JPH10237606A - Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing - Google Patents

Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing

Info

Publication number
JPH10237606A
JPH10237606A JP9057100A JP5710097A JPH10237606A JP H10237606 A JPH10237606 A JP H10237606A JP 9057100 A JP9057100 A JP 9057100A JP 5710097 A JP5710097 A JP 5710097A JP H10237606 A JPH10237606 A JP H10237606A
Authority
JP
Japan
Prior art keywords
iron loss
steel sheet
annealing
magnetic
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9057100A
Other languages
Japanese (ja)
Inventor
Noritaka Takahashi
高橋紀隆
Akira Hiura
昭 日裏
Hideki Matsuoka
松岡秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9057100A priority Critical patent/JPH10237606A/en
Publication of JPH10237606A publication Critical patent/JPH10237606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the precipitation of fine VN, AlN, and MnS and to reduce iron loss after magnetic annealing by adding specific amounts of Zr and regulating the additive quantities of Al and Mn to values in specific ranges, respectively, in a silicon steel sheet containing V and S. SOLUTION: The composition of the nonoriented silicon steel sheet consists of, by weight, <=0.005% C, <=1.0% Si, 0.3-1.5% Mn, <=0.003% Al, <=0.2% P, <=0.015% (including 0%) S, <=0.005% (including 0%) N, 0.001-0.02% V, 0.01-0.05% Zr, and the balance essentially Fe with inevitable impurities. This steel sheet is produced by applying degassing treatment to a molten steel blown in a converter to regulate it into prescribed composition, successively applying casting and hot rolling to the molten steel, subjecting the resultant steel plate to cold rolling once or to cold rolling two or more times while applying process annealing between cold rolling stages to the prescribed sheet thickness, and then carrying out final annealing. By this method, the silicon steel sheet having high magnetic flux density can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性焼鈍後の鉄損
の低い無方向性電磁鋼板に関する。
[0001] The present invention relates to a non-oriented electrical steel sheet having a low iron loss after magnetic annealing.

【0002】[0002]

【従来の技術】無方向性電磁鋼板は、その製造方法によ
りフルプロセス材とセミプロセス材に分けられる。この
うち、フルプロセス材は、鉄鋼メーカー側の仕上焼鈍に
より所定の磁気特性を得るものであり、セミプロセス材
は、需要家において打抜き加工後に歪取り焼鈍を行うこ
とにより、所定の磁気特性を得るものである。セミプロ
セス材においては、歪取り焼鈍時に加工歪みの除去と同
時に結晶粒も成長することから、より一層の鉄損の低減
が可能となる。このため、歪取り焼鈍は「磁性焼鈍」と
も呼ばれている。
2. Description of the Related Art Non-oriented electrical steel sheets are classified into full-process materials and semi-process materials according to their manufacturing methods. Among them, the full process material is to obtain predetermined magnetic characteristics by finish annealing on the steel maker side, and the semi-process material is to obtain predetermined magnetic characteristics by performing strain relief annealing after punching in a customer. Things. In the semi-process material, since the crystal grains grow simultaneously with the removal of the processing strain during the strain relief annealing, the iron loss can be further reduced. For this reason, the strain relief annealing is also called “magnetic annealing”.

【0003】しかし、この磁性焼鈍は通常800 ℃以下の
温度で行われるために、粒成長を阻害する微細な析出物
が鋼中に存在すると低鉄損化を図ることができない。こ
れら析出物の中でも、MnS、AlN等の微細な析出物は粒
成長を阻害し鉄損を大幅に劣化させる。熱間圧延工程中
に析出する微細なMnSの数を低減させるためには、熱間
圧延時に鋼中に溶解するMnS量を少なくする必要があ
る。MnS量を少なくする方法としては、例えば溶製段階
でSを極力少なくする方法等が挙げられる。しかし、こ
の方法では製鋼段階において徹底した脱硫を施す必要が
あるため、大幅なコストアップを招く。
[0003] However, since this magnetic annealing is usually performed at a temperature of 800 ° C or less, low iron loss cannot be achieved if fine precipitates that inhibit grain growth are present in the steel. Among these precipitates, fine precipitates such as MnS and AlN inhibit grain growth and significantly reduce iron loss. In order to reduce the number of fine MnS precipitated during the hot rolling step, it is necessary to reduce the amount of MnS dissolved in the steel during hot rolling. As a method of reducing the amount of MnS, for example, a method of reducing S as much as possible in the smelting stage can be cited. However, this method requires a thorough desulfurization in the steelmaking stage, which leads to a significant cost increase.

【0004】MnS、AlNの他、磁性焼鈍中に微細析出す
るVNも著しく粒成長性を損ない鉄損を悪化させるの
で、鋼板中のV量を低減する必要のあることが明らかと
なっている。このVNを無害化するための方法として、
特開平3−20413号公報には、鋼中のV、N量を
V:0.01%以下、N:0.005 %以下と規定することによ
りVNの析出を防止する技術が提案されている。しか
し、V量を規定するのみでは同特許の明細書に記載され
ているように、0.30%Si鋼の磁性焼鈍後の鉄損W15/50
は4.9 W/kg(程度)であり、十分な低鉄損化が図れな
い。
[0004] In addition to MnS and AlN, VN finely precipitated during magnetic annealing also markedly impairs grain growth and deteriorates iron loss, so that it is clear that it is necessary to reduce the amount of V in the steel sheet. As a method for detoxifying this VN,
JP-A-3-20413 proposes a technique for preventing the precipitation of VN by defining the V and N contents in steel as V: 0.01% or less and N: 0.005% or less. However, only by specifying the V content, as described in the specification of the patent, the iron loss W 15/50 after magnetic annealing of 0.30% Si steel.
Is 4.9 W / kg (approximately), and it is not possible to sufficiently reduce iron loss.

【0005】また、Vは鉱石より混入するため、Vを低
減するためにはVの混入量の低い鉱石を選別する必要が
あり、大幅なコストアップとなる。
[0005] Further, since V is mixed in from the ore, it is necessary to sort out ore with a low amount of V mixed in order to reduce V, resulting in a significant increase in cost.

【0006】このVNの析出を抑制するためには、V、
N量を低減する方法以外に、Alを添加してNをAlNとし
て固定する方法もある。しかし、Alを0.1 %未満の範囲
で微量に添加した場合には、VNの析出は防止されるも
のの、熱間圧延時に析出するAlNが粒成長性を阻害する
ため、磁性焼鈍時の粒成長性は向上しない。一方、Alを
0.1 %以上添加した場合には粒成長性は向上するものの
コストアップとなることは避けられない。
In order to suppress the precipitation of VN, V,
In addition to the method of reducing the amount of N, there is also a method of adding N and fixing N as AlN. However, when a small amount of Al is added in a range of less than 0.1%, although precipitation of VN is prevented, AlN precipitated during hot rolling impairs the grain growth, so that the grain growth during magnetic annealing is suppressed. Does not improve. On the other hand, Al
When added in an amount of 0.1% or more, the grain growth is improved, but the cost is inevitably increased.

【0007】一方、粒成長性向上のためにZrを利用して
無方向性電磁鋼板を製造する方法が種々提案されてい
る。
On the other hand, various methods have been proposed for producing non-oriented electrical steel sheets using Zr to improve grain growth.

【0008】例えば特開昭64−4454号公報には、
Si:3.5 %以下、Al:0.01〜0.10%の鋼において、Zrを
添加することによりAlNの微細析出を抑制し、鉄損を低
下させる技術が開示されている。しかし、Al脱酸におい
てはAl23の生成が鉄損劣化の原因となることが懸念さ
れ、また完全にAlNの析出を抑制するのは困難である。
For example, JP-A-64-4454 discloses that
There is disclosed a technique for suppressing the fine precipitation of AlN and reducing iron loss by adding Zr to steel of 3.5% or less of Si and 0.01 to 0.10% of Al. However, in Al deoxidation, there is a concern that the production of Al 2 O 3 may cause iron loss deterioration, and it is difficult to completely suppress the precipitation of AlN.

【0009】また、特開平3−104844号公報に
は、Si:0.1 〜2.0 %、Al:0.1 %以下の鋼においてZr
を0.05%以下とし、鋼中の酸化物の個数を調整すること
によりMnSの析出を抑制し鉄損を低下させる技術が開示
されている。しかし、MnSを無害化させるためにMnSの
析出核となる鋼中の酸化物の個数を調整するこの技術の
脱酸方法では、ZrはZrO2 として消費されてしまい、そ
の結果、Vが混入した場合、NをZrNとして固定でき
ず、VNの生成は抑制できない。そのため、当該公報の
明細書に記載されているように、0.30%Si鋼の磁性焼鈍
後の鉄損W15/50 は4.7 W/kg程度であり、磁性焼鈍時
に十分な鉄損の低下は図られず、Vの混入量が多い場合
にはさらに特性の劣化することが予想される。
Further, Japanese Patent Application Laid-Open No. 3-104844 discloses that Zr is used for steel having a content of Si: 0.1 to 2.0% and Al: 0.1% or less.
A technique for suppressing precipitation of MnS and reducing iron loss by adjusting the number of oxides in steel to 0.05% or less. However, in the deoxidation method of this technique in which the number of oxides in steel serving as precipitation nuclei of MnS is adjusted to make MnS harmless, Zr is consumed as ZrO 2, and as a result, V is mixed. In this case, N cannot be fixed as ZrN, and generation of VN cannot be suppressed. Therefore, as described in the specification of this publication, the iron loss W 15/50 of 0.30% Si steel after magnetic annealing is about 4.7 W / kg, and a sufficient decrease in iron loss during magnetic annealing is shown in FIG. However, if the amount of V mixed is large, the characteristics are expected to further deteriorate.

