JPH11302741A - Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss - Google Patents

Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss

Info

Publication number
JPH11302741A
JPH11302741A JP10129726A JP12972698A JPH11302741A JP H11302741 A JPH11302741 A JP H11302741A JP 10129726 A JP10129726 A JP 10129726A JP 12972698 A JP12972698 A JP 12972698A JP H11302741 A JPH11302741 A JP H11302741A
Authority
JP
Japan
Prior art keywords
less
finish annealing
steel sheet
iron loss
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10129726A
Other languages
Japanese (ja)
Inventor
Yoshihiko Oda
善彦 尾田
Nobuo Yamagami
伸夫 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10129726A priority Critical patent/JPH11302741A/en
Publication of JPH11302741A publication Critical patent/JPH11302741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon steel sheet lower in core loss after finish annealing compared to the conventional case. SOLUTION: This method is the one in which a slab contg., by weight, <=0.005% C, 1.0 to 4.0% Si, 0.05 to 1.0% Mn, <=0.2% P, <=0.005% (including zero) N, 0.1 to 1.0% Al, <=0.001% (including zero) S and Sb+Sn/2=0.001 to 0.05%, and the balance substantial Fe is subjected to hot rolling and is thereafter subjected to cold rolling and finish annealing to produce a nonoriented silicon steel sheet. In this case, the primary finish annealing is executed at <=850 deg.C, and after that, the secondary finish annealing is executed at >=850 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モータコアやトラ
ンスの鉄心等に使用される鉄損の低い無方向性電磁鋼板
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-oriented electrical steel sheet having a low iron loss and used for a motor core, a transformer core, and the like.

【0002】[0002]

【従来の技術】近年、電気機器の省エネルギーの観点よ
り、より鉄損の低い電磁鋼板が求められるようになって
いる。この鉄損を低減するためには結晶粒の粗大化が効
果的であり、低鉄損が特に要求されるSi+Al量が1〜3
%程度の中・高級グレードの無方向性電磁鋼板において
は、仕上焼鈍温度を1000℃程度まで高めたり、焼鈍時の
ラインスピードを下げ、焼鈍時間を長くすることにより
結晶粒の粗大化を図っている。
2. Description of the Related Art In recent years, electromagnetic steel sheets having lower iron loss have been demanded from the viewpoint of energy saving of electric equipment. In order to reduce the iron loss, it is effective to increase the crystal grain size.
% Of medium- and high-grade non-oriented electrical steel sheets, increase the finish annealing temperature to about 1000 ° C, lower the line speed during annealing, and increase the annealing time to increase the grain size. I have.

【0003】この仕上焼鈍時の粒成長性を良好にするた
めには、鋼板中の介在物、析出物量を低減することが効
果的である。このため、これまで介在物、析出物を無害
化することが試みられており、特に高級材ではMnSの析
出防止の観点からS量を低減させる試みがなされてき
た。
In order to improve the grain growth during the finish annealing, it is effective to reduce the amount of inclusions and precipitates in the steel sheet. For this reason, attempts have been made to render the inclusions and precipitates harmless, and particularly in high-grade materials, attempts have been made to reduce the S content from the viewpoint of preventing precipitation of MnS.

【0004】例えば、特公昭56−22391号公報に
は、Si:2.5〜3.5%、Al:0.3〜1.0%の鋼においてSを
50ppm以下、Oを25ppm以下とすることにより鉄損を低下
させる技術が開示されている。
[0004] For example, Japanese Patent Publication No. 56-22391 discloses that S is contained in steel of 2.5 to 3.5% Si and 0.3 to 1.0% of Al.
A technique for reducing iron loss by setting the content of O to 50 ppm or less and the content of O to 25 ppm or less is disclosed.

【0005】また、特公平2−50190号公報には、
Si:2.5〜3.5%、Al:0.25〜1.0%の鋼においてSを15p
pm以下、Oを20ppm以下、Nを25ppm以下とすることによ
り鉄損を低下させる技術が開示されている。
In Japanese Patent Publication No. 2-50190,
Si: 2.5-3.5%, Al: 0.25-1.0% S in steel 15p
There is disclosed a technique for reducing iron loss by setting pm or less, O to 20 ppm or less, and N to 25 ppm or less.

【0006】さらに特開平5−140647号公報に
は、Si:2.0〜4.0%、Al:0.10〜2.0%の鋼においてS
を30ppm以下、Ti、Zr、Nb、Vをそれぞれ50ppm以下とす
ることにより鉄損を低下させる技術が開示されている。
Further, Japanese Patent Application Laid-Open No. Hei 5-140647 discloses that S: 2.0 to 4.0% and Al: 0.10 to 2.0%
A technique for reducing iron loss by reducing Ti to 30 ppm or less and Ti, Zr, Nb, and V to 50 ppm or less, respectively, is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかし、さらなる低鉄
損化を達成するためには、従来のような介在物、析出物
を低減する手法のみでは不可能であり、新たなる鉄損低
減技術が望まれているのが現状である。本発明はこのよ
うな事情に鑑みなされたものであり、新たなる技術によ
り、従来よりも仕上焼鈍後の鉄損の低い電磁鋼板を提供
することを課題とする。
However, in order to achieve a further reduction in iron loss, it is impossible to reduce the amount of inclusions and precipitates only by a conventional method. What is desired is the current situation. The present invention has been made in view of such circumstances, and an object of the present invention is to provide an electromagnetic steel sheet having a lower iron loss after finish annealing than a conventional one by using a new technique.

【0008】[0008]

【課題を解決するための手段】本発明の骨子は、鋼板中
に含まれるS量と、Sb、Snの量を所定範囲に限定し、さ
らに仕上焼鈍条件を適正化することにより、鉄損の極め
て低い無方向性電磁鋼板を得ることにある。
The gist of the present invention is to reduce the iron loss by limiting the amounts of S, Sb, and Sn contained in a steel sheet to predetermined ranges and further optimizing the conditions of the finish annealing. An object of the present invention is to obtain a very low non-oriented electrical steel sheet.

【0009】すなわち、前記課題を解決するための第1
の手段は、重量%で、C:0.005%以下、Si:1.0〜4.0
%、Mn:0.05〜1.0%、P:0.2%以下、N:0.005%以
下(0を含む)、Al:0.1〜1.0%、S:0.001%以下(0
を含む)、Sb+Sn/2=0.001〜0.05%を含有し、残部が実質
的にFeからなるスラブを熱間圧延したのち、冷間圧延お
よび仕上焼鈍をへて無方向性電磁鋼板を製造する方法に
おいて、第一次の仕上焼鈍を850℃以下の温度で行い、
その後第二次の仕上焼鈍を850℃以上の温度で行うこと
を特徴とする鉄損の低い無方向性電磁鋼板の製造方法
(請求項1)である。
[0009] That is, the first for solving the above-mentioned problem.
Means in weight%, C: 0.005% or less, Si: 1.0 to 4.0
%, Mn: 0.05 to 1.0%, P: 0.2% or less, N: 0.005% or less (including 0), Al: 0.1 to 1.0%, S: 0.001% or less (0
Slabs containing Sb + Sn / 2 = 0.001-0.05%, the balance being substantially Fe, after hot rolling, then cold rolling and finish annealing to produce non-oriented electrical steel sheets In the method of performing the first finish annealing at a temperature of 850 ° C. or less,
Thereafter, a second finish annealing is performed at a temperature of 850 ° C. or higher, which is a method for producing a non-oriented electrical steel sheet with low iron loss (Claim 1).

【0010】前記課題を解決するための第2の手段は、
重量%で、C:0.005%以下、Si:1.0〜4.0%、Mn:0.0
5〜1.0%、P:0.2%以下、N:0.005%以下(0を含
む)、Al:0.1〜1.0%、S:0.001%以下(0を含む)、S
b+Sn/2=0.001〜0.005%を含有し、残部が実質的にFeか
らなるスラブを熱間圧延したのち、冷間圧延および仕上
焼鈍をへて無方向性電磁鋼板を製造する方法において、
第一次の仕上焼鈍を850℃以下の温度で行い、その後第
二次の仕上焼鈍を850℃以上の温度で行うことを特徴と
する鉄損の低い無方向性電磁鋼板の製造方法(請求項
2)である。すなわち、前記第1の手段におけるSb+Sn/
2の範囲を、さらに限定して0.001〜0.005%としたもの
である。
[0010] A second means for solving the above-mentioned problems is as follows.
% By weight, C: 0.005% or less, Si: 1.0 to 4.0%, Mn: 0.0
5 to 1.0%, P: 0.2% or less, N: 0.005% or less (including 0), Al: 0.1 to 1.0%, S: 0.001% or less (including 0), S
b + Sn / 2 = 0.001 to 0.005%, the balance being substantially hot-rolled after the slab substantially made of Fe, and then subjected to cold rolling and finish annealing to produce a non-oriented electrical steel sheet,
A method for producing a non-oriented electrical steel sheet having a low iron loss, wherein the first finish annealing is performed at a temperature of 850 ° C. or lower, and then the second finish annealing is performed at a temperature of 850 ° C. or higher. 2). That is, Sb + Sn /
The range of 2 is further limited to 0.001 to 0.005%.

【0011】前記課題を解決するための第3手段は、重
量%で、C:0.005%以下、Si:1.0〜4.0%、Mn:0.05
〜1.0%、P:0.2%以下、N:0.005%以下(0を含
む)、Al:0.1〜1.0%、S:0.001%以下(0を含む)、S
b+Sn/2=0.001〜0.05%を含有し、残部が実質的にFeから
なるスラブを熱間圧延したのち、冷間圧延および仕上焼
鈍をへて無方向性電磁鋼板を製造する方法において、第
一次の仕上焼鈍を850℃以下の温度にて20秒以上行い、
その後第二次の仕上焼鈍を850℃以上の温度にて10秒以
上行うことを特徴とする鉄損の低い無方向性電磁鋼板の
製造方法(請求項3)である。すなわち、前記第1の手
段の仕上焼鈍の前段、後段の焼鈍時間を特定の範囲に規
定したものである。
A third means for solving the above-mentioned problems is as follows: C: 0.005% or less, Si: 1.0 to 4.0%, Mn: 0.05% by weight.
1.0%, P: 0.2% or less, N: 0.005% or less (including 0), Al: 0.1 to 1.0%, S: 0.001% or less (including 0), S
b + Sn / 2 = 0.001 to 0.05%, the remainder being substantially hot-rolled after the slab substantially made of Fe, and then subjected to cold rolling and finish annealing to produce a non-oriented electrical steel sheet, Perform the first finish annealing at a temperature of 850 ° C or less for 20 seconds or more,
Thereafter, a second finish annealing is performed at a temperature of 850 ° C. or more for 10 seconds or more, which is a method for producing a non-oriented electrical steel sheet with low iron loss (Claim 3). That is, the annealing time before and after the finish annealing of the first means is specified in a specific range.

【0012】前記課題を解決するための第4の手段は、
重量%で、C:0.005%以下、Si:1.0〜4.0%、Mn:0.0
5〜1.0%、P:0.2%以下、N:0.005%以下(0を含
む)、Al:0.1〜1.0%、S:0.001%以下(0を含む)、S
b+Sn/2=0.001〜0.005%を含有し、残部が実質的にFeか
らなるスラブを熱間圧延したのち、冷間圧延および仕上
焼鈍をへて無方向性電磁鋼板を製造する方法において、
第一次の仕上焼鈍を850℃以下の温度にて20秒以上行
い、その後第二次の仕上焼鈍を850℃以上の温度にて10
秒以上行うことを特徴とする鉄損の低い無方向性電磁鋼
板の製造方法(請求項4)である。すなわち、前記第2
の手段の仕上焼鈍の前段、後段の焼鈍時間を、前記第3
の手段と同じ特定の範囲に規定したものである。
A fourth means for solving the above-mentioned problem is as follows.
% By weight, C: 0.005% or less, Si: 1.0 to 4.0%, Mn: 0.0
5 to 1.0%, P: 0.2% or less, N: 0.005% or less (including 0), Al: 0.1 to 1.0%, S: 0.001% or less (including 0), S
b + Sn / 2 = 0.001 to 0.005%, the balance being substantially hot-rolled after the slab substantially made of Fe, and then subjected to cold rolling and finish annealing to produce a non-oriented electrical steel sheet,
The first finish annealing is performed at a temperature of 850 ° C or less for 20 seconds or more, and then the second finish annealing is performed at a temperature of 850 ° C or more for 10 seconds.
A method for producing a non-oriented electrical steel sheet with low iron loss, wherein the method is performed for at least seconds. That is, the second
The annealing time before and after the finish annealing in the means of
In the same specific range as the means.

【0013】以上の各手段において、「残部が実質的に
Feである」とは、本発明の作用効果を無くしない限りに
おいて、不可避不純物を始め、他の微量元素を含むもの
が本発明の範囲に入ることを意味する。また、Sb+Sn/2
の値が所定量の範囲であれば、SbとSnの一方のみを含ん
でもよい。なお、本明細書において、鋼の成分値を示す
%、ppmは、特に断らない限り重量%、重量ppmを示す。
[0013] In each of the above means, "the remainder is substantially
The phrase "Fe" means that those containing other trace elements including unavoidable impurities fall within the scope of the present invention, as long as the effects of the present invention are not lost. Also, Sb + Sn / 2
If the value is within a predetermined range, only one of Sb and Sn may be included. In the present specification,% and ppm indicating the component values of steel indicate weight% and ppm by weight, respectively, unless otherwise specified.

【0014】前記課題を解決するための第5の手段は、
前記第1の手段から第4の手段のいずれかにより製造さ
れる無方向性電磁鋼板(請求項5)である。
A fifth means for solving the above-mentioned problems is as follows.
A non-oriented electrical steel sheet manufactured by any one of the first to fourth means (claim 5).

【0015】(発明に至る経緯と、S、Sb、Sn含有量及
び仕上焼鈍条件の限定理由)本発明者らは、S=10ppm以
下の極低S材において鉄損低減を阻害している要因を詳
細に調査した。
(History leading to the invention, and the reasons for limiting the contents of S, Sb, Sn and the conditions of the finish annealing) Was investigated in detail.

【0016】最初に、鉄損に及ぼすSの影響を調査する
ため、C:0.0025%、Si:1.65%、Mn:0.20%、P:0.
01%、Al:0.31%、N:0.0021%としS量をtr.〜25ppm
の範囲で変化させた鋼を実験室にて真空溶解し、熱延
後、100%H2雰囲気にて950℃×3minの熱延板焼鈍を行
い、酸洗後、板厚0.5mmまで冷間圧延を行った。引き続
き、焼鈍雰囲気にて10%H2-90%N2雰囲気にて、950℃
×2minの焼鈍を行った。図1に、このようにして得ら
れたサンプルのS量と鉄損W15/50の関係を示す(図中
×印)。磁気特性は25cmエプスタイン試験法にて測定し
た。
First, in order to investigate the effect of S on the iron loss, C: 0.0025%, Si: 1.65%, Mn: 0.20%, P: 0.
01%, Al: 0.31%, N: 0.0021%, S content is tr. ~ 25ppm
In a laboratory, the steel changed in the above range was melted in a vacuum, hot-rolled, annealed at 950 ° C for 3 minutes in a 100% H 2 atmosphere, pickled, and then cold-rolled to a thickness of 0.5 mm. Rolling was performed. Subsequently, at 950 ° C. in an atmosphere of 10% H 2 -90% N 2 in an annealing atmosphere.
The annealing was performed for 2 minutes. FIG. 1 shows the relationship between the S content of the sample thus obtained and the iron loss W 15/50 (marked by x in the figure). Magnetic properties were measured by a 25 cm Epstein test.

【0017】図1より、Sを10ppm以下とした場合に大
幅な鉄損低減が達成されW15/50=3.2W/kgの材料が得
られることがわかる。これは、S低減により粒成長性が
向上したためである。以上のことより本発明において
は、S含有量の範囲を10ppm以下に限定するが、5ppm以
下とすることがより望ましい。
FIG. 1 shows that when S is set to 10 ppm or less, a large reduction in iron loss is achieved, and a material of W 15/50 = 3.2 W / kg can be obtained. This is because grain growth was improved by reducing S. From the above, in the present invention, the range of the S content is limited to 10 ppm or less, but more preferably 5 ppm or less.

【0018】しかし、S含有量が10ppm以下となると鉄
損の低下は緩やかとなり、S含有量をさらに低減したと
しても鉄損は3.1W/kg程度にしかならない。本発明者
らは、S≦10ppmの極低S材において鉄損の低減が阻害
されるのは、MnS以外の未知の要因によるものではない
かと考え、光学顕微鏡にて組織観察を行った。その結
果、S≦10ppmの領域で鋼板表層に顕著な窒化層が認め
られた。これに対し、S>10ppmの領域では窒化層は軽
微となっていた。この窒化層は窒化雰囲気で行った仕上
焼鈍時に生じたものと考えられる。
However, when the S content is 10 ppm or less, the decrease in iron loss is gradual, and even if the S content is further reduced, the iron loss is only about 3.1 W / kg. The present inventors considered that the reduction of iron loss was inhibited by the extremely low S material of S ≦ 10 ppm due to unknown factors other than MnS, and observed the structure with an optical microscope. As a result, a remarkable nitride layer was recognized on the surface layer of the steel sheet in the region of S ≦ 10 ppm. In contrast, in the region where S> 10 ppm, the nitrided layer was slight. It is considered that this nitrided layer was formed during the finish annealing performed in the nitriding atmosphere.

【0019】このS低減に伴う窒化反応促進の原因に関
しては次のように考えられる。すなわち、Sは表面およ
び粒界に濃化しやすい元素であることから、S>10ppm
の領域では、Sが鋼板表面へ濃化し、仕上焼鈍時の窒素
の吸着を抑制しており、一方、S≦10ppmの領域ではS
による窒素吸着の抑制効果が低下したためと考えられ
る。
The cause of the acceleration of the nitridation reaction accompanying the reduction of S is considered as follows. That is, since S is an element which is easily concentrated on the surface and the grain boundaries, S> 10 ppm
In the region of S, S is concentrated on the surface of the steel sheet to suppress the adsorption of nitrogen during finish annealing, while in the region of S ≦ 10 ppm, S
It is considered that the effect of suppressing nitrogen adsorption by the catalyst decreased.

【0020】本発明者らは、この極低S材において顕著
に生じる窒化層が鋼板表層部の結晶粒の成長を妨げ、鉄
損の低下を抑制するのではないかと考えた。このような
考えの下に、本発明者らは窒素吸着の抑制が可能でかつ
極低S材の優れた粒成長性を妨げることのない元素を添
加することができれば、極低S材の鉄損はさらに低減す
るのではないかという着想を抱き、種々の検討を加えた
結果、Sbの極微量添加を行うことが有効であることを見
いだした。
The present inventors have considered that the nitrided layer which is remarkably generated in the extremely low S material may hinder the growth of crystal grains in the surface layer portion of the steel sheet and suppress the decrease in iron loss. Under such a concept, if the present inventors can add an element which can suppress nitrogen adsorption and does not hinder the excellent grain growth of the ultra-low S material, the iron of the ultra-low S material Based on the idea that the loss could be further reduced, we conducted various studies and found that it was effective to add a trace amount of Sb.

【0021】図1に、前記×印で示したサンプルの成分
に40ppmのSbを添加したサンプルについて同一の条件で
試験をした結果を○印で示す。Sbの鉄損低減効果に着目
すると、S>10ppmの領域では、Sb添加により鉄損は0.0
2〜0.04W/kg程度しか低下しないが、S≦10ppmの領域
では、Sb添加により鉄損は0.10W/kg程度低下してお
り、S含有量量が少ない場合にSbの鉄損低減効果が認め
られる。但し、Sb添加材でも軽微ながら表層窒化層が認
められた。これは、熱延板焼鈍後に表面偏析したSbが、
熱延板焼鈍後に行われる酸洗により除去されるため、そ
の後の高温仕上げ焼鈍時の窒化防止効果が弱まったため
と考えられる。
FIG. 1 shows the results of a test performed under the same conditions on a sample in which 40 ppm of Sb was added to the components of the sample shown by the crosses, with the circles. Focusing on the iron loss reduction effect of Sb, in the region of S> 10 ppm, the iron loss becomes 0.0
Although it decreases only by about 2 to 0.04 W / kg, in the region of S ≦ 10 ppm, the iron loss is reduced by about 0.10 W / kg by adding Sb. When the S content is small, the iron loss reducing effect of Sb is reduced. Is recognized. However, even with the Sb-added material, a slight surface nitride layer was observed. This is because Sb surface segregated after hot-rolled sheet annealing,
It is considered that, since it is removed by pickling performed after the hot-rolled sheet annealing, the effect of preventing nitriding during the subsequent high-temperature finish annealing is weakened.

【0022】ここで、仕上焼鈍時の高温焼鈍は、結晶粒
粗大化による低鉄損化の観点から必須である。しかし、
高温焼鈍は同時に表層窒化を顕在化させるため、高温焼
鈍以前にSbを鋼板表面に偏析させる必要がある。このた
め、仕上焼鈍の前段を窒化の生じない低温焼鈍とするこ
とによりSbの表面偏析処理を行い、後段で高温焼鈍する
ことにより結晶粒の粗大化をおこなう手法について検討
した。
Here, high-temperature annealing during finish annealing is indispensable from the viewpoint of reducing iron loss due to coarsening of crystal grains. But,
Since high-temperature annealing simultaneously causes surface nitriding to become apparent, it is necessary to segregate Sb on the steel sheet surface before high-temperature annealing. For this reason, the method of performing the surface segregation treatment of Sb by performing low-temperature annealing which does not generate nitridation in the first stage of the finish annealing, and examining the method of performing the coarsening of the crystal grains by performing the high-temperature annealing in the second stage was studied.

【0023】適正仕上焼鈍パターンを見出すため、C:
0.0026%、Si:1.62%、Mn:0.20%、P:0.010%、A
l:0.30%、S:0.0004%、N:0.0020%、Sb:0.004%
とした鋼を実験室にて真空溶解し、熱延後、100%H2
囲気にて950℃×5minの熱延板焼鈍を行い、酸洗後、板
厚0.5mmまで冷間圧延した。仕上焼鈍は、前段(一次)
を低温焼鈍、後段(二次)高温焼鈍とし、それぞれの焼
鈍温度、焼鈍時間を種々変化させて行った。なお、仕上
焼鈍雰囲気は10%H2-90%N2とした。
In order to find an appropriate finish annealing pattern, C:
0.0026%, Si: 1.62%, Mn: 0.20%, P: 0.010%, A
l: 0.30%, S: 0.0004%, N: 0.0020%, Sb: 0.004%
Was melted in a laboratory in a vacuum, hot-rolled, then annealed at 950 ° C. for 5 minutes in a 100% H 2 atmosphere, pickled, and cold-rolled to a thickness of 0.5 mm. Finish annealing is the first stage (primary)
Was subjected to low-temperature annealing and subsequent (secondary) high-temperature annealing, and each annealing temperature and annealing time were variously changed. Note that the finish annealing atmosphere was 10% H 2 -90% N 2 .

【0024】図2に、仕上焼鈍時の前段焼鈍温度(一次
仕上焼鈍温度)と鉄損W15/50の関係を示す。ここで、S
bを偏析させるための一次仕上焼鈍時間は1minとし、二
次仕上焼鈍は950℃×1minとした。
FIG. 2 shows the relationship between the pre-annealing temperature (primary finish annealing temperature) and the iron loss W 15/50 during the finish annealing. Where S
The primary finish annealing time for segregating b was 1 min, and the secondary finish annealing was 950 ° C. × 1 min.

【0025】図2より一次仕上焼鈍温度が850℃以下で
鉄損が低下していることがわかる。これら材料の組織を
観察したところ、一次仕上焼鈍温度が850℃超の材料で
は、Sbを添加しているにもかかわらず鋼板表層部に窒化
が認められた。これは、Sbが鋼板表面に偏析する以前に
高温の窒化雰囲気に鋼板がさらされるため、Sbの窒化抑
制効果が十分に発揮されず窒化が生じたものと考えられ
る。以上のことより、本発明においては、一次仕上焼鈍
温度は850℃以下に規定する。
FIG. 2 shows that the iron loss is reduced when the primary finish annealing temperature is 850 ° C. or less. Observation of the microstructures of these materials showed that nitriding was observed in the surface layer of the steel sheet in the materials whose primary finish annealing temperature was over 850 ° C, even though Sb was added. This is considered to be because the steel sheet was exposed to a high-temperature nitriding atmosphere before Sb segregated on the steel sheet surface, so that the nitriding effect of Sb was not sufficiently exerted and nitriding occurred. From the above, in the present invention, the primary finish annealing temperature is specified to be 850 ° C. or less.

【0026】図3に、仕上焼鈍時の後段焼鈍温度(二次
仕上焼鈍温度)と鉄損W15/50の関係を示す。ここで、
二次仕上焼鈍時間は1minとし、一次仕上焼鈍は800℃×
1minとした。図3より二次仕上焼鈍温度が850℃以上で
鉄損が低下していることがわかる。これら材料の組織を
観察したところ、二次仕上焼鈍温度が850℃未満の材料
では、粒成長が十分でなく、このため十分な鉄損低減が
図れていないことが判明した。以上のことより、本発明
においては二次仕上焼鈍温度は850℃以上に規定する。
FIG. 3 shows the relationship between the post-annealing temperature (secondary annealing temperature) during the finish annealing and the iron loss W 15/50 . here,
Secondary finish annealing time is 1 min, primary finish annealing is 800 ℃ x
1 minute. FIG. 3 shows that iron loss is reduced when the secondary finish annealing temperature is 850 ° C. or higher. Observation of the structures of these materials revealed that the materials having a secondary finish annealing temperature of less than 850 ° C. did not have sufficient grain growth, and thus did not achieve a sufficient reduction in iron loss. From the above, in the present invention, the secondary finish annealing temperature is specified to be 850 ° C. or higher.

【0027】図4に、仕上焼鈍時の前段焼鈍時間(一次
仕上焼鈍時間)と鉄損W15/50の関係を示す。ここで、
一次仕上焼鈍温度は800℃とし、二次仕上焼鈍は950℃×
1minとした。図4より一次仕上焼鈍時間が20sec以上で
鉄損が低下していることがわかる。これら材料の組織を
観察したところ、一次仕上焼鈍時間が20sec未満の材料
では、鋼板表層部に窒化層が認められ、このことからSb
の偏析が十分に行われていないことが判明した。以上の
ことより、本発明においては、好ましい一次仕上焼鈍時
間を20sec以上に規定する。
FIG. 4 shows the relationship between the pre-annealing time (primary finish annealing time) and the iron loss W 15/50 during the finish annealing. here,
The primary finish annealing temperature is 800 ° C, and the secondary finish annealing is 950 ° C ×
1 minute. FIG. 4 shows that the iron loss is reduced when the primary finish annealing time is 20 seconds or longer. Observation of the microstructures of these materials showed that for materials with a primary finish annealing time of less than 20 sec, a nitrided layer was observed on the surface layer of the steel sheet.
It was found that segregation was not sufficiently performed. From the above, in the present invention, the preferred primary finish annealing time is specified to be 20 seconds or more.

【0028】図5に、仕上焼鈍時の後段焼鈍時間(二次
仕上焼鈍時間)と鉄損W15/50の関係を示す。ここで、
一次仕上焼鈍温度は800℃×1minとし、後段焼鈍は950
℃とした。図5より後段焼鈍時間が10sec以上で鉄損が
低下していることがわかる。これら材料の組織を観察し
たところ、後段焼鈍時間が10sec未満の材料では粒成長
性が十分でないことが判明した。以上のことより、本発
明においては、好ましい二次仕上焼鈍時間は10sec以上
に規定する。
FIG. 5 shows the relationship between the post-annealing time (secondary annealing time) and the iron loss W 15/50 during the finish annealing. here,
The primary finish annealing temperature is 800 ° C x 1 min.
° C. FIG. 5 shows that the iron loss is reduced when the post-annealing time is 10 seconds or longer. Observation of the microstructures of these materials revealed that materials having a post-annealing time of less than 10 seconds had insufficient grain growth. From the above, in the present invention, the preferable secondary finish annealing time is specified to be 10 sec or more.

【0029】なお、本発明における二段焼鈍では、一次
の低温焼鈍によりSbの表面偏析処理を行うことが重要で
あり、単に高温焼鈍時間の短時間化による仕上焼鈍時の
窒化抑制を目的とした従来の二段焼鈍とは思想が大きく
異なっている。
In the two-step annealing in the present invention, it is important to perform the surface segregation treatment of Sb by primary low-temperature annealing, and the purpose is simply to suppress nitriding during finish annealing by shortening the high-temperature annealing time. The concept differs greatly from conventional two-step annealing.

【0030】次にSbの最適添加量を調査するため、C:
0.0026%、Si:1.60%、Mn:0.20%、P:0.020%、A
l:0.30%、S:0.0004%、N:0.0020%としSb量をtr.
〜700ppmの範囲で変化させた鋼を実験室にて真空溶解
し、熱間圧延後、100%H2雰囲気にて950℃×3minの熱
延板焼鈍を行い、酸洗後、板厚0.5mmまで冷間圧延を行
った。引き続き10%H2-90%N2雰囲気にて、800℃×1
minの一次仕上焼鈍を行い、連続して950℃×1minの二
次仕上焼鈍を行った。図6に、Sb量と鉄損W15/50の関
係を示す。
Next, to investigate the optimum amount of Sb, C:
0.0026%, Si: 1.60%, Mn: 0.20%, P: 0.020%, A
l: 0.30%, S: 0.0004%, N: 0.0020%, and the Sb amount is tr.
Was vacuum melted steels was varied in a range of ~700ppm at laboratory after hot rolling, subjected to hot rolled sheet annealing of 950 ° C. × 3min at 100% H 2 atmosphere, after pickling, the sheet thickness 0.5mm Cold rolling was carried out until. Continue in a 10% H 2 -90% N 2 atmosphere at 800 ° C x 1
min primary finish annealing was performed, followed by a continuous secondary finish annealing at 950 ° C. × 1 min. FIG. 6 shows the relationship between the Sb content and the iron loss W 15/50 .

【0031】図6より、Sb量が10ppm以上の領域で鉄損
が低下していることがわかる。しかし、Sbをさらに添加
し、Sb>50ppmとなった場合には、鉄損は再び増大する
こともわかる。このSb>50ppmの領域での鉄損増大原因
を調査するため、光学顕微鏡による組織観察を行った。
その結果、表層細粒組織は認められなかったものの、平
均結晶粒径が若干小さくなっていた。この原因は明確で
はないが、Sbが粒界に偏析しやすい元素であるため、Sb
の粒界ドラッグ効果により粒成長性が低下したものと考
えられる。
FIG. 6 shows that iron loss is reduced in the region where the amount of Sb is 10 ppm or more. However, when Sb is further added and Sb> 50 ppm, the iron loss increases again. In order to investigate the cause of the increase in iron loss in the region of Sb> 50 ppm, the structure was observed with an optical microscope.
As a result, although the surface layer fine grain structure was not recognized, the average crystal grain size was slightly smaller. Although the cause is not clear, Sb is an element that easily segregates at the grain boundaries,
It is considered that the grain growth was reduced due to the grain boundary drag effect.

【0032】但し、Sbを700ppmまで添加してもSbフリー
鋼と比べると鉄損は良好である。以上のことより、本発
明においては、Sb含有量は10ppm以上とし、コストの問
題から上限を500ppmとする。また鉄損の観点より、望ま
しくは10ppm以上、50ppm以下とする。
However, even when Sb is added up to 700 ppm, the iron loss is better than that of Sb-free steel. From the above, in the present invention, the Sb content is set to 10 ppm or more, and the upper limit is set to 500 ppm from the viewpoint of cost. From the viewpoint of iron loss, the content is desirably 10 ppm or more and 50 ppm or less.

【0033】以上の鉄損低減効果はSbと同様な表面偏析
型元素であるSnを20ppm以上含有させた場合にも認めら
れ、100ppm以上の含有で鉄損が若干増大した。このこと
よりSnは20ppm以上とし、コストの問題から上限を1000p
pmとする。また鉄損の観点より、望ましくは20ppm以
上、100ppm以下とする。さらに、SbとSnを複合添加した
場合にもSb+Sn/2で10ppm以上添加した場合に鉄損が低下
し、Sb+Sn/2で50ppm以上添加した場合に若干の鉄損増大
が認められた。このことよりSbとSnを複合添加した場合
にはSb+Sn/2で10ppm以上とし、コストの問題から上限を
500ppmとする。また鉄損の観点より、望ましくは10ppm
以上、50ppm以下とする。
The iron loss reducing effect described above is also observed when Sn, which is a surface segregation element similar to Sb, is contained in an amount of 20 ppm or more, and iron loss is slightly increased when the content is 100 ppm or more. From this, Sn is set to 20 ppm or more, and the upper limit is 1000 p
pm. From the viewpoint of iron loss, the content is desirably 20 ppm or more and 100 ppm or less. Furthermore, even when Sb and Sn are combined, iron loss is reduced when Sb + Sn / 2 is added at 10 ppm or more, and iron loss is slightly increased when Sb + Sn / 2 is added at 50 ppm or more. Was. From this, when Sb and Sn are added in combination, the upper limit is set to 10 ppm or more in Sb + Sn / 2, and the upper limit is set due to cost problems.
500 ppm. Also, from the viewpoint of iron loss, desirably 10 ppm
At least 50 ppm.

【0034】(その他の成分の限定理由)次に、その他
の成分の限定理由について説明する。 C: Cは磁気時効の問題があるため0.005%以下とす
る。 Si: Siは鋼板の固有抵抗を上げるために有効な元素で
あるため1.0%以上添加する。一方、4.0%を超えると飽
和磁束密度の低下に伴い磁束密度が低下するため上限を
4.0%とする。 Mn: Mnは熱間圧延時の赤熱脆性を防止するために、0.
05%以上必要であるが、1.0%以上になると磁束密度を
低下させるので0.05〜1.0%とする。 P: Pは鋼板の打ち抜き性を改善するために必要な元
素であるが、0.2%を超えて添加すると鋼板が脆化する
ため0.2%以下とする。 N: Nは、含有量が多い場合にはAlNの析出量が多く
なり、鉄損を増大させるため0.005%以下とする。 Al: AlはSiと同様、固有抵抗を上げるために有効な元
素であるが、1.0%を超えると飽和磁束密度の低下に伴
い磁束密度が低下するため上限を1.0%とする。また、
0.1%未満の場合にはAlNが微細化し粒成長性が低下す
るため下限を0.1%とする。
(Reasons for Limiting Other Components) Next, reasons for limiting other components will be described. C: C is 0.005% or less because of the problem of magnetic aging. Si: Since Si is an element effective for increasing the specific resistance of the steel sheet, it is added in an amount of 1.0% or more. On the other hand, if it exceeds 4.0%, the magnetic flux density decreases with the decrease in the saturation magnetic flux density, so the upper limit is set.
4.0%. Mn: Mn is 0.1% to prevent red hot brittleness during hot rolling.
It is required to be not less than 05%, but if it is not less than 1.0%, the magnetic flux density is reduced. P: P is an element necessary for improving the punching property of the steel sheet, but if added in excess of 0.2%, the steel sheet will be embrittled, so that the content is set to 0.2% or less. N: N is set to 0.005% or less to increase the amount of AlN and increase iron loss when the content is large. Al: Al is an element effective for increasing the specific resistance, like Si, but if it exceeds 1.0%, the magnetic flux density decreases with a decrease in the saturation magnetic flux density, so the upper limit is set to 1.0%. Also,
If it is less than 0.1%, the lower limit is set to 0.1% because AlN becomes finer and the grain growth is reduced.

【0035】(製造方法)本発明においては、S、Sbお
よびSnを始め規定の成分値が所定の範囲内であり、かつ
仕上焼鈍時の焼鈍パターンが本発明の範囲内であれば、
それ以外の製造方法は通常の無方向性電磁鋼板を製造す
る方法でかまわない。すなわち、転炉で吹練した溶鋼を
脱ガス処理し所定の成分に調整し、引き続き鋳造、熱間
圧延を行う。熱間圧延時の仕上温度、巻取り温度は特に
規定する必要はなく、通常の無方向性電磁鋼板を製造す
る範囲の温度でかまわない。また、熱延後の熱延板焼鈍
は行っても良いが必須ではない。次いで、酸洗後、冷間
圧延により所定の温度とした後に、一次仕上焼鈍を850
℃以下の温度で行い、二次仕上焼鈍を850℃以上の温度
で行う。なお、一次仕上焼鈍と二次仕上焼鈍は連続して
行ってもよいし、一次仕上焼鈍後、鋼板を一旦冷却して
から二次仕上焼鈍を行ってもよい。さらに中間焼鈍をは
さんで2回以上の冷間圧延を行う場合には、H2-N2
合雰囲気中において行われる中間焼鈍の焼鈍温度を850
℃以下とすることにより、前記一次仕上焼鈍の代用とす
ることができ、本発明の範囲にはこのような形態のもの
も含むものである。
(Manufacturing method) In the present invention, if the prescribed component values including S, Sb and Sn are within a predetermined range and the annealing pattern at the time of finish annealing is within the range of the present invention,
The other manufacturing method may be a method of manufacturing a normal non-oriented electrical steel sheet. That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, and subsequently casting and hot rolling are performed. The finishing temperature and the winding temperature during hot rolling do not need to be particularly specified, and may be a temperature in a range where a normal non-oriented electrical steel sheet is manufactured. In addition, hot-rolled sheet annealing after hot-rolling may be performed, but is not essential. Next, after pickling, after a predetermined temperature by cold rolling, the primary finish annealing 850.
C. or lower, and the secondary finish annealing is performed at a temperature of 850 C. or higher. In addition, the primary finish annealing and the secondary finish annealing may be performed continuously, or after the primary finish annealing, the steel plate may be cooled once and then subjected to the secondary finish annealing. Furthermore when performing rolling across at two or more cold intermediate annealing, 850 an annealing temperature of the intermediate annealing carried out in H 2 -N 2 mixed atmosphere
By setting the temperature to not more than ° C., it can be used as a substitute for the primary finish annealing, and the scope of the present invention includes such a form.

【0036】[0036]

【実施例】表1に示す鋼を用い、転炉で吹練した後に脱
ガス処理を行うことにより所定の成分に調整後鋳造し、
スラブを1140℃で1hr加熱した後、板厚2.3mmまで熱間
圧延を行った。熱延仕上げ温度は800℃とした。巻取り
温度は610℃とし、巻取り後、表2に示す条件で熱延板
焼鈍を施した。その後、酸洗を行い、板厚0.5mmまで冷
間圧延を行い、表2に示す仕上焼鈍条件で焼鈍を行っ
た。磁気測定は25cmエプスタイン試験片を用いて行っ
た。各鋼板の磁気特性を表2に併せて示す。表1と表2
のNo.は対応している。
EXAMPLES Using the steel shown in Table 1, after degassing by blowing in a converter, the steel was adjusted to predetermined components and cast.
After the slab was heated at 1140 ° C. for 1 hour, hot rolling was performed to a thickness of 2.3 mm. The hot rolling finishing temperature was 800 ° C. The winding temperature was 610 ° C. After the winding, hot-rolled sheet annealing was performed under the conditions shown in Table 2. Thereafter, pickling was performed, cold rolling was performed to a sheet thickness of 0.5 mm, and annealing was performed under finish annealing conditions shown in Table 2. Magnetic measurements were performed using 25 cm Epstein specimens. Table 2 also shows the magnetic properties of each steel sheet. Table 1 and Table 2
No. correspond.

【0037】表1、表2において、No.1〜No.15の鋼板
が本発明の実施例であり、No.16〜No.27の鋼板が比較例
である。表1、表2から分かるように、本発明の実施例
においては、比較例に比して、磁束密度B50を低下させ
ることなく高い鉄損W15/50が選られている。
In Tables 1 and 2, steel sheets No. 1 to No. 15 are examples of the present invention, and steel sheets No. 16 to No. 27 are comparative examples. As can be seen from Tables 1 and 2, in Examples of the present invention, a higher iron loss W 15/50 was selected without lowering the magnetic flux density B 50 than in Comparative Examples.

【0038】実施例の中でも、No.3、No.4の鋼板とNo.7
の鋼板は、Sb+Sn/2が0.005%を超えており、請求項2と
請求項4の条件を満足しない。また、No.11の鋼板は、
一次仕上焼鈍時間が請求項3、請求項4の条件を満足せ
ず、No.13の鋼板は、二次仕上焼鈍時間が請求項3、請
求項4の条件を満足しない。よって、これらの鋼板の鉄
損W15/50は、他の実施例に比してやや高くなってい
る。
Among the examples, No. 3 and No. 4 steel sheets and No. 7
In the steel sheet of the above, Sb + Sn / 2 exceeds 0.005%, and does not satisfy the conditions of claims 2 and 4. In addition, No. 11 steel plate
The primary finish annealing time does not satisfy the conditions of claims 3 and 4, and the steel sheet No. 13 does not satisfy the secondary finish annealing time of the claims 3 and 4. Therefore, the iron loss W15 / 50 of these steel sheets is slightly higher than those of the other examples.

【0039】比較例のうち、No.16の鋼板は、S含有量
とSb+Sn/2の値が、No.17の鋼板はSb+Sn/2の値が、それ
ぞれ本発明の範囲を外れているので、鉄損W15/50が高
くなっている。No.18の鋼板とNo.19の鋼板は、一次仕上
焼鈍温度が本発明の範囲を超えているので、鉄損W
15/50が高くなっている。また、No.20の鋼板は、二次仕
上焼鈍温度が本発明の範囲を下回っているので、やはり
鉄損W15/50が高くなっている。
Among the comparative examples, the steel sheet No. 16 had the S content and the value of Sb + Sn / 2, and the steel sheet No. 17 had the value of Sb + Sn / 2 out of the range of the present invention. Therefore, the iron loss W 15/50 is high. No. 18 steel sheet and No. 19 steel sheet have the primary finish annealing temperature exceeding the range of the present invention, so that the iron loss W
15/50 is higher. Further, the steel sheet of No. 20 also has a higher iron loss W 15/50 because the secondary finish annealing temperature is lower than the range of the present invention.

【0040】No.21の鋼板は、C含有量が本発明の範囲
を超えているので、鉄損W15/50が高いのみならず、磁
気時効の問題がある。No.22の鋼板は、Si含有量が本発
明の範囲を超えているので、鉄損W15/50は低いもの
の、磁束密度B50が低くなっている。No.23の鋼板はMn
含有量が本発明の範囲より低いので、鉄損W15/50が高
くなっている。No.24の鋼板はMn含有量が本発明の範囲
を超えているので、鉄損W15/50は低いものの、磁束密
度B50が低くなっている。No.25の鋼板は、N含有量が
本発明の範囲を超えているので、鉄損W15/50が高くな
っている。No.26の鋼板は、Al含有量が本発明の範囲よ
り低いので、鉄損W15/50が高くなっている。一方、No.
22の鋼板は、Al含有量が本発明の範囲を超えているの
で、鉄損W15/50は低いものの、磁束密度B50が低くな
っている。
Since the C content exceeds the range of the present invention, the steel sheet No. 21 has not only a high iron loss W 15/50 but also a problem of magnetic aging. Since the steel content of No. 22 has a Si content outside the range of the present invention, the iron loss W 15/50 is low, but the magnetic flux density B 50 is low. No.23 steel plate is Mn
Since the content is lower than the range of the present invention, the iron loss W 15/50 is high. Since the steel sheet No. 24 has a Mn content exceeding the range of the present invention, the iron loss W 15/50 is low, but the magnetic flux density B 50 is low. The No. 25 steel sheet has a high iron loss W 15/50 because the N content exceeds the range of the present invention. The steel sheet No. 26 has a higher iron loss W 15/50 because the Al content is lower than the range of the present invention. On the other hand, No.
The steel sheet No. 22 has a low iron loss W 15/50 but a low magnetic flux density B 50 because the Al content exceeds the range of the present invention.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】以上説明したように、本発明のうち請求
項1に係る発明は、重量%で、C:0.005%以下、Si:
1.0〜4.0%、Mn:0.05〜1.0%、P:0.2%以下、N:0.
005%以下(0を含む)、Al:0.1〜1.0%、S:0.001%
以下(0を含む)、Sb+Sn/2=0.001〜0.05%を含有し、残
部が実質的にFeからなるスラブを熱間圧延したのち、冷
間圧延および仕上焼鈍をへて無方向性電磁鋼板を製造す
る方法において、第一次の仕上焼鈍を850℃以下の温度
で行い、その後第二次の仕上焼鈍を850℃以上の温度で
行うことを特徴とするものであるので、鉄損の低い無方
向性電磁鋼板を製造することができる。
As described above, according to the first aspect of the present invention, C: 0.005% or less and Si:
1.0-4.0%, Mn: 0.05-1.0%, P: 0.2% or less, N: 0.
005% or less (including 0), Al: 0.1 to 1.0%, S: 0.001%
Below (including 0), after hot rolling a slab containing Sb + Sn / 2 = 0.001-0.05% and the balance substantially consisting of Fe, then cold-rolled and finish-annealed for non-directional electromagnetic In the method of manufacturing a steel sheet, the primary finish annealing is performed at a temperature of 850 ° C. or lower, and then the second finish annealing is performed at a temperature of 850 ° C. or higher. Low non-oriented electrical steel sheets can be manufactured.

【0044】請求項2に係る発明は、請求項1に係る発
明においてSb+Sn/2の範囲を、0.001〜0.005%に限定し
たものであるので、さらに鉄損の低い無方向性電磁鋼板
を製造することができる。
According to a second aspect of the present invention, the range of Sb + Sn / 2 is limited to 0.001 to 0.005% in the first aspect of the present invention. Can be manufactured.

【0045】また、請求項3、請求項4に係る発明は、
これらの発明において、一次仕上焼鈍時間を20秒以上
に、二次仕上焼鈍時間を10秒以上に限定しているので、
さらに鉄損の低い無方向性電磁鋼板を製造することがで
きる。
The invention according to claims 3 and 4 is:
In these inventions, the primary finish annealing time is limited to 20 seconds or more, and the secondary finish annealing time is limited to 10 seconds or more.
Furthermore, a non-oriented electrical steel sheet with low iron loss can be manufactured.

【0046】請求項5に記載の無方向性電磁鋼板は、モ
ータのコアやトランスの鉄心等、低鉄損が要求される電
気材料として広く使用するのに好適である。
The non-oriented electrical steel sheet according to claim 5 is suitable for being widely used as an electrical material requiring low iron loss, such as a motor core and a transformer core.

【図面の簡単な説明】[Brief description of the drawings]

【図1】S量と仕上焼鈍後の鉄損との関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the amount of S and iron loss after finish annealing.

【図2】仕上前段焼鈍温度(一次仕上焼鈍温度)と鉄損
との関係を示す図である。
FIG. 2 is a diagram showing the relationship between pre-finishing annealing temperature (primary finishing annealing temperature) and iron loss.

【図3】仕上後段焼鈍温度(二次仕上焼鈍温度)と鉄損
との関係を示す図である。
FIG. 3 is a diagram showing a relationship between post-finishing annealing temperature (secondary finishing annealing temperature) and iron loss.

【図4】仕上前段焼鈍時間(一次仕上焼鈍時間)と鉄損
との関係を示す図である。
FIG. 4 is a view showing a relationship between pre-finishing annealing time (primary finishing annealing time) and iron loss.

【図5】仕上後段焼鈍時間(二次仕上焼鈍時間)と鉄損
との関係を示す図である。
FIG. 5 is a diagram showing a relationship between post-finishing annealing time (secondary finishing annealing time) and iron loss.

【図6】Sb量と鉄損との関係を示す図である。FIG. 6 is a graph showing the relationship between the amount of Sb and iron loss.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.005%以下、Si:1.0〜
4.0%、Mn:0.05〜1.0%、P:0.2%以下、N:0.005%
以下(0を含む)、Al:0.1〜1.0%、S:0.001%以下
(0を含む)、Sb+Sn/2=0.001〜0.05%を含有し、残部が
実質的にFeからなるスラブを熱間圧延したのち、冷間圧
延および仕上焼鈍をへて無方向性電磁鋼板を製造する方
法において、第一次の仕上焼鈍を850℃以下の温度で行
い、その後第二次の仕上焼鈍を850℃以上の温度で行う
ことを特徴とする鉄損の低い無方向性電磁鋼板の製造方
法。
C .: 0.005% or less by weight, Si: 1.0 to
4.0%, Mn: 0.05-1.0%, P: 0.2% or less, N: 0.005%
Or less (including 0), Al: 0.1 to 1.0%, S: 0.001% or less
(Including 0), Sb + Sn / 2 = 0.001 to 0.05%, the remainder being substantially rolled after hot rolling a slab substantially made of Fe, then cold rolling and finish annealing In the method for producing a non-oriented electrical steel sheet having a low iron loss, the first finish annealing is performed at a temperature of 850 ° C. or less, and then the second finish annealing is performed at a temperature of 850 ° C. or more. Manufacturing method.
【請求項2】 重量%で、C:0.005%以下、Si:1.0〜
4.0%、Mn:0.05〜1.0%、P:0.2%以下、N:0.005%
以下(0を含む)、Al:0.1〜1.0%、S:0.001%以下
(0を含む)、Sb+Sn/2=0.001〜0.005%を含有し、残部が
実質的にFeからなるスラブを熱間圧延したのち、冷間圧
延および仕上焼鈍をへて無方向性電磁鋼板を製造する方
法において、第一次の仕上焼鈍を850℃以下の温度で行
い、その後第二次の仕上焼鈍を850℃以上の温度で行う
ことを特徴とする鉄損の低い無方向性電磁鋼板の製造方
法。
2. C: 0.005% or less by weight, Si: 1.0 to less.
4.0%, Mn: 0.05-1.0%, P: 0.2% or less, N: 0.005%
Or less (including 0), Al: 0.1 to 1.0%, S: 0.001% or less
(Including 0), Sb + Sn / 2 = 0.001 to 0.005%, the remainder being substantially rolled after hot rolling a slab consisting essentially of Fe, then cold rolling and finish annealing In the method for producing a non-oriented electrical steel sheet having a low iron loss, the first finish annealing is performed at a temperature of 850 ° C. or less, and then the second finish annealing is performed at a temperature of 850 ° C. or more. Manufacturing method.
【請求項3】 重量%で、C:0.005%以下、Si:1.0〜
4.0%、Mn:0.05〜1.0%、P:0.2%以下、N:0.005%
以下(0を含む)、Al:0.1〜1.0%、S:0.001%以下
(0を含む)、Sb+Sn/2=0.001〜0.05%を含有し、残部が
実質的にFeからなるスラブを熱間圧延したのち、冷間圧
延および仕上焼鈍をへて無方向性電磁鋼板を製造する方
法において、第一次の仕上焼鈍を850℃以下の温度にて2
0秒以上行い、その後第二次の仕上焼鈍を850℃以上の温
度にて10秒以上行うことを特徴とする鉄損の低い無方向
性電磁鋼板の製造方法。
3. The composition according to claim 1, wherein C: 0.005% or less, Si: 1.0 to
4.0%, Mn: 0.05-1.0%, P: 0.2% or less, N: 0.005%
Or less (including 0), Al: 0.1 to 1.0%, S: 0.001% or less
(Including 0), Sb + Sn / 2 = 0.001 to 0.05%, the remainder being substantially rolled after hot rolling a slab substantially made of Fe, then cold rolling and finish annealing In the method of manufacturing a first finish annealing at a temperature of 850 ° C. or less 2
A method for producing a non-oriented electrical steel sheet having a low iron loss, wherein the non-oriented electrical steel sheet has a low iron loss for at least 0 second, and then performs a second finish annealing at a temperature of 850 ° C or more for 10 seconds or more.
【請求項4】 重量%で、C:0.005%以下、Si:1.0〜
4.0%、Mn:0.05〜1.0%、P:0.2%以下、N:0.005%
以下(0を含む)、Al:0.1〜1.0%、S:0.001%以下
(0を含む)、Sb+Sn/2=0.001〜0.005%を含有し、残部が
実質的にFeからなるスラブを熱間圧延したのち、冷間圧
延および仕上焼鈍をへて無方向性電磁鋼板を製造する方
法において、第一次の仕上焼鈍を850℃以下の温度にて2
0秒以上行い、その後第二次の仕上焼鈍を850℃以上の温
度にて10秒以上行うことを特徴とする鉄損の低い無方向
性電磁鋼板の製造方法。
4. C: 0.005% or less by weight, Si: 1.0 to
4.0%, Mn: 0.05-1.0%, P: 0.2% or less, N: 0.005%
Or less (including 0), Al: 0.1 to 1.0%, S: 0.001% or less
(Including 0), Sb + Sn / 2 = 0.001 to 0.005%, the remainder being substantially rolled after hot rolling a slab consisting essentially of Fe, then cold rolling and finish annealing In the method of manufacturing a first finish annealing at a temperature of 850 ° C. or less 2
A method for producing a non-oriented electrical steel sheet having a low iron loss, wherein the non-oriented electrical steel sheet has a low iron loss for at least 0 second, and then performs a second finish annealing at a temperature of 850 ° C or more for 10 seconds or more.
【請求項5】 請求項1から請求項4のうち、いずれか
1項に記載の無方向性電磁鋼板の製造方法によって製造
される無方向性電磁鋼板。
5. A non-oriented electrical steel sheet manufactured by the method for manufacturing a non-oriented electrical steel sheet according to any one of claims 1 to 4.
JP10129726A 1998-04-24 1998-04-24 Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss Pending JPH11302741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10129726A JPH11302741A (en) 1998-04-24 1998-04-24 Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10129726A JPH11302741A (en) 1998-04-24 1998-04-24 Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss

Publications (1)

Publication Number Publication Date
JPH11302741A true JPH11302741A (en) 1999-11-02

Family

ID=15016689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10129726A Pending JPH11302741A (en) 1998-04-24 1998-04-24 Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss

Country Status (1)

Country Link
JP (1) JPH11302741A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7876281B2 (en) * 2007-09-28 2011-01-25 Sony Corporation Magnetic material, magnetic sheet, and portable electronic apparatus
JP2014517147A (en) * 2012-03-27 2014-07-17 ホ、ナム−フェ (100) [0vw] non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7876281B2 (en) * 2007-09-28 2011-01-25 Sony Corporation Magnetic material, magnetic sheet, and portable electronic apparatus
JP2014517147A (en) * 2012-03-27 2014-07-17 ホ、ナム−フェ (100) [0vw] non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same
EP2832866A4 (en) * 2012-03-27 2015-11-11 Nam-Hoe Heo (100 [ovw]non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US9953752B2 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
KR20180089500A (en) Non-oriented electric steel sheet and manufacturing method thereof
KR101980940B1 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
KR950009760B1 (en) Method of manufacturing grain oriented silicon steel sheet
JPH11302741A (en) Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP2000328207A (en) Silicon steel sheet excellent in nitriding and internal oxidation resistances
JP3952762B2 (en) Non-oriented electrical steel sheet with excellent iron loss and caulking properties
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
JPH11315327A (en) Manufacture of non-oriented silicon steel sheet with low iron loss, and non-oriented silicon steel sheet with low iron loss
JPH11124626A (en) Production of nonoriented silicon steel sheet reduced in iron loss
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH1112700A (en) Non-oriented electrical sheet having low iron loss
JPH11315326A (en) Manufacture of nonoriented silicon steel sheet with low iron loss, and nonoriented silicon steel sheet with low iron loss
JPH1046245A (en) Manufacture of nonoriented magnetic steel sheet reduced in iron loss after magnetic annealing
JPH11189824A (en) Production of nonoriented silicon steel sheet with low iron loss
JPH1192890A (en) Nonoriented silicon steel sheet low in core loss and its production
JPH11199930A (en) Production of nonoriented silicon steel sheet with low iron loss, and nonoriented silicon steel sheet with low iron loss