以下と
することにより鉄損を低下させる技術が開示されてい
る。
Further, Japanese Patent Application Laid-Open No. H5-140674 discloses that, in a steel containing 2.0% to 4.0% of Si and 0.10% to 2.0% of Al, S: 30 ppm or less and Ti, Zr, Nb, and V each being 50 ppm or less. Techniques for reducing iron loss have been disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかし、これらいずれ
の技術においても、Si、Al量がトータルで3〜3.5%程
度、S量を10ppm以下とした高級グレードの鋼板の鉄損
値は、W15/50=2.4(W/kg)程度(板厚0.5mm)であ
り、これ以上の低鉄損は達成されていないのが現状であ
る。
However, in any of these techniques, the iron loss value of a high-grade steel sheet in which the total amount of Si and Al is about 3 to 3.5% and the amount of S is 10 ppm or less is W 15 / 50 = a 2.4 (W / kg) approximately (thickness 0.5 mm), more low iron loss is has not yet been achieved.

【0008】本発明はこのような問題点を解決するため
になされたものであり、仕上焼鈍後の鉄損のより低い無
方向性電磁鋼板を提供することを目的とする。
The present invention has been made to solve such a problem, and an object of the present invention is to provide a non-oriented electrical steel sheet having lower iron loss after finish annealing.

【0009】[0009]

【課題を解決するための手段】本発明の骨子は、Sを10
ppm以下の極微量に制御しても鉄損が下がらないのは、
微量S領域において顕著な窒化層が表面領域に形成され
るためであるという新しい知見に基づき、Sb+Sn/2を0.0
01〜0.05%含有させることによって窒化物の形成を抑制
し、鉄損を低下させるものである。
The gist of the present invention is that S is 10
The iron loss does not decrease even if it is controlled to a trace amount of ppm or less.
Based on a new finding that a remarkable nitride layer is formed in the surface region in the trace S region, Sb + Sn / 2 is set to 0.0
The content of 01 to 0.05% suppresses the formation of nitrides and reduces iron loss.

【0010】すなわち、前記課題は、重量%で、C:0.
005%以下、Si:4%以下、Mn:0.05〜1.0%、P:0.2
%以下、N:0.005%以下(0を含む)、Zr:0.005〜0.
1%、S:0.001%以下(0を含む)、Sb+Sn/2=0.001〜
0.05%を含有し、残部が実質的にFeであることを特徴と
する鉄損の低い無方向性電磁鋼板によって解決される。
[0010] That is, the above-mentioned problem is expressed by:
005% or less, Si: 4% or less, Mn: 0.05 to 1.0%, P: 0.2
%, N: 0.005% or less (including 0), Zr: 0.005-0.
1%, S: 0.001% or less (including 0), Sb + Sn / 2 = 0.001 ~
The problem is solved by a non-oriented electrical steel sheet having low iron loss, which contains 0.05% and the balance is substantially Fe.

【0011】そして、この中で、Sb+Sn/2の量を0.001〜
0.005%とすることにより、際立って鉄損を低下させる
ことができる。
The amount of Sb + Sn / 2 is adjusted to 0.001 to
By setting the content to 0.005%, iron loss can be significantly reduced.

【0012】ここに、「残部が実質的にFeである」と
は、不可避不純物の他に本発明の作用効果を妨げない範
囲で不可避不純物以外の微量元素を含むものが本発明の
権利範囲に入ることを意味する。なお、以下の説明にお
いて、鋼の成分を示す%は全て重量%を意味し、ppmも
重量ppmを意味する。
Here, "the balance is substantially Fe" means that those containing trace elements other than the inevitable impurities in addition to the inevitable impurities do not impair the effects of the present invention. Means to enter. In the following description, all the percentages indicating the components of steel mean weight%, and ppm also means weight ppm.

【0013】(発明に至る経緯)本発明者らは、S=10
ppm以下の極低S材において鉄損低減を阻害している要
因を詳細に調査した。その結果、S量の低減に伴い、鋼
板表層部に顕著な窒化層が認められ、この窒化層が鉄損
低減を阻害していることが明らかとなった。
(Circumstances leading to the invention) The present inventors assume that S = 10
Factors that hinder reduction of iron loss in extremely low S materials of less than ppm were investigated in detail. As a result, a remarkable nitrided layer was observed in the surface layer of the steel sheet as the S content was reduced, and it became clear that the nitrided layer hindered the reduction of iron loss.

【0014】そこで、本発明者らが、窒化を抑制し、鉄
損をさらに低減させる手法に関し鋭意検討した結果、Sb
+Sn/2を0.001〜0.05%の範囲で添加することにより、極
低S材の鉄損が大幅に低下することを見いだした。
The present inventors have conducted intensive studies on a technique for suppressing nitriding and further reducing iron loss.
It has been found that by adding + Sn / 2 in the range of 0.001 to 0.05%, the iron loss of the extremely low S material is significantly reduced.

【0015】(S、Sb、Snの限定理由)本発明を実験結
果に基づいて詳細に説明する。最初に、鉄損に及ぼすS
の影響を調査するため、C:0.0025%、Si:2.85%、M
n:0.33%、P:0.011%、Zr:0.01%、N:0.0018%と
し、S量をtr.〜15ppmの範囲で変化させた鋼を実験室に
て真空溶解し、熱延後、酸洗を行った。引き続きこの熱
延板に75%H2-25%N2雰囲気で830℃×3hrの熱延板焼
鈍を施し、その後、板厚0.5mmまで冷間圧延し、10%H2
-90%N2雰囲気で900℃×2min間の仕上焼鈍を行った。
(Reasons for Limiting S, Sb, and Sn) The present invention will be described in detail based on experimental results. First, the effect of S on iron loss
C: 0.0025%, Si: 2.85%, M
n: 0.33%, P: 0.011%, Zr: 0.01%, N: 0.0018%, steel with the S content varied in the range of tr. to 15 ppm was vacuum melted in a laboratory, hot rolled, and pickled. Was done. Subsequently, the hot-rolled sheet was annealed at 830 ° C. for 3 hours in an atmosphere of 75% H 2 -25% N 2 , and then cold-rolled to a sheet thickness of 0.5 mm to obtain a 10% H 2
Finish annealing was performed at 900 ° C. for 2 minutes in a -90% N 2 atmosphere.

【0016】図1に、このようにして得られたサンプル
のS量と鉄損W15/50の関係を示す(図中×印)。図1
より、Sを10ppm以下とした場合に大幅な鉄損低減が達
成されW15/50=2.6W/kgが達成されることがわかる。
これは、S低減により粒成長性が向上したためである。
FIG. 1 shows the relationship between the S content of the sample thus obtained and the iron loss W 15/50 (indicated by x in the figure). FIG.
From the above, it can be seen that when S is set to 10 ppm or less, a large reduction in iron loss is achieved, and W 15/50 = 2.6 W / kg is achieved.
This is because grain growth was improved by reducing S.

【0017】以上のことより本発明に於いては、S量の
範囲を10ppm以下、望ましくは5ppm以下に限定する。
From the above, in the present invention, the range of S content is limited to 10 ppm or less, preferably 5 ppm or less.

【0018】しかし、S量が10ppm以下となると鉄損の
低下は緩やかとなり、S量をさらに低減したとしても鉄
損は2.5W/kg程度にしかならない。
However, when the S content is 10 ppm or less, the iron loss decreases gradually, and even if the S content is further reduced, the iron loss is only about 2.5 W / kg.

【0019】本発明者らは、S≦10ppmの極低S材にお
いて鉄損の低減が阻害されるのは、MnS以外の未知の要
因によるものではないかと考え、光学顕微鏡にて組織観
察を行った。その結果、S≦10ppmの領域で鋼板表層に
顕著な窒化層が認められた。これに対し、S>10ppmの
領域では窒化層は軽微となっていた。この窒化層は窒化
雰囲気で行った熱延板焼鈍時および仕上焼鈍時に生じた
ものと考えられる。
The present inventors considered that the reduction of iron loss in the extremely low S material of S ≦ 10 ppm may be caused by unknown factors other than MnS, and observed the structure with an optical microscope. Was. As a result, a remarkable nitride layer was recognized on the surface layer of the steel sheet in the region of S ≦ 10 ppm. In contrast, in the region where S> 10 ppm, the nitrided layer was slight. It is considered that this nitrided layer was formed during hot rolled sheet annealing and finish annealing performed in a nitriding atmosphere.

【0020】このS低減に伴う窒化反応促進の原因に関
しては次のように考えられる。すなわち、Sは表面およ
び粒界に濃化しやすい元素であることから、S>10ppm
の領域では、Sが鋼板表面へ濃化し、熱延板焼鈍時およ
び仕上焼鈍時の窒素の吸着を抑制しており、一方、S≦
10ppmの領域ではSによる窒素吸着の抑制効果が低下し
たためと考えられる。
The cause of the acceleration of the nitridation reaction accompanying the reduction of S is considered as follows. That is, since S is an element which is easily concentrated on the surface and the grain boundaries, S> 10 ppm
In the region of S, S is concentrated on the surface of the steel sheet to suppress the adsorption of nitrogen during hot-rolled sheet annealing and finish annealing, while S ≦
It is considered that in the 10 ppm region, the effect of suppressing nitrogen adsorption by S was reduced.

【0021】本発明者らは、この極低S材において顕著
に生じる窒化層が鋼板表層部の結晶粒の成長を妨げ、鉄
損の低下を抑制するのではないかと考えた。このような
考えの基に、本発明者らは窒素吸着の抑制が可能でかつ
極低S材の優れた粒成長性を妨げることのない元素を添
加することができれば、極低S材の鉄損はさらに低下す
るのではないかという着想を抱き、種々の検討を加えた
結果、Sbの添加が有効であることを発見した。
The present inventors have thought that the nitride layer which is remarkably generated in the extremely low S material may hinder the growth of crystal grains in the surface layer portion of the steel sheet and suppress the decrease in iron loss. Based on this idea, the inventors of the present invention will be able to suppress the adsorption of nitrogen and add an element that does not hinder the excellent grain growth of the ultra-low S material. Based on the idea that the loss may be further reduced, various investigations have shown that the addition of Sb is effective.

【0022】図1に、前記×印で示したサンプルの成分
に0.004%のSbを添加したサンプルについて同一の条件
で試験をした結果を○印で示す。Sbの鉄損低減効果に着
目すると、S>10ppmの領域では、Sb添加により鉄損は
0.02〜0.04W/kg程度しか低下しないが、S≦10ppmの
領域では、Sb添加により鉄損は0.20W/kg程度低下して
おり、S量が少ない場合にSbの鉄損低減効果は顕著に認
められる。
FIG. 1 shows the results of a test conducted under the same conditions for the samples obtained by adding 0.004% of Sb to the components of the samples shown by the crosses, with the circles showing the results. Focusing on the iron loss reduction effect of Sb, in the region of S> 10 ppm, the iron loss can be reduced by adding Sb.
Although it decreases only by about 0.02 to 0.04 W / kg, in the range of S ≦ 10 ppm, the iron loss is reduced by about 0.20 W / kg by the addition of Sb, and when the amount of S is small, the iron loss reducing effect of Sb is remarkable. Is recognized.

【0023】また、このサンプルではS量によらず窒化
層は認められなかった。これはSbが鋼板表層部に濃化し
窒素の吸着を抑制したためと考えられる。
In this sample, no nitrided layer was observed regardless of the amount of S. This is probably because Sb concentrated in the surface layer of the steel sheet and suppressed the adsorption of nitrogen.

【0024】次にSbの最適添加量を調査するため、C:
0.0026%、Si:2.83%、Mn:0.35%、P:0.011%、Z
r:0.02%、S:0.0004%、N:0.0020%とし、Sb量をt
r.〜80ppmの範囲で変化させた鋼を実験室にて真空溶解
し、熱延後、酸洗を行った。引き続きこの熱延板に75%
2-25%N2雰囲気で830℃×3hrの熱延板焼鈍を施し、
その後、板厚0.5mmまで冷間圧延し、10%H2-90%N2
囲気で900℃×2min間の仕上焼鈍を行った。
Next, in order to investigate the optimum amount of Sb, C:
0.0026%, Si: 2.83%, Mn: 0.35%, P: 0.011%, Z
r: 0.02%, S: 0.0004%, N: 0.0020%, and the amount of Sb is t
The steel changed in the range of r. to 80 ppm was melted in a laboratory in a vacuum, hot rolled, and then pickled. Continue to add 75%
Hot rolled sheet annealing at 830 ° C for 3 hours in H 2 -25% N 2 atmosphere
Thereafter, the sheet was cold-rolled to a thickness of 0.5 mm and subjected to finish annealing at 900 ° C. for 2 minutes in a 10% H 2 -90% N 2 atmosphere.

【0025】図2に、Sb量と鉄損W15/50の関係を示
す。図2より、Sb添加量が10ppm以上の領域で鉄損が低
下し、従来のSi=3%程度の電磁鋼板では得られなかっ
たW15/50=2.27W/kgが達成されることがわかる。し
かし、Sbをさらに添加し、Sb>50ppmとなった場合に
は、鉄損は再び増大することもわかる。
FIG. 2 shows the relationship between the amount of Sb and the iron loss W 15/50 . From FIG. 2, it can be seen that iron loss is reduced in the region where the amount of Sb added is 10 ppm or more, and W 15/50 = 2.27 W / kg, which was not obtained with the conventional magnetic steel sheet of about 3% Si, is achieved. . However, when Sb is further added and Sb> 50 ppm, the iron loss increases again.

【0026】このSb>50ppmの領域での鉄損増大原因を
調査するため、光学顕微鏡による組織観察を行った。そ
の結果、表層細粒組織は認められなかったものの、平均
結晶粒径が若干小さくなっていた。この原因は明確では
ないが、Sbが粒界に偏析しやすい元素であるため、粒界
エネルギーが低下し粒成長性が低下したものと考えられ
る。但し、Sbを700ppmまで添加してもSbフリー鋼と比べ
ると鉄損は良好である。
In order to investigate the cause of the increase in iron loss in the region where Sb> 50 ppm, the structure was observed with an optical microscope. As a result, although the surface layer fine grain structure was not recognized, the average crystal grain size was slightly smaller. Although the cause is not clear, it is considered that since Sb is an element that is easily segregated at the grain boundary, the grain boundary energy is reduced and the grain growth is reduced. However, even when Sb is added up to 700 ppm, the iron loss is better than that of Sb-free steel.

【0027】以上のことよりSbは10ppm以上とし、コス
トの問題から上限を500ppmとする。また鉄損の観点よ
り、望ましくは10ppm以上、50ppm以下、より望ましくは
20ppm以上、40ppm以下とする。
From the above, Sb is set to 10 ppm or more, and the upper limit is set to 500 ppm from the viewpoint of cost. Also, from the viewpoint of iron loss, preferably 10 ppm or more, 50 ppm or less, more preferably
20 ppm or more and 40 ppm or less.

【0028】SnもSb同様表面偏析する元素であるため、
Sbと同様な窒化抑制効果が得られるものと考えられる。
そこで、Snの最適添加量を調査するため、C:0.0020
%、Si:2.85%、Mn:0.33%、P:0.013%、Zr:0.02
%、S:0.0003%、N:0.0015%とし、Sn量をtr.〜140
0ppmの範囲で変化させた鋼を実験室にて真空溶解し、熱
延後、酸洗を行った。引き続きこの熱延板に75%H2-25
%N2中で830℃×3hrの熱延板焼鈍を施し、板厚0.5mm
まで冷間圧延し、10%H2-90%N2中で900℃×2min間
の仕上焼鈍を施した。
Since Sn is an element which segregates on the surface like Sb,
It is considered that the same nitriding suppression effect as that of Sb can be obtained.
Therefore, to investigate the optimum amount of Sn, C: 0.0020
%, Si: 2.85%, Mn: 0.33%, P: 0.013%, Zr: 0.02
%, S: 0.0003%, N: 0.0015%, and the Sn amount is tr.
The steel changed in the range of 0 ppm was melted in a laboratory in a vacuum, hot rolled, and then pickled. Continue to add 75% H 2 -25
% Hot rolled sheet annealing at 830 ° C for 3 hours in N 2 , 0.5mm thick
The steel sheet was cold-rolled and subjected to finish annealing at 900 ° C. for 2 minutes in 10% H 2 -90% N 2 .

【0029】図3はこのようにして得られたサンプルの
Sn量と鉄損W15/50の関係を示したものである。図3よ
り、Sn添加量が20ppm以上の領域で鉄損が低下し、W
15/50=2.27W/kgが達成されることがわかる。しか
し、Snをさらに添加し、Sn>100ppmとなった場合には、
鉄損はSn量の増大に伴い緩やかに増大することもわか
る。但し、Snを1400ppmまで添加してもSnフリー鋼と比
べると鉄損は良好である。
FIG. 3 shows the sample thus obtained.
It shows the relationship between the amount of Sn and the iron loss W 15/50 . From FIG. 3, it is found that iron loss is reduced in the region where the Sn addition amount is 20 ppm or more,
It can be seen that 15/50 = 2.27 W / kg is achieved. However, when Sn is further added and Sn> 100 ppm,
It can also be seen that iron loss increases slowly with an increase in the amount of Sn. However, even if Sn is added up to 1400 ppm, the iron loss is better than that of Sn-free steel.

【0030】このSnとSbの鉄損に及ぼす影響の違いは以
下のように理解できる。すなわち、Snは偏析係数がSbよ
りも小さいため、表面偏析により窒化を抑えるために
は、Sbの2倍程度の量が必要となる。このため、Snは20
ppm以上の添加により鉄損が低下することとなる。一
方、Snの粒界偏析により鉄損が増大し始める添加量も、
Sbに比べSnの偏析係数が小さいことより、2倍程度とな
る。このため、Snは100ppm以上の添加により鉄損が緩や
かに増大することとなる。
The difference between the effects of Sn and Sb on iron loss can be understood as follows. That is, since Sn has a segregation coefficient smaller than that of Sb, an amount about twice as large as that of Sb is required to suppress nitriding due to surface segregation. Therefore, Sn is 20
Addition of ppm or more will reduce iron loss. On the other hand, the addition amount at which iron loss starts to increase due to grain boundary segregation of Sn also
Since the segregation coefficient of Sn is smaller than that of Sb, it is about twice. For this reason, iron loss will increase moderately by addition of 100 ppm or more of Sn.

【0031】以上のことよりSnは20ppm以上とし、コス
トの問題から上限を1000ppmとする。また鉄損の観点よ
り、望ましくは20ppm以上、100ppm以下、より望ましく
は30ppm以上、90ppm以下とする。
From the above, Sn is set to 20 ppm or more, and the upper limit is set to 1000 ppm from the viewpoint of cost. From the viewpoint of iron loss, the content is desirably 20 ppm or more and 100 ppm or less, and more desirably 30 ppm or more and 90 ppm or less.

【0032】以上述べてきたように、SbとSnが窒化を抑
制するメカニズムは同一である。このためSbとSnを同時
に添加しても同様の窒化抑制効果を得ることができる。
ただし、SnがSbと同一の効果を発揮するためにはSbの2
倍の添加量が必要となる。このため、SbおよびSnを同時
添加する場合には、Sb+Sn/2で0.001%以上、0.05%以下
とし、より望ましくは0.001%以上、0.005%以下とす
る。
As described above, the mechanism by which Sb and Sn suppress nitriding is the same. For this reason, even when Sb and Sn are added simultaneously, the same nitriding suppression effect can be obtained.
However, in order for Sn to exhibit the same effect as Sb, 2
A double addition amount is required. Therefore, when Sb and Sn are added simultaneously, the content of Sb + Sn / 2 is set to 0.001% or more and 0.05% or less, and more preferably 0.001% or more and 0.005% or less.

【0033】(その他の成分の限定理由)次に、その他
の成分の限定理由について説明する。
(Reasons for Limiting Other Components) Next, reasons for limiting other components will be described.

【0034】C: Cは磁気時効の問題があるため0.00
5%以下とした。
C: C is 0.00% because of the problem of magnetic aging.
5% or less.

【0035】Si: Siは鋼板の固有抵抗を上げるために
有効な元素であるが、4%を超えると飽和磁束密度の低
下に伴い磁束密度が低下するため上限を4%とした。
Si: Si is an element effective for increasing the specific resistance of the steel sheet. However, if it exceeds 4%, the magnetic flux density decreases with a decrease in the saturation magnetic flux density, so the upper limit is set to 4%.

【0036】Mn: Mnは熱間圧延時の赤熱脆性を防止す
るために、0.05%以上必要であるが、1.0%以上になる
と磁束密度を低下させるので0.05〜1.0%とした。
Mn: Mn is required to be 0.05% or more in order to prevent red-hot brittleness during hot rolling, but when it exceeds 1.0%, the magnetic flux density is reduced.

【0037】P: Pは鋼板の打ち抜き性を改善するた
めに必要な元素であるが、0.2 %を超えて添加すると鋼
板が脆化するため0.2%以下とする。
P: P is an element necessary for improving the punching property of the steel sheet. However, if added in excess of 0.2%, the steel sheet becomes brittle, so that the content of P is set to 0.2% or less.

【0038】N: Nは、含有量が多い場合にはZrNの
析出量が多くなり、鉄損を増大させるため0.005%以下
とした。
N: N is set to 0.005% or less in order to increase the precipitation amount of ZrN and increase iron loss when the content is large.

【0039】Zr: Zrは脱酸を行うため0.005%以上の
添加が必要である。一方、0.1%を超えると粒成長性が
著しく低下するため上限を0.1%とした。
Zr: Zr needs to be added in an amount of 0.005% or more to perform deoxidation. On the other hand, if it exceeds 0.1%, the grain growth is significantly reduced, so the upper limit was made 0.1%.

【0040】(製造方法)本発明においては、S、Sb、
Snが所定の範囲内であれば、製造方法は通常の無方向性
電磁鋼板の製造方法でかまわない。すなわち、転炉で吹
練した溶鋼を脱ガス処理し所定の成分に調整し、引き続
き鋳造、熱間圧延を行う。熱間圧延時の仕上焼鈍温度、
巻取り温度は特に規定する必要はなく、通常でかまわな
い。また、熱延後の熱延板焼鈍は行っても良いが必須で
はない。次いで一回の冷間圧延、もしくは中間焼鈍をは
さんだ2回以上の冷間圧延により所定の板厚とした後
に、最終焼鈍を行う。
(Manufacturing method) In the present invention, S, Sb,
As long as Sn is within a predetermined range, the manufacturing method may be a normal non-oriented electrical steel sheet manufacturing method. That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, and subsequently casting and hot rolling are performed. Finish annealing temperature during hot rolling,
The winding temperature does not need to be specified, and may be normal. In addition, hot-rolled sheet annealing after hot-rolling may be performed, but is not essential. Next, final cold-rolling or cold-rolling two or more times with intermediate annealing to obtain a predetermined sheet thickness is performed, followed by final annealing.

【0041】[0041]

【実施例】表1に示す鋼を用い、転炉で吹練した後に脱
ガス処理を行うことにより所定の成分に調整後鋳造し、
スラブを1160℃で1hr加熱した後、板厚2.0mmまで熱間
圧延を行った。熱延仕上げ温度は750℃とした。巻取り
温度は610℃とし、表1に示す条件で熱延板焼鈍を施し
た。その後、板厚0.5mmまで冷間圧延を行い、表1に示
す仕上焼鈍条件で焼鈍を行った。磁気測定は25cmエプス
タイン試験片を用いて行った。各鋼板の磁気特性を表1
に併せて示す。
EXAMPLES The steels shown in Table 1 were cast into a given component after being degassed after being blown in a converter,
After the slab was heated at 1160 ° C. for 1 hour, hot rolling was performed to a thickness of 2.0 mm. The hot rolling finishing temperature was 750 ° C. The winding temperature was 610 ° C., and the hot-rolled sheet was annealed under the conditions shown in Table 1. Thereafter, cold rolling was performed to a sheet thickness of 0.5 mm, and annealing was performed under finish annealing conditions shown in Table 1. Magnetic measurements were performed using 25 cm Epstein specimens. Table 1 shows the magnetic properties of each steel sheet.
Are shown together.

【0042】[0042]

【表1】 [Table 1]

【0043】これより、鋼板成分を本発明のS、Sb、Sn
量に制御した場合に、仕上焼鈍後の鉄損の非常に低い鋼
板が得られることがわかる。
From the above, the steel plate components were changed to S, Sb, Sn of the present invention.
It is understood that when the amount is controlled, a steel sheet having extremely low iron loss after finish annealing can be obtained.

【0044】これに対し、No.17の鋼板、No.18の鋼板
は、それぞれ、SとSb+Sn、Sが本発明の範囲を外れて
いるので、本発明鋼板に比して鉄損が高くなっている。
また、No.19の鋼板とNo.20の鋼板は、Sb+Snの範囲が本
発明の範囲を外れているので、やはり、本発明鋼板に比
して鉄損が高くなっている。
On the other hand, in the No. 17 steel plate and the No. 18 steel plate, S, Sb + Sn, and S were out of the range of the present invention, respectively, so that the iron loss was higher than that of the steel plate of the present invention. ing.
In addition, the No. 19 steel plate and the No. 20 steel plate also have higher iron loss than the steel plate of the present invention because the range of Sb + Sn is out of the range of the present invention.

【0045】No.21の鋼板は、Cが本発明の範囲より高
いため、鉄損が高いばかりでなく、磁気時効の問題を有
している。
The steel sheet No. 21 not only has a high iron loss since C is higher than the range of the present invention, but also has a problem of magnetic aging.

【0046】No.22の鋼板は、Siの範囲が本発明の範囲
より高いので、鉄損は低く抑えられているものの、磁束
密度B50が小さくなっている。
In the steel sheet No. 22, since the range of Si is higher than the range of the present invention, the iron loss is kept low, but the magnetic flux density B50 is small.

【0047】No.23の鋼板は、Mnが本発明の範囲を外れ
ているので、鉄損は低く抑えられているものの、磁束密
度B50が低くなっている。
The steel sheet No.23, because Mn is outside the scope of the present invention, although the iron loss is kept low, the magnetic flux density B 50 is low.

【0048】No.24の鋼板、No.25の鋼板は、それぞれ、
Zrの範囲が本発明の下限未満及び上限超えであるので、
鉄損の値が高くなっている。
No. 24 steel plate and No. 25 steel plate
Since the range of Zr is below the lower limit and above the upper limit of the present invention,
The value of iron loss is high.

【0049】No.26の鋼板は、Nが本発明の範囲を外れ
ているので、鉄損が高くなっている。
The steel sheet No. 26 has a high iron loss because N is out of the range of the present invention.

【0050】[0050]

【発明の効果】以上説明したごとく、本発明において
は、無方向性電磁鋼板の成分を、重量%で、C:0.005
%以下、Si:4%以下、Mn:0.05〜1.0%、P:0.2%以
下、N:0.005%以下(0を含む)、Zr:0.005〜0.1
%、S:0.001%以下(0を含む)、Sb+Sn/2=0.001〜
0.05%を含有し、残部が実質的にFeであるようにしてい
るので、鉄損が少なく磁束密度の高いものが得られ、電
磁鋼板として有用である。
As described above, in the present invention, the components of the non-oriented electrical steel sheet are expressed in terms of% by weight as C: 0.005.
%, Si: 4% or less, Mn: 0.05 to 1.0%, P: 0.2% or less, N: 0.005% or less (including 0), Zr: 0.005 to 0.1
%, S: 0.001% or less (including 0), Sb + Sn / 2 = 0.001 ~
Since the content is 0.05% and the balance is substantially Fe, a material having a small iron loss and a high magnetic flux density can be obtained, which is useful as an electromagnetic steel sheet.

【0051】本発明に係る無方向性電磁鋼板は、トラン
スの鉄心や、モータのコア等、低鉄損が必要とされる電
気材料に広く使用することができる。
The non-oriented electrical steel sheet according to the present invention can be widely used for electrical materials requiring low iron loss, such as a transformer core and a motor core.

【図面の簡単な説明】[Brief description of the drawings]

【図1】S量と仕上焼鈍後の磁気特性との関係を示す図
である。
FIG. 1 is a diagram showing the relationship between the amount of S and magnetic properties after finish annealing.

【図2】Sb量と仕上焼鈍後の磁気特性との関係を示す図
である。
FIG. 2 is a diagram showing the relationship between the amount of Sb and magnetic properties after finish annealing.

【図3】Sn量と仕上焼鈍後の磁気特性との関係を示す図
である。
FIG. 3 is a diagram showing the relationship between the amount of Sn and magnetic properties after finish annealing.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.005%以下、Si:4%
以下、Mn:0.05〜1.0%、P:0.2%以下、N:0.005%
以下(0を含む)、Zr:0.005〜0.1%、S:0.001%以
下(0を含む)、Sb+Sn/2=0.001〜0.05%を含有し、残
部が実質的にFeであることを特徴とする鉄損の低い無方
向性電磁鋼板。
1. In weight%, C: 0.005% or less, Si: 4%
Mn: 0.05 to 1.0%, P: 0.2% or less, N: 0.005%
(Including 0), Zr: 0.005 to 0.1%, S: 0.001% or less (including 0), Sb + Sn / 2 = 0.001 to 0.05%, the balance being substantially Fe Non-oriented electrical steel sheet with low iron loss.
【請求項2】 重量%で、C:0.005%以下、Si:4%
以下、Mn:0.05〜1.0%、P:0.2%以下、N:0.005%
以下(0を含む)、Zr:0.005〜0.1%、S:0.001%以
下(0を含む)、Sb+Sn/2=0.001〜0.005%を含有し、
残部が実質的にFeであることを特徴とする鉄損の低い無
方向性電磁鋼板。
2. In% by weight, C: 0.005% or less, Si: 4%
Mn: 0.05 to 1.0%, P: 0.2% or less, N: 0.005%
Below (including 0), Zr: 0.005 to 0.1%, S: 0.001% or less (including 0), Sb + Sn / 2 = 0.001 to 0.005%,
A non-oriented electrical steel sheet having a low iron loss, the balance being substantially Fe.
【請求項3】 重量%で、C:0.005%以下、Si:4%
以下、Mn:0.05〜1.0%、P:0.2%以下、N:0.005%
以下(0を含む)、Zr:0.005〜0.1%、S:0.001%以
下(0を含む)、Sb:0.001〜0.05%を含有し、残部が
実質的にFeであることを特徴とする鉄損の低い無方向性
電磁鋼板。
3. In% by weight, C: 0.005% or less, Si: 4%
Mn: 0.05 to 1.0%, P: 0.2% or less, N: 0.005%
Iron loss, wherein Zr: 0.005 to 0.1%, S: 0.001% or less (including 0), Sb: 0.001 to 0.05%, and the balance is substantially Fe. Low grain non-oriented electrical steel sheet.
【請求項4】 重量%で、C:0.005%以下、Si:4%
以下、Mn:0.05〜1.0%、P:0.2%以下、N:0.005%
以下(0を含む)、Zr:0.005〜0.1%、S:0.001%以
下(0を含む)、Sb:0.001〜0.005%を含有し、残部が
実質的にFeであることを特徴とする鉄損の低い無方向性
電磁鋼板。
4. In% by weight, C: 0.005% or less, Si: 4%
Mn: 0.05 to 1.0%, P: 0.2% or less, N: 0.005%
Iron loss, characterized by containing the following (including 0), Zr: 0.005 to 0.1%, S: 0.001% or less (including 0), Sb: 0.001 to 0.005%, and the balance being substantially Fe. Low grain non-oriented electrical steel sheet.
【請求項5】 重量%で、C:0.005%以下、Si:4%
以下、Mn:0.05〜1.0%、P:0.2%以下、N:0.005%
以下(0を含む)、Zr:0.005〜0.1%、S:0.001%以
下(0を含む)、Sn:0.002〜0.1%を含有し、残部が実
質的にFeであることを特徴とする鉄損の低い無方向性電
磁鋼板。
5. In% by weight, C: 0.005% or less, Si: 4%
Mn: 0.05 to 1.0%, P: 0.2% or less, N: 0.005%
Iron loss, wherein Zr: 0.005 to 0.1%, S: 0.001% or less (including 0), Sn: 0.002 to 0.1%, and the balance is substantially Fe. Low grain non-oriented electrical steel sheet.
【請求項6】 重量%で、C:0.005%以下、Si:4%
以下、Mn:0.05〜1.0%、P:0.2%以下、N:0.005%
以下(0を含む)、Zr:0.005〜0.1%、S:0.001%以
下(0を含む)、Sn:0.002〜0.01%を含有し、残部が
実質的にFeであることを特徴とする鉄損の低い無方向性
電磁鋼板。
6. C: 0.005% or less, Si: 4% by weight%
Mn: 0.05 to 1.0%, P: 0.2% or less, N: 0.005%
Iron loss, wherein Zr: 0.005 to 0.1%, S: 0.001% or less (including 0), Sn: 0.002 to 0.01%, and the balance is substantially Fe. Low grain non-oriented electrical steel sheet.
JP9186055A 1997-06-27 1997-06-27 Nonoriented silicon steel sheet with low iron loss Pending JPH1112701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9186055A JPH1112701A (en) 1997-06-27 1997-06-27 Nonoriented silicon steel sheet with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9186055A JPH1112701A (en) 1997-06-27 1997-06-27 Nonoriented silicon steel sheet with low iron loss

Publications (1)

Publication Number Publication Date
JPH1112701A true JPH1112701A (en) 1999-01-19

Family

ID=16181614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9186055A Pending JPH1112701A (en) 1997-06-27 1997-06-27 Nonoriented silicon steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JPH1112701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654231B2 (en) 2000-12-27 2003-11-25 Kabushiki Kaisha Toshiba Electronic device with wireless communication feature
US7922834B2 (en) * 2005-07-07 2011-04-12 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
EP2840157A1 (en) * 2013-08-19 2015-02-25 ThyssenKrupp Steel Europe AG Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654231B2 (en) 2000-12-27 2003-11-25 Kabushiki Kaisha Toshiba Electronic device with wireless communication feature
US7922834B2 (en) * 2005-07-07 2011-04-12 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
EP2840157A1 (en) * 2013-08-19 2015-02-25 ThyssenKrupp Steel Europe AG Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal
WO2015024723A1 (en) * 2013-08-19 2015-02-26 Thyssenkrupp Steel Europe Ag Non-grain-oriented electrical steel strip or electrical steel sheet, component produced therefrom, and method for producing a non-grain-oriented electrical steel strip or electrical steel sheet
CN105473751A (en) * 2013-08-19 2016-04-06 蒂森克虏伯钢铁欧洲股份公司 Non-grain-oriented electrical steel strip or electrical steel sheet, component produced therefrom, and method for producing a non-grain-oriented electrical steel strip or electrical steel sheet

Similar Documents

Publication Publication Date Title
JP2000256751A (en) Production of non-oriented silicon steel sheet low in core loss
JPH1192891A (en) Silicon steel sheet for electric automobile motor
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
JP2000328207A (en) Silicon steel sheet excellent in nitriding and internal oxidation resistances
KR950003293B1 (en) Method of making non-oriented electromagnetic steel plate with excellent magnetic characteristic
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JPH11124626A (en) Production of nonoriented silicon steel sheet reduced in iron loss
JPH1112700A (en) Non-oriented electrical sheet having low iron loss
JPH11302741A (en) Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss
JP2001098329A (en) Method of producing nonoriented silicon steel sheet excellent in magnetic property
JPH11315327A (en) Manufacture of non-oriented silicon steel sheet with low iron loss, and non-oriented silicon steel sheet with low iron loss
JP2888227B2 (en) Magnetic steel sheet for high frequency motor
JPH11229097A (en) Nonoriented silicon steel sheet reduced in core loss
JP2000008146A (en) Soft magnetic steel sheet high in permeability
JPH1161259A (en) Manufacture of nonoriented silicon steel sheet with low iron loss
JP2000054085A (en) Nonoriented silicon steel sheet with low iron loss and excellent punchability
JP3501002B2 (en) Non-oriented electrical steel sheet with high saturation magnetization and low iron loss
JP2000319767A (en) Nonoriented silicon steel sheet low in core loss and exciting effective electric current
JPH1192890A (en) Nonoriented silicon steel sheet low in core loss and its production
JPH1161359A (en) Nonoriented silicon steel sheet flow in core loss