【0010】更に、特開平3−264619号公報に
は、直送圧延を前提として、Si:0.1〜1.2 %、Al:0.2
5%以下の鋼において、Zrを添加することによりMnSの
析出を抑制し鉄損を低下させる技術が開示されている。
[0010] Further, Japanese Patent Application Laid-Open No. 3-264619 discloses that, on the premise of direct rolling, Si: 0.1 to 1.2% and Al: 0.2%.
There is disclosed a technique for suppressing the precipitation of MnS and reducing iron loss by adding Zr to steel of 5% or less.

【0011】しかし、この技術の条件では、当該明細書
に記載されているように、Zrの添加に加えて、0.29%Si
−0.025 %Al鋼にBを添加しAlNの析出を抑制した場合
でも、磁性焼鈍後の鉄損W15/50 は5.02W/kgであっ
て、十分な鉄損の低下は図られておらず、微細な析出物
の十分な無害化は達成されていない。
However, under the conditions of this technique, as described in this specification, in addition to the addition of Zr, 0.29% Si
Even if B is added to -0.025% Al steel to suppress the precipitation of AlN, the iron loss W15 / 50 after magnetic annealing is 5.02W / kg, and a sufficient reduction in iron loss has not been achieved. However, sufficient detoxification of fine precipitates has not been achieved.

【0012】以上のように、いずれの従来技術において
も、鋼中に不可避的に含まれるVN、MnS、AlNを充分
に無害化し、安いコストで低い鉄損有する無方向性磁性
鋼板を得ることができない。
As described above, in any of the conventional techniques, it is possible to sufficiently detoxify VN, MnS, and AlN inevitably contained in steel and obtain a non-oriented magnetic steel sheet having low iron loss at low cost. Can not.

【0013】[0013]

【発明が解決しようとする課題】本発明は上記のような
従来技術の持つ問題を解決するためになされたものであ
り、粒成長を損なうVN、MnS、AlNの析出を効果的に
抑制することにより、磁性焼鈍後の鉄損の低い無方向性
電磁鋼板を安価に得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and it is an object of the present invention to effectively suppress precipitation of VN, MnS, and AlN which impair grain growth. Accordingly, it is an object to obtain a non-oriented electrical steel sheet having low iron loss after magnetic annealing at low cost.

【0014】[0014]

【課題を解決するための手段】本発明の骨子は、Zrを添
加し、更にAl、Mnの添加量を調整することにより、微細
なVN、AlN、MnNの析出を抑制し、もって磁性焼鈍後
の鉄損を低下させることである。
The gist of the present invention is to suppress the precipitation of fine VN, AlN, and MnN by adding Zr and further adjusting the addition amount of Al and Mn, and thus, after magnetic annealing. Is to reduce iron loss.

【0015】即ち、前記課題は、重量%で、C:0.005
%以下、Si:1.0 %以下、Mn:0.3〜1.5 %、Al:0.003
%以下、P:0.2 %以下、S:0.015 %以下(0を含
む)、N:0.005 %以下(0を含む)、V:0.001 〜0.
02%、Zr:0.01〜0.05%を含有し、残部が実質的にFe及
び不可避不純物からなることを特徴とする磁性焼鈍後の
鉄損の低い無方向性電磁鋼板により解決される。
[0015] That is, the above-mentioned problem is expressed by:
% Or less, Si: 1.0% or less, Mn: 0.3 to 1.5%, Al: 0.003
%, P: 0.2% or less, S: 0.015% or less (including 0), N: 0.005% or less (including 0), V: 0.001-0.
The problem is solved by a non-oriented electrical steel sheet having a low iron loss after magnetic annealing, characterized by containing 02% and Zr: 0.01 to 0.05%, with the balance substantially consisting of Fe and unavoidable impurities.

【0016】ここにおいて、「残部が実質的にFe及び不
可避不純物からなる」とは、本発明の作用効果を阻害し
ない範囲で他の微量元素をも含みうるという趣旨であ
る。特に、磁気特性を更に向上させるために、Sn、Sb等
を添加したものも、「残部が実質的にFe及び不可避不純
物からなる」という範疇に含まれるものである。
Here, "the balance substantially consists of Fe and unavoidable impurities" means that other trace elements may be contained as long as the effects of the present invention are not impaired. In particular, those to which Sn, Sb, etc. are added in order to further improve the magnetic properties are also included in the category of “the remainder substantially consists of Fe and unavoidable impurities”.

【0017】(発明に至る経緯)本発明者らは上記の目
的実現のために、V、Sを含んだ電磁鋼板において磁性
焼鈍後の鉄損を低減する手法に関し検討した結果、Zrを
添加し、Al、Mnの添加量を調整することにより微細なV
N、AlN、MnSの析出を抑制することが可能となり、磁
性焼鈍後の鉄損が低減するという知見を得た。以下、本
発明を実験結果に基づいて詳細に説明する。
(Circumstances leading to the invention) In order to realize the above object, the present inventors have studied a method of reducing iron loss after magnetic annealing in an electromagnetic steel sheet containing V and S, and as a result, Zr was added. Fine V by adjusting the addition amount of Al, Mn
It has been found that precipitation of N, AlN, and MnS can be suppressed, and iron loss after magnetic annealing is reduced. Hereinafter, the present invention will be described in detail based on experimental results.

【0018】(Zrの限定理由)最初に、ZrによるVNの
析出抑制効果を確認するため、C=0.0030%、Si=0.30
%、Mn=0.80%、P=0.100 %、S=0.0050%、Al=0.
0020%、N=0.0030%、V=0.005 %、Zr=tr. 〜0.08
%とした鋼をラボ溶解、鋳造しスラブを得た。これらス
ラブを熱間圧延後、酸洗し、引き続き板厚0.5mm まで冷
間圧延し、750 ℃×1min の仕上焼鈍を施し、さらに75
0 ℃×2hrの磁性焼鈍を行った。
(Reason for limiting Zr) First, in order to confirm the effect of suppressing the precipitation of VN by Zr, C = 0.030% and Si = 0.30%.
%, Mn = 0.80%, P = 0.100%, S = 0.050%, Al = 0.
0020%, N = 0.030%, V = 0.005%, Zr = tr.
% Was melted in a laboratory and cast to obtain a slab. These slabs are hot-rolled, pickled, cold-rolled to a thickness of 0.5 mm, subjected to finish annealing at 750 ° C. × 1 min,
Magnetic annealing at 0 ° C. × 2 hours was performed.

【0019】図1にこれらサンプルの磁性焼鈍後の鉄損
15/50 を示す。ここで、磁気特性は25cmエプスタイン
試験片を用いて行った。図1より、磁性焼鈍後の鉄損W
15/50 はZr添加量の影響を大きく受けていることが分か
る。tr. Zr鋼では磁性焼鈍後の鉄損W15/50 は5.2 W/
kg と高いが、Zrを0.01%以上添加することにより鉄損
が低減し鉄損W15/50 は4.4W/kg となっている。一
方、Zrが0.05%を超えた場合には鉄損が増大している。
FIG. 1 shows the iron loss W 15/50 of these samples after magnetic annealing. Here, the magnetic properties were measured using a 25 cm Epstein test piece. From FIG. 1, the iron loss W after the magnetic annealing is shown.
It can be seen that 15/50 is greatly affected by the amount of Zr added. In the case of tr. Zr steel, the iron loss W15 / 50 after magnetic annealing is 5.2 W /
kg, but the iron loss is reduced by adding 0.01% or more of Zr, and the iron loss W 15/50 is 4.4 W / kg. On the other hand, when Zr exceeds 0.05%, the iron loss increases.

【0020】これらのサンプルの組織を観察したとこ
ろ、tr. Zr鋼では平均結晶粒径が20μm以下となってい
るのに対し、Zr添加量が0.01%以上のものにおいては結
晶粒が粗大となっていた。また、Zr添加量が0.05%以上
で粒成長性が低下することも明らかとなった。
Observation of the structures of these samples showed that the average crystal grain size of the tr. Zr steel was 20 μm or less, whereas the crystal grains became coarse when the Zr addition amount was 0.01% or more. I was It was also found that when the amount of Zr added was 0.05% or more, the grain growth was reduced.

【0021】このようにZrの添加量によって磁性焼鈍後
の粒成長性が異なった原因は次のように考えられる。
The reason why the grain growth after magnetic annealing differs depending on the amount of Zr added as described above is considered as follows.

【0022】tr. Zr鋼では磁性焼鈍中に微細なVNが析
出し、このVNが粒成長を阻害するが、Zrが0.01%以上
添加されると、ZrはVに比べて窒化物形成能が大きいた
めに、Nが比較的粗大なZrNとして固定されて、磁性焼
鈍中に微細なVNが析出せず粒成長性は向上する。
In tr. Zr steel, fine VN precipitates during magnetic annealing, and this VN inhibits grain growth. However, when Zr is added at 0.01% or more, Zr has a nitride forming ability as compared with V. Since it is large, N is fixed as relatively coarse ZrN, and fine VN does not precipitate during magnetic annealing, so that grain growth is improved.

【0023】しかしながら、Zr添加量が0.01%未満で
は、ZrはZrO2 として消費されてしまうために十分にN
を固定できず、VNの析出を抑制することができなくな
る。また、Zr添加量が0.05%以上では析出物が増加する
ために粒成長性の向上が図られない。
However, if the amount of Zr added is less than 0.01%, Zr will be consumed as ZrO 2 , so
Cannot be fixed, and the precipitation of VN cannot be suppressed. On the other hand, if the amount of Zr added is 0.05% or more, precipitates increase, so that the grain growth cannot be improved.

【0024】以上の結果より、Zrは0.01%以上0.05%以
下とする。
From the above results, Zr is made 0.01% or more and 0.05% or less.

【0025】(Alの限定理由)次に、鉄損に及ぼすAl量
の影響を調査するため、C=0.0025%、Si=0.30%、Mn
=0.80%、P=0.100 %、S=0.0050%、N=0.0030
%、V=0.005 %、Zr=0.030 %とし、Alをtr. 〜0.00
7 %まで変化させた鋼をラボ溶解、鋳造しスラブを得
た。これらスラブを熱延後、酸洗し、引き続きこの熱延
板を板厚0.5mm まで冷間圧延し、750 ℃×1min 間の仕
上焼鈍を施し、さらに750 ℃×2hrの磁性焼鈍を行っ
た。
(Reason for limiting Al) Next, in order to investigate the effect of the amount of Al on iron loss, C = 0.0025%, Si = 0.30%, Mn
= 0.80%, P = 0.100%, S = 0.0050%, N = 0.0030
%, V = 0.005%, Zr = 0.030%, and Al is tr.
A slab was obtained by lab melting and casting steel that had been changed to 7%. These slabs were hot-rolled and then pickled, then the hot-rolled sheets were cold-rolled to a thickness of 0.5 mm, subjected to finish annealing at 750 ° C. × 1 min, and further subjected to magnetic annealing at 750 ° C. × 2 hours.

【0026】図2にこれらサンプルの磁性焼鈍後の鉄損
15/50 を示す。ここで、磁気特性は25cmエプスタイン
試験片を用いて行った。図2より、Al量が0.003 %以下
で鉄損W15/50 が低下し、4.4 W/kg 以下となること
がわかる。これらのサンプルの組織を光学顕微鏡にて観
察したところ、Al量の増加に伴い細粒となっていること
が判明した。このように粒成長性が低下する原因を調査
するため、磁性焼鈍後の鋼板のSEM観察を行った。そ
の結果、Al>0.003 %ではAlNが観察された。このこと
より、Al>0.003 %における粒成長性の低下は、AlNの
析出のためであると考えられる。
FIG. 2 shows the iron loss W 15/50 of these samples after magnetic annealing. Here, the magnetic properties were measured using a 25 cm Epstein test piece. FIG. 2 shows that when the Al content is 0.003% or less, the iron loss W 15/50 decreases to 4.4 W / kg or less. When the structures of these samples were observed with an optical microscope, it was found that the structures became finer as the amount of Al increased. In order to investigate the cause of the decrease in grain growth, SEM observation of the steel sheet after magnetic annealing was performed. As a result, AlN was observed at Al> 0.003%. From this, it is considered that the decrease in grain growth at Al> 0.003% is due to the precipitation of AlN.

【0027】以上の結果より、Alは0.003 %以下とす
る。このように、Zrを添加した鋼であっても、Alの添加
量が増加するとAlNが析出し、VNの析出は抑制されて
も磁性焼鈍後の磁気特性の向上は図れない。つまり、Zr
によりVを無害化するためには、Al添加量のコントロー
ルが極めて重要な要因となる。
From the above results, the content of Al is set to 0.003% or less. As described above, even in the case of steel to which Zr is added, AlN precipitates when the amount of Al added increases, and even if the precipitation of VN is suppressed, the magnetic properties after magnetic annealing cannot be improved. That is, Zr
In order to make V harmless, control of the amount of Al added is a very important factor.

【0028】(その他の成分の限定理由)以下、本発明
におけるその他の成分の限定理由について述べる。
(Reasons for Limiting Other Components) Hereinafter, the reasons for limiting other components in the present invention will be described.

【0029】C: Cは、磁気時効の原因となり磁気特
性を劣化させるために0.005 %以下とする。
C: C is set to 0.005% or less to cause magnetic aging and deteriorate magnetic properties.

【0030】Si: Siは、添加量の増大とともに鉄損を
低減させる元素であるが、1.0 %を超えると磁束密度が
低下するため上限を1.0 %とする。
Si: Si is an element that reduces iron loss with an increase in the amount of addition, but if it exceeds 1.0%, the magnetic flux density decreases, so the upper limit is made 1.0%.

【0031】Mn: Mnは、鋼中SをMnSとして析出させ
ることから、非常に重要な元素である。図3に1200℃で
のMnS溶解度曲線を示す。図3からMn量の低下に伴い熱
延時に再溶解するMnS量は増加することが分かる。この
再溶解したMnSは熱延時に微細析出し、特にMn<0.30%
では微細析出するMnSが多くなり粒成長の向上が困難と
なる。よって、Mnは0.30%を下限とする。また、Mnの上
限は磁束密度の低下の観点から1.5 %とする。
Mn: Mn is a very important element because it precipitates S in steel as MnS. FIG. 3 shows a MnS solubility curve at 1200 ° C. FIG. 3 shows that the amount of MnS re-dissolved during hot rolling increases as the amount of Mn decreases. This re-dissolved MnS precipitates finely during hot rolling, especially Mn <0.30%
In such a case, MnS to be finely precipitated increases, and it is difficult to improve the grain growth. Therefore, the lower limit of Mn is 0.30%. Further, the upper limit of Mn is set to 1.5% from the viewpoint of lowering the magnetic flux density.

【0032】P: Pは、鋼板の打ち抜き性を改善する
ために必要な元素であるが、0.2 %を超えると鋼板が脆
化するため0.2 %以下とする。
P: P is an element necessary for improving the punching property of the steel sheet, but if it exceeds 0.2%, the steel sheet becomes brittle, so that the content of P is set to 0.2% or less.

【0033】S: Sは、Mnと結合しMnSとして微細析
出し、粒成長を阻害するのでできるだけ少ない方が望ま
しい。よって0.015 %を上限とする。
S: S binds to Mn and precipitates finely as MnS, and inhibits grain growth. Therefore, the upper limit is 0.015%.

【0034】N: Nは、含有量が多い場合にはZrNの
析出量が多くなり、粒成長性が低下し鉄損が増大するた
め0.005 %以下とする。
N: If the content of N is large, the precipitation amount of ZrN increases, the grain growth is reduced, and the iron loss increases, so that N is set to 0.005% or less.

【0035】V: 本発明においてはZrによりVNの析
出は防止されるため、0.02%までの混入はかまわない。
しかし、0.02%を超えた場合にはVCとして析出し粒成
長性を阻害するため上限を0.02%とする。
V: In the present invention, the precipitation of VN is prevented by Zr, so that mixing of up to 0.02% is acceptable.
However, if it exceeds 0.02%, it precipitates as VC and inhibits grain growth, so the upper limit is made 0.02%.

【0036】なお、Sb、Snを磁気特性向上のために添加
することはなんら差し支えない。
It should be noted that addition of Sb and Sn for improving the magnetic properties may be performed without any problem.

【0037】(製造方法)本発明に係る無方向性磁性鋼板
は、通常の無方向性電磁鋼板の製造方法により製造可能
である。即ち、転炉で吹錬した溶鋼を脱ガス処理し所定
の成分に調整し、引き続き鋳造、熱間圧延を行う。熱間
圧延後の熱延板焼鈍は行ってもよいが必須ではない。次
いで一回の冷間圧延、もしくは中間焼鈍をはさんだ2回
以上の冷間圧延により所定の板厚とした後に、最終焼鈍
を行う。熱延条件、焼鈍条件については、無方向性電磁
鋼板の製造条件として周知の条件を、適宜選択して使用
できる。
(Manufacturing method) The non-oriented magnetic steel sheet according to the present invention can be manufactured by a normal method for manufacturing a non-oriented magnetic steel sheet. That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, and subsequently casting and hot rolling are performed. Hot-rolled sheet annealing after hot rolling may be performed, but is not essential. Next, final cold-rolling or cold-rolling two or more times with intermediate annealing to obtain a predetermined sheet thickness is performed, followed by final annealing. As for the hot rolling conditions and the annealing conditions, well-known conditions for manufacturing a non-oriented electrical steel sheet can be appropriately selected and used.

【0038】[0038]

【実施例】鋼を転炉で吹錬した後に、脱ガス処理を行う
ことにより、表1に示す所定の成分に調整後鋳造した。
次にこのスラブをスラブ加熱温度1200℃で1hr加熱し、
板厚2.0 mmまで熱間圧延を行った。なお、この際の仕上
げ温度は800 ℃、巻取り温度は675 ℃とした。次にこの
熱延板を酸洗し、その後、板厚0.5 mmまで冷間圧延を行
い、750 ℃×1min の仕上焼鈍を施し、さらに750 ℃×
2hrの磁性焼鈍を行った。磁気特性は25cmエプスタイン
試験片を用いて測定した。各鋼板の磁気特性を表1に併
せて示す。
EXAMPLE After steel was blown in a converter, degassing treatment was performed to adjust the components to the predetermined components shown in Table 1 and then cast.
Next, this slab is heated at a slab heating temperature of 1200 ° C. for 1 hour,
Hot rolling was performed to a thickness of 2.0 mm. In this case, the finishing temperature was 800 ° C. and the winding temperature was 675 ° C. Next, the hot-rolled sheet is pickled, cold-rolled to a sheet thickness of 0.5 mm, subjected to a finish annealing at 750 ° C. × 1 min, and further 750 ° C. ×
Magnetic annealing was performed for 2 hours. Magnetic properties were measured using 25 cm Epstein specimens. Table 1 also shows the magnetic properties of each steel sheet.

【0039】[0039]

【表1】 表1において、No.1〜No.8が本発明の成分を有するもの
である。これらのいずれにおいても、鉄損W15/50 が4.
34W/kg 以下であると共に、1.726 T以上の高い磁束
密度B50が得られている。当然のことではあるが、Siの
レベルが0.4 %のものに比して、Siのレベルが0.7 %の
ものの方が鉄損W15/50 、磁束密度B50とも低くなって
いる。
[Table 1] In Table 1, No. 1 to No. 8 have the components of the present invention. In any of these, the iron loss W 15/50 is 4.
34 W / kg with or less, 1.726 T or more high magnetic flux density B 50 is obtained. Naturally, the iron loss W 15/50 and the magnetic flux density B 50 are lower when the Si level is 0.7% than when the Si level is 0.4%.

【0040】No.9の鋼板は、Cが本発明の範囲を超えて
いるため、鉄損W15/50 が高くなっている。
The steel sheet No. 9 has a high iron loss W 15/50 because C exceeds the range of the present invention.

【0041】No.10 の鋼板は、Siの範囲が本発明の範囲
を超えているため、鉄損W15/50 が低いものの、磁束密
度B50 も低くなっている。
In the steel sheet No. 10, since the range of Si exceeds the range of the present invention, the iron loss W 15/50 is low, but the magnetic flux density B 50 is also low.

【0042】No.11 の鋼板は、Mnの範囲が本発明の範囲
を下回っているので、鉄損W15/50が高くなっている。
これに対し、No.12 の鋼板は、Mnの範囲が本発明の範囲
を上回っているので、磁束密度B50 が低くなってい
る。
In the steel sheet No. 11, since the range of Mn is lower than the range of the present invention, the iron loss W 15/50 is high.
In contrast, steel No.12, because the range of Mn is higher than the scope of the present invention, the magnetic flux density B 50 is low.

【0043】No.13 の鋼板は、Sの範囲が本発明の範囲
を上回っているので、鉄損W15/50が高くなっている。
The steel sheet No. 13 has a high iron loss W 15/50 because the range of S exceeds the range of the present invention.

【0044】No.14 の鋼板は、Alの範囲が本発明の範囲
を上回っているので、鉄損W15/50が高くなっている。
The steel sheet No. 14 has a high iron loss W 15/50 because the range of Al exceeds the range of the present invention.

【0045】No.15 の鋼板、No.16 の鋼板は、それぞ
れ、Zrの範囲が本発明の範囲を下回ったり上回ったりし
ているため、ともに鉄損W15/50 が高くなっている。
The No. 15 steel plate and the No. 16 steel plate each have a high iron loss W 15/50 because the range of Zr is below or above the range of the present invention.

【0046】No.17 の鋼板は、Vの範囲が本発明の範囲
を上回っているため、鉄損W15/50が高くなっている。
The steel sheet No. 17 has a high iron loss W 15/50 because the range of V is larger than the range of the present invention.

【0047】これらの実施例から、鋼板成分を本発明範
囲内に制御した場合に、磁性焼鈍後の鉄損が低く、かつ
磁束密度の高い無方向性電磁鋼板が得られることがわか
る。
From these examples, it can be seen that when the steel sheet components are controlled within the range of the present invention, a non-oriented electrical steel sheet having a low iron loss after magnetic annealing and a high magnetic flux density can be obtained.

【0048】[0048]

【発明の効果】 以上述べたように、本発明によれば磁
性焼鈍後の鉄損の低い鋼板を得ることができる。本発明
による無方向性電磁鋼板は、低い鉄損が要求される電気
材料として使用するのに好適である。
As described above, according to the present invention, a steel sheet having low iron loss after magnetic annealing can be obtained. The non-oriented electrical steel sheet according to the present invention is suitable for use as an electrical material requiring low iron loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Zr量と磁性焼鈍後の鉄損との関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the amount of Zr and iron loss after magnetic annealing.

【図2】Al量と磁性焼鈍後の鉄損との関係を示す図であ
る。
FIG. 2 is a graph showing the relationship between the amount of Al and iron loss after magnetic annealing.

【図3】MnSの溶解度曲線を示す図である。FIG. 3 is a diagram showing a solubility curve of MnS.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.005 %以下、Si:1.0
%以下、Mn:0.3 〜1.5 %、Al:0.003 %以下、P:0.
2 %以下、S:0.015 %以下(0を含む)、N:0.005
%以下(0を含む)、V:0.001 〜0.02%、Zr:0.01〜
0.05%を含有し、残部が実質的にFe及び不可避不純物か
らなることを特徴とする磁性焼鈍後の鉄損の低い無方向
性電磁鋼板。
(1) C: 0.005% or less, Si: 1.0% by weight
%, Mn: 0.3 to 1.5%, Al: 0.003% or less, P: 0.
2% or less, S: 0.015% or less (including 0), N: 0.005
% Or less (including 0), V: 0.001 to 0.02%, Zr: 0.01 to
Non-oriented electrical steel sheet with low iron loss after magnetic annealing, characterized by containing 0.05% and the balance substantially consisting of Fe and unavoidable impurities.
JP9057100A 1997-02-26 1997-02-26 Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing Pending JPH10237606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9057100A JPH10237606A (en) 1997-02-26 1997-02-26 Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9057100A JPH10237606A (en) 1997-02-26 1997-02-26 Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing

Publications (1)

Publication Number Publication Date
JPH10237606A true JPH10237606A (en) 1998-09-08

Family

ID=13046095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9057100A Pending JPH10237606A (en) 1997-02-26 1997-02-26 Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing

Country Status (1)

Country Link
JP (1) JPH10237606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007423A1 (en) * 2005-07-07 2007-01-18 Sumitomo Metal Industries, Ltd. Non-oriented electromagnetic steel sheet and process for producing the same
EP2975152A4 (en) * 2013-03-13 2016-04-06 Jfe Steel Corp Non-directional electromagnetic steel plate with excellent magnetic characteristics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007423A1 (en) * 2005-07-07 2007-01-18 Sumitomo Metal Industries, Ltd. Non-oriented electromagnetic steel sheet and process for producing the same
US7922834B2 (en) * 2005-07-07 2011-04-12 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
US8157928B2 (en) 2005-07-07 2012-04-17 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
EP2975152A4 (en) * 2013-03-13 2016-04-06 Jfe Steel Corp Non-directional electromagnetic steel plate with excellent magnetic characteristics
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties

Similar Documents

Publication Publication Date Title
JP4207231B2 (en) Method for producing non-oriented electrical steel sheet
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JPH10237606A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
US4338143A (en) Non-oriented silicon steel sheet with stable magnetic properties
JP4240921B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JPH1046245A (en) Manufacture of nonoriented magnetic steel sheet reduced in iron loss after magnetic annealing
JPH1088297A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JP3766745B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP2002356752A (en) Nonoriented silicon steel sheet having excellent core loss and magnetic flux density, and production method therefor
JP2718403B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP2720871B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP3295008B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP4283533B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH1046296A (en) Nonriented magnetic steel sheet with low iron loss after magnetic annealing
JPH11315327A (en) Manufacture of non-oriented silicon steel sheet with low iron loss, and non-oriented silicon steel sheet with low iron loss
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
JPH10330893A (en) Nonoriented silicon steel sheet low in core loss after low temperature-short time magnetic annealing
JPH1112700A (en) Non-oriented electrical sheet having low iron loss
JPH11189824A (en) Production of nonoriented silicon steel sheet with low iron loss
JPH11302741A (en) Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss