JP2888229B2 - Non-oriented electrical steel sheet for high frequency - Google Patents

Non-oriented electrical steel sheet for high frequency

Info

Publication number
JP2888229B2
JP2888229B2 JP9149922A JP14992297A JP2888229B2 JP 2888229 B2 JP2888229 B2 JP 2888229B2 JP 9149922 A JP9149922 A JP 9149922A JP 14992297 A JP14992297 A JP 14992297A JP 2888229 B2 JP2888229 B2 JP 2888229B2
Authority
JP
Japan
Prior art keywords
less
iron loss
steel sheet
ppm
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9149922A
Other languages
Japanese (ja)
Other versions
JPH10324957A (en
Inventor
善彦 尾田
伸夫 山上
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15485521&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2888229(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP9149922A priority Critical patent/JP2888229B2/en
Priority to US09/041,335 priority patent/US6139650A/en
Priority to CA 2232129 priority patent/CA2232129C/en
Priority to KR1019980009115A priority patent/KR100268612B1/en
Priority to CN98105708A priority patent/CN1083494C/en
Priority to EP98104900A priority patent/EP0866144B1/en
Priority to TW087103994A priority patent/TW474996B/en
Priority to DE69832313T priority patent/DE69832313T2/en
Publication of JPH10324957A publication Critical patent/JPH10324957A/en
Publication of JP2888229B2 publication Critical patent/JP2888229B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波領域におい
て鉄損の低い無方向性電磁鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having a low iron loss in a high frequency range.

【0002】[0002]

【従来の技術】近年、電気機器の小型化、高効率化の要
請に伴い200〜1kHz程度の高周波域で電気機器が使用さ
れることが多くなっている。このような電気機器のコア
材として無方向性電磁鋼板が広く用いられているが、高
周波域で電気機器を使用した場合には、渦電流損の増大
に伴う全鉄損の増大が問題となる。このため従来の高周
波用電磁鋼板に於いては、コア材の渦電流損を低減する
ことが指向されてきた。
2. Description of the Related Art In recent years, with the demand for miniaturization and high efficiency of electric equipment, electric equipment is often used in a high frequency range of about 200 to 1 kHz. Non-oriented electrical steel sheets are widely used as a core material of such electrical equipment, but when electrical equipment is used in a high frequency range, an increase in total iron loss due to an increase in eddy current loss becomes a problem. . For this reason, in the conventional electromagnetic steel sheet for high frequency, it has been aimed to reduce the eddy current loss of the core material.

【0003】すなわち、鋼板中のSi、Al量を多くして固
有抵抗を高めたり、鋼板の板厚を薄くする検討が数多く
なされている。
In other words, many studies have been made to increase the specific resistance by increasing the amounts of Si and Al in a steel sheet or to reduce the thickness of the steel sheet.

【0004】そのような例として、特開平3−2234
45号公報にはSi+Al量を2.0〜4.0%とし、板厚を0.1〜
0.25mm、結晶粒径を5〜60μmとした、700Hz以上で使用
される高周波用無方向性電磁鋼板が開示されている。
[0004] As such an example, Japanese Unexamined Patent Publication No. Hei.
No. 45 discloses that the Si + Al content is set to 2.0 to 4.0% and the thickness is set to 0.1 to
A high-frequency non-oriented electrical steel sheet used at 700 Hz or higher and having a crystal grain size of 0.25 mm and a crystal grain size of 5 to 60 μm is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、より一層の機
器の高効率化の要請も高まっており、そうした場合に
は、さらなる低鉄損材の開発が望まれている。このため
Si、Al量を従来材よりもさらに増大させることも考えら
れるが、この場合鋼板が脆くなるため冷間圧延が困難と
なるという問題がある。また、板厚を0.1mmよりも薄く
した場合には需要家における鋼板積層時の手間が著しく
増大するため、好ましくない。このような背景から新し
い鉄損低減手法が望まれているのが現状である。
However, there is an increasing demand for higher efficiency of the equipment, and in such a case, further development of a low iron loss material is desired. For this reason
Although it is conceivable to further increase the amounts of Si and Al as compared with conventional materials, in this case, there is a problem that the cold rolling becomes difficult because the steel sheet becomes brittle. Further, if the sheet thickness is made thinner than 0.1 mm, it is not preferable because the time and effort required for laminating the steel sheets by the customer increases significantly. Under such circumstances, a new iron loss reduction method is desired at present.

【0006】本発明はこのような課題を解決するために
なされたもので、上記のような問題点がなく、高周波領
域において鉄損の低い無方向性電磁鋼板を提供すること
を目的とする。
The present invention has been made to solve such problems, and has as its object to provide a non-oriented electrical steel sheet which does not have the above-mentioned problems and has low iron loss in a high frequency region.

【0007】[0007]

【課題を解決するための手段】本発明の骨子は、所定成
分を有する板厚が0.1〜0.35mmの電磁鋼板に於いてSを
低減し、かつSb、Snを添加することにより高周波鉄損が
低下させることにある。
The gist of the present invention is to reduce high-frequency iron loss in an electromagnetic steel sheet having a predetermined component and having a thickness of 0.1 to 0.35 mm and adding Sb and Sn to reduce high-frequency iron loss. To lower it.

【0008】すなわち、前記課題は、重量%で、C:0.
005%以下、Si:3.0%超え4.5%以下、Mn:0.05〜1.5
%、P:0.2%以下、N:0.005%以下、Al:0.1〜1.5
%、Si+Al=4.5%以下、S:8.3ppm以下、Sb+Sn/2=0.001
〜0.05%を含有し、残部が実質的にFeであり、板厚が0.
1〜0.35mmの高周波鉄損の低い無方向性電磁鋼板により
解決される。
[0008] That is, the above-mentioned problem is that C: 0.
005% or less, Si: more than 3.0% and 4.5% or less, Mn: 0.05 to 1.5
%, P: 0.2% or less, N: 0.005% or less, Al: 0.1 to 1.5
%, Si + Al = 4.5% or less, S: 8.3 ppm or less, Sb + Sn / 2 = 0.001
~ 0.05%, with the balance being substantially Fe and a sheet thickness of 0.
The problem is solved by non-oriented electrical steel sheet with low high frequency iron loss of 1 to 0.35mm.

【0009】さらに、Sb+Sn/2の範囲を0.001〜0.005%
に限定することにより、鉄損を一層低減させることがで
きる。
Further, the range of Sb + Sn / 2 is set to 0.001 to 0.005%.
By limiting to, iron loss can be further reduced.

【0010】ここにおいて、「残部が実質的にFeであ
る」とは、不可避不純物の他に、本発明の作用効果を阻
害しない範囲で他の微量元素をも含み得る趣旨である。
また、本明細書において、鋼の成分を示す%は、特に断
らない限り重量%を意味し、ppmも重量ppmを意味する。
Here, "the balance is substantially Fe" means that in addition to the unavoidable impurities, other trace elements can be contained as long as the effects of the present invention are not impaired.
Further, in the present specification,% indicating the component of steel means wt% unless otherwise specified, and ppm means ppm by weight.

【0011】(Sの限定理由)最初に、鉄損に及ぼすS
量の影響を調査するため、C:0.0015%、Si:3.51%、
Mn:0.18%、P:0.01%、Al:0.50%、N:0.0020%と
し、S量をtr.〜40ppmの範囲で変化させた鋼を実験室に
て真空溶解し熱延、酸洗を行った。
(Reason for limitation of S) First, the effect of S on iron loss
To investigate the effect of the amount, C: 0.0015%, Si: 3.51%,
Mn: 0.18%, P: 0.01%, Al: 0.50%, N: 0.0020%, steel whose S content was changed in the range of tr. To 40 ppm was vacuum melted in a laboratory, hot rolled, and pickled. Was.

【0012】引き続きこの熱延板に75%H2−25%N2
で830℃×3hrの熱延板焼鈍を施し、板厚0.35mmまで冷
間圧延し、10%H2−90%N2中で950℃×2min間の仕上
焼鈍を施した。磁気測定は25cmエプスタイン法により行
った。ここで、鉄損の評価はW10/400で行った。これ
は、400Hz程度の高周波域で駆動される電気機器は1.0T
程度で駆動されるためである。
Subsequently, the hot-rolled sheet is annealed at 830 ° C. for 3 hours in 75% H 2 -25% N 2 , cold-rolled to a sheet thickness of 0.35 mm, and 10% H 2 -90% N 2 In Step 2, finish annealing was performed at 950 ° C. for 2 minutes. The magnetic measurement was performed by the 25 cm Epstein method. Here, the iron loss was evaluated by W 10/400 . This is 1.0T for electrical equipment driven in a high frequency range of about 400Hz.
This is because it is driven by the degree.

【0013】図1に0.35mm材のS量と鉄損の関係を示
す。図1より、0.35mm材における周波数400Hzの鉄損W
10/400は、S≦10ppmとなった場合に大幅に低下するこ
とがわかる。この、S量の低下による鉄損の変化の原因
を調査するため、組織を光学顕微鏡により観察した。そ
の結果、S≦0.001%において結晶粒が粗大となっている
ことが明らかとなった。これは鋼中のMnSが低減したた
めと考えられる。
FIG. 1 shows the relationship between the S content of 0.35 mm material and iron loss. From Fig. 1, the iron loss W at the frequency of 400Hz in the 0.35mm material
It can be seen that 10/400 is significantly reduced when S ≦ 10 ppm. In order to investigate the cause of the change in iron loss due to the decrease in the amount of S, the structure was observed with an optical microscope. As a result, it became clear that the crystal grains were coarse when S ≦ 0.001%. This is considered to be because the MnS in the steel was reduced.

【0014】一般に、板厚0.5mmの電磁鋼板において結
晶粒が粗大化した場合には、高周波鉄損が増大するとい
われている。これに対し、本実験では結晶粒が粗大化し
た場合に、高周波鉄損が低下する結果となった。これ
は、本実験では鋼板の板厚を0.35mmとしたため渦電流損
が0.5mm材に比べ大幅に低下し、400Hzといえども結晶粒
径の粗大化によるヒステリシス損の低減が高周波鉄損の
低減に有効であるためと考えられる。
In general, it is said that high-frequency iron loss increases when crystal grains become coarser in a 0.5 mm thick electromagnetic steel sheet. On the other hand, in the present experiment, when the crystal grains became coarse, the high-frequency iron loss was reduced. This is because in this experiment, the thickness of the steel sheet was 0.35 mm, so the eddy current loss was significantly lower than that of the 0.5 mm material. This is considered to be effective.

【0015】以上のことより0.35mm以下の板厚において
はSの低減は高周波域鉄損の低減に有効であるといえ
From the above, it can be said that the reduction of S is effective in reducing the iron loss in the high frequency range at a plate thickness of 0.35 mm or less .

【0016】(板厚の限定理由)また、S低減に伴う高
周波鉄損の低下は、0.35mm以下の板厚の電磁鋼板に於い
ては板厚が薄くなるほど顕著に認められた。しかし、板
厚が0.1mm未満では冷間圧延が困難となり、さらに需要
家における鋼板積層時の手間が増大するため、本発明に
於いては板厚を0.1〜0.35mmとする。
(Reason for Limiting Sheet Thickness) The decrease in high-frequency iron loss due to the reduction of S was more remarkably recognized in electromagnetic steel sheets having a thickness of 0.35 mm or less as the sheet thickness became thinner. However, if the sheet thickness is less than 0.1 mm, it becomes difficult to perform cold rolling, and furthermore, the labor required for laminating steel sheets increases, so the sheet thickness is set to 0.1 to 0.35 mm in the present invention.

【0017】次に高周波鉄損をさらに低減させる手法に
ついて検討した。
Next, a method for further reducing high-frequency iron loss was examined.

【0018】(Sb、Snの限定理由)高周波鉄損を低減さ
せるための手法としては一般にSi、Al量を増大し、固有
抵抗を増大させることが有効である。しかし、Si+Al量
が4.5%を超えた場合には、鋼板が脆化するため冷間圧延
が困難となる。このため、Si、Al量を増大させる手法の
みでは鉄損の低減には限界が生じる。そこで、発明者ら
は、全く別の成分元素の添加により鉄損を低減させる方
法を模索した。
(Reasons for limiting Sb and Sn) As a method for reducing high-frequency iron loss, it is generally effective to increase the amounts of Si and Al and increase the specific resistance. However, when the Si + Al content exceeds 4.5%, the steel sheet becomes brittle, so that cold rolling becomes difficult. For this reason, there is a limit in reducing the iron loss only by increasing the amounts of Si and Al. Then, the inventors sought a method of reducing iron loss by adding a completely different component element.

【0019】ところで、図1において、S量が10ppm以
下となると鉄損の低下は緩やかとなり、Sをさらに低減
したとしても鉄損W10/400は16.5W/kg程度にしかなら
ない。
In FIG. 1, when the S content is 10 ppm or less, the iron loss decreases gradually, and even if the S content is further reduced, the iron loss W 10/400 is only about 16.5 W / kg.

【0020】本発明者らは、S≦10ppmの極低S材にお
いて鉄損の低減が阻害されるのは、MnS以外の未知の要
因によるものではないかと考え、光学顕微鏡にて組織観
察を行った。その結果、S≦10ppmの領域で鋼板表層に
顕著な窒化層が認められた。これに対し、S>10ppmの
領域では窒化層は軽微となっていた。この窒化層は窒化
雰囲気で行われる熱延板焼鈍時および仕上焼鈍時に生じ
たものと考えられる。
The present inventors considered that the reduction of iron loss in the extremely low S material of S ≦ 10 ppm may be caused by unknown factors other than MnS, and observed the structure with an optical microscope. Was. As a result, a remarkable nitride layer was recognized on the surface layer of the steel sheet in the region of S ≦ 10 ppm. In contrast, in the region where S> 10 ppm, the nitrided layer was slight. It is considered that this nitrided layer was formed during hot rolled sheet annealing and finish annealing performed in a nitriding atmosphere.

【0021】このS低減に伴う窒化反応促進の原因に関
しては次のように考えられる。すなわち、Sは表面およ
び粒界に濃化しやすい元素であることから、S>10ppm
の領域では、Sが鋼板表面へ濃化し、焼鈍時の窒素の吸
着を抑制しており、一方、S≦10ppmの領域ではSによ
る窒素吸着の抑制効果が低下したためと考えられる。
The cause of the acceleration of the nitridation reaction accompanying the reduction of S is considered as follows. That is, since S is an element which is easily concentrated on the surface and the grain boundaries, S> 10 ppm
It is probable that S was concentrated on the steel sheet surface in the region of (1) and suppressed the adsorption of nitrogen during annealing, while in the region of S ≦ 10 ppm, the effect of suppressing the adsorption of nitrogen by S was reduced.

【0022】本発明者らは、この極低S材において顕著
に生じる窒化層が鉄損の低下を抑制するのではないかと
考えた。このような考えの下に、本発明者らは窒素吸着
の抑制が可能でかつ極低S材の優れた粒成長性を妨げる
ことのない元素を添加することができれば、極低S材の
鉄損はさらに低減するのではないかという着想を抱き、
種々の検討を加えた結果、SbおよびSnの添加が有効であ
ることを見いだした。
The present inventors have thought that the nitride layer which is remarkably generated in this extremely low S material may suppress the reduction of iron loss. Under such a concept, if the present inventors can add an element which can suppress nitrogen adsorption and does not hinder the excellent grain growth of the ultra-low S material, the iron of the ultra-low S material With the idea that losses could be further reduced,
As a result of various studies, it was found that the addition of Sb and Sn was effective.

【0023】図2に、図1で示したサンプルの成分に40
ppmのSbを添加したサンプルについて同一の条件で試験
を行った結果を示す。Sbの鉄損低減効果に着目すると、
S>8.3ppmの領域では、Sb添加により鉄損は0.2〜0.3W
/kg程度しか低下しないが、S含有量が多い領域では、S
b添加により鉄損は1.0w/kg程度低下しており、S量が
少ない場合にSbの鉄損低減効果は顕著に認められる。ま
た、このサンプルではS量によらず窒化層は認められな
かった。これはSbが鋼板表層部に濃化し窒素の吸着を抑
制したためと考えられる。このことから、本発明におい
てはS含有量を8.3ppm以下(0を含む)に限定する。
FIG. 2 shows that the components of the sample shown in FIG.
The results of a test performed under the same conditions for a sample to which Sb of ppm was added are shown. Focusing on the iron loss reduction effect of Sb,
In the region of S> 8.3 ppm , iron loss is 0.2 to 0.3 W by adding Sb.
/ kg only, but in areas where the S content is high , S
Iron loss is reduced by about 1.0 w / kg by the addition of b, and when the amount of S is small, the effect of reducing the iron loss of Sb is remarkably recognized. In this sample, no nitrided layer was observed regardless of the S content. This is probably because Sb concentrated in the surface layer of the steel sheet and suppressed the adsorption of nitrogen. From this, the present invention
Limit the S content to 8.3 ppm or less (including 0).

【0024】以上のことより、板厚0.35mmの極低S材に
Sbを添加することにより、高周波鉄損の大幅な低減が可
能となることが明らかとなった。
From the above, a very low S material having a thickness of 0.35 mm can be obtained.
It has been clarified that the addition of Sb makes it possible to significantly reduce high-frequency iron loss.

【0025】次にSbの最適添加量を調査するため、C:
0.0023%、Si:3.51%、Mn:0.30%、P:0.02%、Al:
0.50%、S:0.0004%、N:0.0015%とし、Sb量をtr.〜70
0ppmの範囲で変化させた鋼を実験室にて真空溶解し、熱
延後、酸洗を行った。引き続きこの熱延板に75%H2−2
5%N2中で830℃×3hrの熱延板焼鈍を施し、板厚0.35mm
まで冷間圧延し、10%%H2−90%N2中で950℃×2min間
の仕上焼鈍を施した。
Next, to investigate the optimum amount of Sb, C:
0.0023%, Si: 3.51%, Mn: 0.30%, P: 0.02%, Al:
0.50%, S: 0.0004%, N: 0.0015%, and the Sb amount is tr.
The steel changed in the range of 0 ppm was melted in a laboratory in a vacuum, hot rolled, and then pickled. 75% H 2 -2
Hot rolled sheet annealing at 830 ° C for 3 hours in 5% N 2 , 0.35mm thick
Cold-rolled until finish annealing was performed at 950 ° C. for 2 minutes in 10% H 2 -90% N 2 .

【0026】図3はこのようにして得られたサンプルの
Sb量と鉄損W10/400の関係を示したものである。図3よ
り、Sb量が10ppm以上の領域で鉄損が低下し、W10/400=
15.5W/kgが達成されることがわかる。しかし、Sbをさ
らに添加し、Sb>50ppmとなった場合には、鉄損はSb量
の増大に伴い緩やかに増大することもわかる。このSb>
50ppmの領域での鉄損増大原因を調査するため、光学顕
微鏡による組織観察を行った。その結果、表層窒化層は
認められなかったものの、平均結晶粒径が若干小さくな
っていた。この原因は明確ではないが、Sbが粒界に偏析
しやすい元素であるため、Sbの粒界ドラッグ効果により
粒成長性が低下したためと考えられる。
FIG. 3 shows the sample thus obtained.
This shows the relationship between the amount of Sb and the iron loss W 10/400 . From FIG. 3, the iron loss decreases in the region where the Sb content is 10 ppm or more, and W 10/400 =
It can be seen that 15.5 W / kg is achieved. However, when Sb is further added and Sb> 50 ppm, the iron loss increases gradually with the increase in the amount of Sb. This Sb>
In order to investigate the cause of the increase in iron loss in the 50 ppm region, the structure was observed with an optical microscope. As a result, although no surface nitride layer was observed, the average crystal grain size was slightly smaller. Although the cause is not clear, it is considered that since Sb is an element that is easily segregated at the grain boundary, the grain growth property is reduced by the grain boundary drag effect of Sb.

【0027】但し、Sbを700ppmまで添加してもSbフリー
鋼と比べると鉄損は良好である。
However, even if Sb is added up to 700 ppm, the iron loss is better than that of Sb-free steel.

【0028】以上のことよりSbは10ppm以上とし、コス
トの問題から上限を500ppmとする。また鉄損の観点よ
り、望ましくは10ppm以上、50ppm以下、より望ましくは
20ppm以上、40ppm以下とする。
From the above, Sb is set to 10 ppm or more, and the upper limit is set to 500 ppm from the viewpoint of cost. Also, from the viewpoint of iron loss, preferably 10 ppm or more, 50 ppm or less, more preferably
20 ppm or more and 40 ppm or less.

【0029】SnもSb同様表面偏析する元素であるため、
Sbと同様な窒化抑制効果が得られるものと考えられる。
そこで、Snの最適添加量を調査するため、C:0.0020
%、Si:3.00%、Mn:0.20%、P:0.02%、Al:1.05
%、S:0.0003%、N:0.0015%とし、Sn量をtr.〜1400pp
mの範囲で変化させた鋼を実験室にて真空溶解し、熱延
後、酸洗を行った。引き続きこの熱延板に75%H2−25
%N2中で830℃×3hrの熱延板焼鈍を施し、板厚0.35mm
まで冷間圧延し、10%%H2−90%N2中で950℃×2min間
の仕上焼鈍を施した。
Since Sn is an element that segregates on the surface like Sb,
It is considered that the same nitriding suppression effect as that of Sb can be obtained.
Therefore, to investigate the optimum amount of Sn, C: 0.0020
%, Si: 3.00%, Mn: 0.20%, P: 0.02%, Al: 1.05
%, S: 0.0003%, N: 0.0015%, Sn amount is tr. ~ 1400pp
The steel changed in the range of m was melted in a laboratory in a vacuum, hot-rolled, and then pickled. 75% H 2 -25
Hot rolled sheet annealing at 830 ° C × 3hr in% N 2 , 0.35mm thick
Cold-rolled until finish annealing was performed at 950 ° C. for 2 minutes in 10% H 2 -90% N 2 .

【0030】図4はこのようにして得られたサンプルの
Sn量と鉄損W10/400の関係を示したものである。図4よ
り、Sn添加量が20ppm以上の領域で鉄損が低下し、W
10/400=15.5W/kgが達成されることがわかる。しかし、
Snをさらに添加し、Sn>100ppmとなった場合には、鉄損
はSn量の増大に伴い緩やかに増大することもわかる。但
し、Snを1400ppmまで添加してもSnフリー鋼と比べると
鉄損は良好である。このSnとSbの鉄損に及ぼす影響の違
いは以下のように理解できる。
FIG. 4 shows the sample thus obtained.
It shows the relationship between the amount of Sn and the iron loss W 10/400 . From FIG. 4, iron loss is reduced in the region where the amount of Sn added is 20 ppm or more, and W
It can be seen that 10/400 = 15.5 W / kg is achieved. But,
It can also be seen that when Sn is further added and Sn> 100 ppm, iron loss increases gradually with an increase in the amount of Sn. However, even if Sn is added up to 1400 ppm, the iron loss is better than that of Sn-free steel. The difference between the effects of Sn and Sb on iron loss can be understood as follows.

【0031】すなわち、Snは偏析係数がSbよりも小さい
ため、表面偏析により窒化を抑えるためには、Sbの2倍
程度の量が必要となる。このため、Snは20ppm以上の添
加により鉄損が低下することとなる。一方、Snの粒界偏
析によるドラッグ効果により鉄損が増大し始める添加量
も、Sbに比べSnの偏析係数が小さいことより、2倍程度
となる。このため、Snは100ppm以上の添加により鉄損が
緩やかに増大することとなる。
That is, since Sn has a segregation coefficient smaller than that of Sb, an amount twice as large as that of Sb is required to suppress nitriding due to surface segregation. For this reason, iron loss will be reduced by adding 20 ppm or more of Sn. On the other hand, the addition amount at which iron loss starts to increase due to the drag effect due to the grain boundary segregation of Sn is also about twice as much as the segregation coefficient of Sn is smaller than that of Sb. For this reason, iron loss will increase moderately by addition of 100 ppm or more of Sn.

【0032】以上のことよりSnは20ppm以上とし、コス
トの問題から上限を1000ppmとする。また鉄損の観点よ
り、望ましくは20ppm以上、100ppm以下、より望ましく
は30ppm以上、90ppm以下とする。
From the above, Sn is set to 20 ppm or more, and the upper limit is set to 1000 ppm from the viewpoint of cost. From the viewpoint of iron loss, the content is desirably 20 ppm or more and 100 ppm or less, and more desirably 30 ppm or more and 90 ppm or less.

【0033】以上述べてきたように、SbとSnが窒化を抑
制するメカニズムは同一である。このためSbとSnを同時
に添加しても同様の窒化抑制効果を得ることができる。
ただし、SnがSbと同一の効果を発揮するためにはSbの2
倍の添加量が必要となる。このため、SbおよびSnを同時
添加する場合には、Sb+Sn/2で0.001%以上、0.05%以下と
し、より望ましくは0.001%以上、0.005%以下とする。
As described above, the mechanism by which Sb and Sn suppress nitriding is the same. For this reason, even when Sb and Sn are added simultaneously, the same nitriding suppression effect can be obtained.
However, in order for Sn to exhibit the same effect as Sb, 2
A double addition amount is required. Therefore, when adding Sb and Sn at the same time, the content of Sb + Sn / 2 is set to 0.001% or more and 0.05% or less, and more preferably 0.001% or more and 0.005% or less.

【0034】(その他の成分の限定理由)次に、その他
の成分の限定理由について説明する。
(Reasons for Limiting Other Components) Next, reasons for limiting other components will be described.

【0035】Cは磁気時効の問題があるため0.005%以
下とした。
C is set to 0.005% or less because of the problem of magnetic aging.

【0036】Siは鋼板の固有抵抗を上げるために有効な
元素であるため3%を超えて添加する。一方、4.5%を超
えると冷間圧延が困難となるため上限を4.5%とした。
Since Si is an element effective for increasing the specific resistance of the steel sheet, it is added in excess of 3%. On the other hand, if it exceeds 4.5%, cold rolling becomes difficult, so the upper limit was made 4.5%.

【0037】Mnは熱間圧延時の赤熱脆性を防止するため
に、0.05%以上必要であるが、1.5%以上になると磁束
密度を低下させるので0.05〜1.5%とした。
Mn is required to be 0.05% or more in order to prevent red hot brittleness during hot rolling. However, if it exceeds 1.5%, the magnetic flux density is reduced.

【0038】Pは鋼板の打ち抜き性を改善するために必
要な元素であるが、0.2%を超えて添加すると鋼板が脆
化するため0.2%以下とした。
P is an element necessary for improving the punching property of the steel sheet. However, if P is added in excess of 0.2%, the steel sheet becomes brittle.

【0039】Nは、含有量が多い場合にはAlNの析出量
が多くなり、AlNが粗大となった場合においても粒成長
性が低下し鉄損を増大させるため0.005%以下とした。
N is set to 0.005% or less, because when the content is large, the precipitation amount of AlN increases, and even when AlN becomes coarse, the grain growth property decreases and the iron loss increases.

【0040】Alは微量に添加すると微細なAlNを生成し
磁気特性を劣化させる。このため、下限を0.1%以上と
し、AlNを粗大化する必要がある。一方、1.5%以上に
なると磁束密度を低下させるため上限は1.5%以下とす
る。
When a small amount of Al is added, fine AlN is generated and magnetic properties are deteriorated. For this reason, it is necessary to set the lower limit to 0.1% or more and coarsen AlN. On the other hand, if it exceeds 1.5%, the magnetic flux density is reduced, so the upper limit is made 1.5% or less.

【0041】また、Si+Al量が4.5%を超えた場合には冷
間圧延が困難となるため上限を4.5%とした。
When the amount of Si + Al exceeds 4.5%, cold rolling becomes difficult, so the upper limit is made 4.5%.

【0042】(製造方法)本発明においては、S、Sb、S
nを始め所定の元素が所定の範囲内であれば、製造方法
は通常の方法でかまわない。すなわち、転炉で吹練した
溶鋼を脱ガス処理し所定の成分に調整し、引き続き鋳
造、熱間圧延を行う。熱間圧延時の仕上焼鈍温度、巻取
り温度は特に規定する必要はなく、通常の無方向性電磁
鋼板を製造する温度でかまわない。また、熱延後の熱延
板焼鈍は行っても良いが必須ではない。次いで一回の冷
間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間圧
延により所定の板厚とした後に、最終焼鈍を行う。
(Production Method) In the present invention, S, Sb, S
As long as a predetermined element such as n is within a predetermined range, the manufacturing method may be a normal method. That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, and subsequently casting and hot rolling are performed. The finish annealing temperature and the winding temperature at the time of hot rolling do not need to be particularly specified, and may be a temperature at which a normal non-oriented electrical steel sheet is manufactured. In addition, hot-rolled sheet annealing after hot-rolling may be performed, but is not essential. Next, a final annealing is performed after a predetermined thickness is obtained by one cold rolling or two or more cold rollings including an intermediate annealing.

【0043】[0043]

【実施例】表1に示す鋼を用い、転炉で吹練した後に脱
ガス処理を行うことにより所定の成分に調整後鋳造し、
スラブを1150℃で1hr加熱した後、板厚2.0mmまで熱間
圧延を行った。熱延仕上げ温度は750℃とし、巻取り温
度は610℃とした。次にこの熱延板を酸洗し、表2、表
3に示す条件で熱延板焼鈍を行った。その後、板厚0.1
〜0.5mmまで冷間圧延を行い、表2、表3に示す仕上焼
鈍条件で焼鈍を行った。表1、表2、表3において、N
o.は鋼板番号を示し、各表に共通である。
EXAMPLES The steels shown in Table 1 were cast into a given component after being degassed after being blown in a converter,
After the slab was heated at 1150 ° C. for 1 hour, hot rolling was performed to a thickness of 2.0 mm. The hot rolling finishing temperature was 750 ° C, and the winding temperature was 610 ° C. Next, the hot-rolled sheet was pickled and subjected to hot-rolled sheet annealing under the conditions shown in Tables 2 and 3. After that, thickness 0.1
Cold rolling was performed to 0.5 mm, and annealing was performed under finish annealing conditions shown in Tables 2 and 3. In Tables 1, 2 and 3, N
o. indicates the steel plate number, which is common to each table.

【0044】磁気測定は25cmエプスタイン試験片を用い
て行った。各鋼板の磁気特性を表2、表3に併せて示
す。
The magnetic measurement was performed using a 25 cm Epstein test piece. Tables 2 and 3 also show the magnetic properties of each steel sheet.

【0045】鋼板番号1〜16のものが、本発明の実施
例である。これらの実施例においては、いずれも同じ板
厚の比較例に比して、鉄損W10/400、W5/1k共に小さ
い。
The steel plate numbers 1 to 16 are embodiments of the present invention. In these examples, both the iron losses W 10/400 and W 5 / 1k are smaller than the comparative examples having the same plate thickness.

【0046】比較例のうち、No.17の鋼板は、S、Sb+S
n、板厚が本発明の範囲を外れているため、鉄損が非常
に大きくなっている。
Of the comparative examples, the steel sheet No. 17 was S, Sb + S
n, since the plate thickness is out of the range of the present invention, the iron loss is very large.

【0047】No.18の鋼板は、Sb+Snと板厚が本発明の
範囲を外れているため、やはり、鉄損が非常に大きくな
っている。
The steel sheet No. 18 also has a very large iron loss, because Sb + Sn and the sheet thickness are out of the range of the present invention.

【0048】No.19の鋼板は、板厚が本発明の範囲を外
れているため、同様に鉄損が非常に大きくなっている。
The steel sheet No. 19 also has a very large iron loss because the sheet thickness is out of the range of the present invention.

【0049】No.20とNo.24の鋼板は、SとSb+Snが本発
明の範囲を外れているため、それぞれ同じ板厚の本発明
品に対して鉄損が大きくなっている。
In the steel sheets No. 20 and No. 24, since S and Sb + Sn are out of the range of the present invention, the iron loss is larger than that of the present invention having the same plate thickness.

【0050】同様に、No.21の鋼板はSが、No.22、No.2
3、No.25の鋼板は、Sb+Snが本発明の範囲を外れている
ため、それぞれ同じ板厚の本発明品に対して鉄損が大き
くなっている。
Similarly, in the No. 21 steel plate, S is No. 22, No. 2
3. In the No. 25 steel sheet, since Sb + Sn is out of the range of the present invention, iron loss is larger than that of the present invention having the same plate thickness.

【0051】No.26の鋼板は、Siが本発明の範囲を下回
っているので、鉄損が大きくなっている。
The steel sheet No. 26 has a large iron loss because Si is below the range of the present invention.

【0052】No.27の鋼板は、SiとSi+Alが本発明の範
囲を上回っているので、圧延時に破断し、製品とするこ
とができなかった。
The steel sheet No. 27 was broken at the time of rolling because Si and Si + Al exceeded the range of the present invention, and could not be used as a product.

【0053】No.28の鋼板は、Alの含有量が本発明の範
囲を下回っているので、鉄損が大きい。
The steel sheet No. 28 has a large iron loss because the Al content is below the range of the present invention.

【0054】No.29の鋼板は、AlとSi+Al 量が本発明の
範囲を上回っているので、鉄損は小さいものの、磁束密
度B50が小さくなっている。
[0054] steel sheet No.29, because Al and Si + Al content exceeds the range of the present invention, although the iron loss is small, the magnetic flux density B 50 is small.

【0055】No.30の鋼板は、Mnが本発明の範囲を下回
っているので鉄損が大きくなっている。これに対し、N
o.31の鋼板は、Mnが本発明の範囲を上回っているので、
鉄損は小さいものの、磁束密度B50が小さくなってい
る。
The steel sheet No. 30 has a large iron loss because Mn is below the range of the present invention. In contrast, N
o.31 steel sheet, since Mn exceeds the scope of the present invention,
Although the iron loss is small, the magnetic flux density B 50 is small.

【0056】No.32の鋼板は、Cが本発明の範囲を上回
っているので、鉄損が大きいばかりか、磁気時効の問題
を有している。
The steel sheet No. 32 has not only a large iron loss but also a problem of magnetic aging since C exceeds the range of the present invention.

【0057】No.33の鋼板は、Nが本発明の範囲を上回
っているので、鉄損が大きくなっている。
The steel sheet No. 33 has a large iron loss because N exceeds the range of the present invention.

【0058】以上述べたように、本発明においては、重
量%で、C:0.005%以下、Si:3.0超え4.5%以下、M
n:0.05〜1.5%、P:0.2%以下、N:0.005%以下、A
l:0.1〜1.5%、Si+Al=4.5%以下、S:8.3ppm%以下、
Sb+Sn/2=0.001〜0.05%を含有し、残部が実質的にFeで
あり、板厚が0.1〜0.35mmの無方向性電磁鋼板としてい
るので、高周波鉄損の低い無方向性電磁鋼板を得ること
ができる。
As described above, in the present invention, C: 0.005% or less, Si: more than 3.0 and 4.5% or less,
n: 0.05 to 1.5%, P: 0.2% or less, N: 0.005% or less, A
l: 0.1-1.5%, Si + Al = 4.5% or less, S: 8.3ppm % or less,
Non-oriented electrical steel sheet containing Sb + Sn / 2 = 0.001 to 0.05%, with the balance being substantially Fe and a sheet thickness of 0.1 to 0.35 mm, so that high-frequency iron loss is low. Can be obtained.

【0059】さらに、Sb+Sn/2=0.001〜0.005%とすれ
ば、一層の鉄損の低減が得られる。
Further, when Sb + Sn / 2 = 0.001 to 0.005%, the iron loss can be further reduced.

【0060】これらの高周波用無方向性電磁鋼板は、高
周波において鉄損の低い特性が要求される電気材料とし
て使用されるのに好適である。
These high-frequency non-oriented electrical steel sheets are suitable for use as electrical materials that require low iron loss characteristics at high frequencies.

【図面の簡単な説明】[Brief description of the drawings]

【図1】S量と仕上焼鈍後の鉄損との関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the amount of S and iron loss after finish annealing.

【図2】S、Sb量と仕上焼鈍後の鉄損との関係を示す図
である。
FIG. 2 is a graph showing the relationship between the amounts of S and Sb and iron loss after finish annealing.

【図3】Sb量と仕上焼鈍後の鉄損との関係を示す図であ
る。
FIG. 3 is a graph showing the relationship between the amount of Sb and iron loss after finish annealing.

【図4】Sn量と仕上焼鈍後の鉄損との関係を示す図であ
る。
FIG. 4 is a diagram showing the relationship between the amount of Sn and iron loss after finish annealing.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−49044(JP,A) 特開 平8−218121(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 303 C22C 38/60 H01F 1/16 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-49044 (JP, A) JP-A-8-218121 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 38/00 303 C22C 38/60 H01F 1/16

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.005%以下、Si:3.0%
超え4.5%以下、Mn:0.05〜1.5%、P:0.2%以下、
N:0.005%以下(0を含む)、Al:0.1〜1.5%、Si+Al
=4.5%以下、S:8.3ppm以下(0を含む)、Sb+Sn/2=0.
001〜0.05%を含有し、残部が実質的にFeであり、板厚
が0.1〜0.35mmの高周波鉄損の低い無方向性電磁鋼板。
(1) C: 0.005% or less, Si: 3.0% by weight%
Over 4.5%, Mn: 0.05-1.5%, P: 0.2% or less,
N: 0.005% or less (including 0), Al: 0.1 to 1.5%, Si + Al
= 4.5% or less, S: 8.3 ppm or less (including 0), Sb + Sn / 2 = 0.
Non-oriented electrical steel sheet containing 001 to 0.05%, the balance being substantially Fe, and having a sheet thickness of 0.1 to 0.35 mm and low high-frequency iron loss.
【請求項2】 重量%で、C:0.005%以下、Si:3.0%
超え4.5%以下、Mn:0.05〜1.5%、P:0.2%以下、
N:0.005%以下(0を含む)、Al:0.1〜1.5%、Si+Al
=4.5%以下、S:8.3ppm以下(0を含む)、Sb+Sn/2=0.
001〜0.005%を含有し、残部が実質的にFeであり、板厚
が0.1〜0.35mmの高周波鉄損の低い無方向性電磁鋼板。
2. In% by weight, C: 0.005% or less, Si: 3.0%
Over 4.5%, Mn: 0.05-1.5%, P: 0.2% or less,
N: 0.005% or less (including 0), Al: 0.1 to 1.5%, Si + Al
= 4.5% or less, S: 8.3 ppm or less (including 0), Sb + Sn / 2 = 0.
Non-oriented electrical steel sheet containing 001 to 0.005%, with the balance being substantially Fe, and having a sheet thickness of 0.1 to 0.35 mm and low low-frequency iron loss.
【請求項3】 重量%で、C:0.005%以下、Si:3.0%
超え4.5%以下、Mn:0.05〜1.5%、P:0.2%以下、
N:0.005%以下(0を含む)、Al:0.1〜1.5%、Si+Al
=4.5%以下、S:8.3ppm以下(0を含む)、Sb=0.001〜
0.05%を含有し、残部が実質的にFeであり、板厚が0.1
〜0.35mmの高周波鉄損の低い無方向性電磁鋼板。
3. In% by weight, C: 0.005% or less, Si: 3.0%
Over 4.5%, Mn: 0.05-1.5%, P: 0.2% or less,
N: 0.005% or less (including 0), Al: 0.1 to 1.5%, Si + Al
= 4.5% or less, S: 8.3ppm or less (including 0), Sb = 0.001-
0.05%, the balance is substantially Fe, and the sheet thickness is 0.1
Non-oriented electrical steel sheet with low high frequency iron loss of ~ 0.35mm.
【請求項4】 重量%で、C:0.005%以下、Si:3.0%
超え4.5%以下、Mn:0.05〜1.5%、P:0.2%以下、
N:0.005%以下(0を含む)、Al:0.1〜1.5%、Si+Al
=4.5%以下、S:8.3ppm以下(0を含む)、Sb=0.001〜
0.005%を含有し、残部が実質的にFeであり、板厚が0.1
〜0.35mmの高周波鉄損の低い無方向性電磁鋼板。
4. In% by weight, C: 0.005% or less, Si: 3.0%
Over 4.5%, Mn: 0.05-1.5%, P: 0.2% or less,
N: 0.005% or less (including 0), Al: 0.1 to 1.5%, Si + Al
= 4.5% or less, S: 8.3ppm or less (including 0), Sb = 0.001-
0.005%, the balance is substantially Fe, and the sheet thickness is 0.1
Non-oriented electrical steel sheet with low high frequency iron loss of ~ 0.35mm.
【請求項5】 重量%で、C:0.005%以下、Si:3.0%
超え4.5%以下、Mn:0.05〜1.5%、P:0.2%以下、
N:0.005%以下(0を含む)、Al:0.1〜1.5%、Si+Al
=4.5%以下、S:8.3ppm以下(0を含む)、Sn=0.002〜
0.1%を含有し、残部が実質的にFeであり、板厚が0.1〜
0.35mmの高周波鉄損の低い無方向性電磁鋼板。
5. In% by weight, C: 0.005% or less, Si: 3.0%
Over 4.5%, Mn: 0.05-1.5%, P: 0.2% or less,
N: 0.005% or less (including 0), Al: 0.1 to 1.5%, Si + Al
= 4.5% or less, S: 8.3ppm or less (including 0), Sn = 0.002-
0.1%, the balance is substantially Fe, and the sheet thickness is 0.1 to
Non-oriented electrical steel sheet with low high frequency iron loss of 0.35mm.
【請求項6】 重量%で、C:0.005%以下、Si:3.0%
超え4.5%以下、Mn:0.05〜1.5%、P:0.2%以下、
N:0.005%以下(0を含む)、Al:0.1〜1.5%、Si+Al
=4.5%以下、S:8.3ppm以下(0を含む)、Sn=0.002〜
0.01%を含有し、残部が実質的にFeであり、板厚が0.1
〜0.35mmの高周波鉄損の低い無方向性電磁鋼板。
6. In weight%, C: 0.005% or less, Si: 3.0%
Over 4.5%, Mn: 0.05-1.5%, P: 0.2% or less,
N: 0.005% or less (including 0), Al: 0.1 to 1.5%, Si + Al
= 4.5% or less, S: 8.3ppm or less (including 0), Sn = 0.002-
0.01%, with the balance being substantially Fe and a sheet thickness of 0.1
Non-oriented electrical steel sheet with low high frequency iron loss of ~ 0.35mm.
JP9149922A 1997-03-18 1997-05-26 Non-oriented electrical steel sheet for high frequency Expired - Fee Related JP2888229B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP9149922A JP2888229B2 (en) 1997-05-26 1997-05-26 Non-oriented electrical steel sheet for high frequency
US09/041,335 US6139650A (en) 1997-03-18 1998-03-12 Non-oriented electromagnetic steel sheet and method for manufacturing the same
CA 2232129 CA2232129C (en) 1997-03-18 1998-03-16 Non-oriented electromagnetic steel sheet and method for manufacturing the same
CN98105708A CN1083494C (en) 1997-03-18 1998-03-17 Non-oriented electrical steel sheet and method for manufacturing the same
KR1019980009115A KR100268612B1 (en) 1997-03-18 1998-03-17 Method of producing non oriented silicon steel sheets having an excellent electromagnetic property
EP98104900A EP0866144B1 (en) 1997-03-18 1998-03-18 Non-oriented electromagnetic steel sheet and method for manufacturing the same
TW087103994A TW474996B (en) 1997-03-18 1998-03-18 Non-oriented electromagnetic steel sheet and method for manufacturing the same
DE69832313T DE69832313T2 (en) 1997-03-18 1998-03-18 Non-oriented electromagnetic steel sheet and method for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9149922A JP2888229B2 (en) 1997-05-26 1997-05-26 Non-oriented electrical steel sheet for high frequency

Publications (2)

Publication Number Publication Date
JPH10324957A JPH10324957A (en) 1998-12-08
JP2888229B2 true JP2888229B2 (en) 1999-05-10

Family

ID=15485521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9149922A Expired - Fee Related JP2888229B2 (en) 1997-03-18 1997-05-26 Non-oriented electrical steel sheet for high frequency

Country Status (1)

Country Link
JP (1) JP2888229B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9570219B2 (en) 2012-03-29 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet and method of manufacturing non-oriented electrical steel sheet
KR102325011B1 (en) * 2019-12-20 2021-11-11 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JPH10324957A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
JP2970423B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH1192891A (en) Silicon steel sheet for electric automobile motor
JP2888229B2 (en) Non-oriented electrical steel sheet for high frequency
JP3430794B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
JP2888227B2 (en) Magnetic steel sheet for high frequency motor
JP2000273549A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP3492075B2 (en) Non-oriented electrical steel sheet having excellent thermal conductivity and method for producing the same
EP3859036A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JP3883030B2 (en) Non-oriented electrical steel sheet
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JPH1161260A (en) Manufacture of nonoriented silicon steel sheet with low iron loss
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
JP4123505B2 (en) Non-oriented electrical steel sheet with excellent high frequency characteristics
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
JPH11293426A (en) Non-oriented silicon steel sheet excellent in fatigue property
JP3501002B2 (en) Non-oriented electrical steel sheet with high saturation magnetization and low iron loss
JP3766745B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP2000160303A (en) Nonoriented silicon steel sheet for high-frequency
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
JPH1112700A (en) Non-oriented electrical sheet having low iron loss
JP3084571B2 (en) High Si content steel plate with good workability
JPH0814017B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JPH11315327A (en) Manufacture of non-oriented silicon steel sheet with low iron loss, and non-oriented silicon steel sheet with low iron loss

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees