JP4240921B2 - Non-oriented electrical steel sheet with low iron loss after magnetic annealing - Google Patents

Non-oriented electrical steel sheet with low iron loss after magnetic annealing Download PDF

Info

Publication number
JP4240921B2
JP4240921B2 JP2002183990A JP2002183990A JP4240921B2 JP 4240921 B2 JP4240921 B2 JP 4240921B2 JP 2002183990 A JP2002183990 A JP 2002183990A JP 2002183990 A JP2002183990 A JP 2002183990A JP 4240921 B2 JP4240921 B2 JP 4240921B2
Authority
JP
Japan
Prior art keywords
mns
iron loss
steel sheet
annealing
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002183990A
Other languages
Japanese (ja)
Other versions
JP2004027278A (en
Inventor
善彦 尾田
玲子 杉原
伸夫 山上
紀隆 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002183990A priority Critical patent/JP4240921B2/en
Publication of JP2004027278A publication Critical patent/JP2004027278A/en
Application granted granted Critical
Publication of JP4240921B2 publication Critical patent/JP4240921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は磁性焼鈍後の鉄損の低い無方向性電磁鋼板に関する。
【0002】
【従来の技術】
無方向性電磁鋼板はその製造方法によりフルプロセス材とセミプロセス材に分けられる。このうち、フルプロセス材は鉄鋼メーカー側の仕上焼鈍により所定の磁気特性を得るものであり、一方、セミプロセス材は、需要家において打抜き加工後に歪取り焼鈍を行うことにより、所定の磁気特性を得るものである。
【0003】
セミプロセス材においては、歪取り焼鈍時に、加工歪みの除去と同時に結晶粒も成長することから、より一層の鉄損の低減が可能となる。このため歪取り焼鈍は「磁性焼鈍」とも呼ばれている。
【0004】
この磁性焼鈍時の粒成長性を良好にするためには、鋼板中の介在物、析出物量を低減することが効果的である。特に、不純物として混入するVはSRA時にVNとして析出し、粒成長性を阻害するため、VNの無害化方法が各種提案されている。
【0005】
例えば、特開平10−18006号公報には、Alを0.1〜1.0%添加することによりNをAlNとして固定し、VNを無害化する技術が開示されている。
【0006】
しかし、最近、モータリサイクルの観点から、モータコアを溶解し、鋳物としてモータ枠等に使用される場合があり、Alを添加した電磁鋼板をスクラップとして鋳物用にリサイクル使用する場合には、鋳込み時に溶鋼の粘性が増大して引け巣が生じるためリサイクルすることが難しく、実質的にAlはフリーとする必要が生じている。
【0007】
Alフリー鋼において鉄損を低減する手法として、特許第2718410号公報にはSi:1.0%以下、Al:0.004%以下とし鋼中VとNの関係をlog(V×N)< −5.44 とすることにより鉄損の低減を図った電磁鋼板が開示されている。
【0008】
【発明が解決しようとする課題】
しかしながら、安定してVを低減するためには、高価な低V鉱を使用するか、製鋼段階での長時間精錬を行う必要があり、コスト増大となることは避けられず、現実的ではない。
【0009】
本発明はこのような事情に鑑みてなされたものであり、Alフリー系の電磁鋼板において磁性焼鈍後の鉄損の低い無方向性電磁鋼板を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、Alフリ−系電磁鋼板において、磁性焼鈍後の鉄損の低い無方向性電磁鋼板について、鋭意検討を行った結果、下記の知見を得た。すなわち、本発明者らがV混入材の磁性焼鈍時の粒成長向上について検討したところ、MnSを核としてVNを凝集させることにより、粒成長性が著しく向上し、低鉄損化が可能となる。
【0011】
本発明は上記知見に基づきなされたものであり、以下のような構成を有する。
【0012】
mass%で、C:0.005%以下、Si:1.5%以下、Al:0.004%以下、P:0.2%以下、Mn:0.1〜1%、S:0.001〜0.02%、V:0.001〜0.01%、N:0.005%以下を含み、残部Fe及び不可避的不純物からなり、VNとMnSが以下の関係を満たすことを特徴とする無方向性電磁鋼板。
【0013】
MnSとVNの複合析出物数/(MnS+VN+MnSとVNの複合析出物数)≧0.2
なお、本明細書において、鋼の成分を示す%はすべてmass%である。
【0014】
【発明の実施の形態】
まず、本発明を実験結果に基づいて詳細に説明する。
【0015】
鉄損に及ぼすV、Nの影響を調査するため、C:0.0030%、Si:0.30%、Mn:0.30%、P:0.100%、Al:tr、S:0.002%、N:0.0025%とし、V:tr.とV:0.004%の2鋼種を実験室にて溶解し、熱延後、酸洗を行った。引き続きこの熱延板を板厚0.5mmまで冷間圧延し、720℃×1min間の仕上焼鈍を施し、さらに750℃×2hrの磁性焼鈍を行った。表1にこのようにして得られたサンプルの鉄損値を示す。ここで、磁気特性の測定は25cmエプスタイン試験片を用いて行った。
【0016】
【表1】

Figure 0004240921
【0017】
表1より、V:0.004%材ではV:tr.に比べ鉄損が著しく高いことがわかる。この原因を調査するため、TEMにてSRA後のサンプルの組織観察を行った。TEMの観察結果、V:0.004%材においては80nm程度の非常に微細なVNが粒界に多数認められ、このVNが粒成長性を阻害しているものと判明した。
【0018】
以上のTEM観察結果から、鉄損を低減するためには、Vを低減することが単純かつ効果的な手法と考えられる。Vを安定して低減するためには、V混入量の少ない低V鉱を使用するか、製鋼段階でVを低減する必要がある。しかし、低V鉱のみを使用することは鉄鉱石の弾力運用ができないばかりでなく大幅なコストアップに繋がる。また、製鋼段階でVを低減するためには、スラグボリュームを増やすことによりVを溶鋼からスラグ中に移動させる必要があり、スラグ量の増大に繋がることとなる。
【0019】
そこで、V混入を前提とした粒成長性向上手法について検討を行った。C:0.0025%、Si:0.5%、Mn:0.50%、P:0.100%、Al:tr、S:0.003%、N:0.0020%、V:0.004%とした鋼を溶解し、熱延後、酸洗した。引き続き、熱延板焼鈍をまず800℃×3hrの条件で、次いで、720℃×0.1〜6hrと変化させて行うことにより析出物形態を変化させ、次いで、板厚0.5mmまで冷間圧延を行った。次いで、720℃×1min間の仕上焼鈍を施し、さらに、750℃×2hrの磁性焼鈍を施した。
【0020】
このようにして得られたサンプルの析出物形態を調査するため、板厚中央部から薄膜を採取し、析出物のサイズに応じ倍率1000〜10000倍にてTEM観察を行った。観察視野は0.05mm2 とした。その結果、上記成分系において観察される析出物はVN、MnSであり、熱延板焼鈍条件の違いにより、析出物のサイズ、凝集状態が異なっていることが観察された。そこでMnS、VNが複合析出し粗大化している個数と、MnS、VNがそれぞれ個別に存在している個数で整理を行った。
【0021】
図1は、このようにして得られたサンプルの鉄損W15/50と析出物との関係を示したものである。
【0022】
図1より、MnSとVNの複合析出物の個数が、MnS、VNの個別に存在している個数を含む全析出物数の20%以上となった場合に鉄損が低下していることがわかる。
【0023】
この複合析出により粒成長性が向上するメカニズムは以下のように考えられる。
【0024】
熱延の巻取時に微細に単独析出したVNは、仕上焼鈍時に再固溶するが、SRA時に再度VNとして結晶粒界に優先析出し、粒界を強固にピンニングすることにより粒成長性を低下させる。これに対し、熱延板焼鈍条件の適正化により、MnSを核として複合析出したVNは、熱力学的に安定なため短時間仕上焼鈍時にはほとんど固溶しない。このため、SRA時に単独析出する微細なVN量が少なくなり粒成長性が向上したものと考えられる。
【0025】
以上のことから、SRA時の粒成長性を向上させるためにはVNをMnSに複合析出させることが効果的であり、図1より複合析出物個数が全析出物数の20%以上となった場合に鉄損が低下することから、本発明では、(MnSとVNの複合析出物数)/(MnS+VN+MnSとVNの複合析出物数)≧0.2とする。
【0026】
次に、その他の成分の限定理由について説明する。
【0027】
Siは鋼板の固有抵抗を上げるために有効な元素であるが、1.5%を超えると飽和磁束密度の低下に伴い磁束密度が低下するため上限を1.5%以下とした。
【0028】
Alは、微量に添加した場合には微細なAlNを形成し、磁気特性を阻害するため、0.004%以下とした。
【0029】
Cは磁気時効の問題があるため0.005%以下とした。
【0030】
Mnは熱間圧延時の赤熱脆性を防止するために、0.1%以上必要であるが、1%を超えると磁束密度を低下させるので0.1〜1%とした。
【0031】
Sは一般にはMnSを形成し粒成長性を阻害するため、極力低減することが求められている。しかし、本発明ではVNの析出核として重要な役割を果たす元素であり、下限を0.001%とする。Sが0.02%超えとなった場合にはMnSの析出量が多くなり、粒成長性が低下するため上限を0.02%とする。
【0032】
Vは0.01%超となると、窒化物以外のたとえば炭化物等を形成し粒成長性を阻害するため0.01%以下が好ましい。また、Vを0.001%以下とすることは著しいコストアップとなるため下限を0.001%とする。
【0033】
Pは鋼板の打ち抜き性を改善するために必要な元素であるが、0.2%を超えて添加すると鋼板が脆化するため0.2%以下とした。
【0034】
なお、Sb、Sn、B、Zrを磁気特性向上のために添加することは何ら差しつかえない。
【0035】
次に、本発明の無方向性電磁鋼板の製造方法について説明する。
【0036】
本発明においては、鋼板中のMnSとVNの析出形態が所定の範囲内となっていればよく、例えば、750〜850℃程度で3〜10時間程度の長時間熱延板焼鈍を行うことによりMnSのオストワルド成長を図り、引き続きVNの析出域となる700〜750℃程度で3〜10時間程度の熱延板焼鈍を行うことによりMnS−VN複合析出物を形成させることができる。上記は一例であって、本発明の無方向性電磁鋼板の製造方法はこの方法に限定されるものではない。鋼板中のMnSとVNの析出形態をはじめ、他の成分についても本発明範囲を満たしていればよく、製造方法については通常の方法でかまわない。すなわち転炉で吹練した溶鋼を脱ガス処理し所定の成分に調整し、引き続き鋳造、熱間圧延を行う。熱間圧延後、熱延板焼鈍を施し、次いで一回の冷間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間圧延により所定の板厚とした後に、最終焼鈍を行う。
【0037】
【実施例】
表2に示す鋼を用い、転炉で吹練した後に脱ガス処理を行うことにより所定の成分に調整後鋳造し、板厚2.0mmまで熱間圧延を行った。次にこの熱延板を酸洗し、MnSとVNの析出物形態を制御するため表2に示す種々の条件で熱延板焼鈍を行った。その後、板厚0.5mmまで冷間圧延を行い、表2に示す仕上焼鈍条件で焼鈍を行い、さらに750℃×2hrの磁性焼鈍を行った。
【0038】
これら鋼板サンプルについて、磁気特性を評価した。磁気特性は25cmエプスタイン試験片を用いて行った。各鋼板の磁気特性を表2に併せて示す。
【0039】
【表2】
Figure 0004240921
【0040】
表2より、MnSとVNの析出物形態を本発明の範囲に制御した本発明鋼では、磁性焼鈍後の鉄損の非常に低い鋼板が得られることがわかる。
【0041】
一方、成分もしくはMnSとVNの析出物形態が本発明範囲外である比較例では、磁性焼鈍後の鉄損の値が非常に高いか、鉄損の値は低いが磁束密度の低下という別の問題を生じていることがわかる。
【0042】
【発明の効果】
以上述べたように、本発明によれば、Alフリ−系の電磁鋼板において、磁性焼鈍後の鉄損の低い鋼板を得ることができる。また、本発明はV混入を前提としているため、高価な低V鉱を使用したり製綱段階での長時間製錬を行ったりする必要はなく、経済的である。
【図面の簡単な説明】
【図1】MnS−VN複合析出物比率と鉄損との関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-oriented electrical steel sheet with low iron loss after magnetic annealing.
[0002]
[Prior art]
Non-oriented electrical steel sheets are classified into full-process materials and semi-process materials depending on the manufacturing method. Of these, full-process materials obtain predetermined magnetic properties by finish annealing on the steel manufacturer's side, while semi-process materials obtain predetermined magnetic properties by performing strain relief annealing after punching at the customer. To get.
[0003]
In the semi-process material, at the time of strain relief annealing, crystal grains grow at the same time as the removal of the processing strain, so that the iron loss can be further reduced. For this reason, strain relief annealing is also called “magnetic annealing”.
[0004]
In order to improve the grain growth during magnetic annealing, it is effective to reduce the amount of inclusions and precipitates in the steel sheet. In particular, since V mixed as an impurity precipitates as VN during SRA and inhibits grain growth, various methods for detoxifying VN have been proposed.
[0005]
For example, Japanese Patent Laid-Open No. 10-18006 discloses a technique for fixing N as AlN by adding 0.1 to 1.0% of Al and detoxifying VN.
[0006]
However, recently, from the viewpoint of motor recycling, there are cases where the motor core is melted and used as a casting in a motor frame or the like. When electromagnetic steel sheets to which Al is added are recycled for casting as scrap, Since the viscosity of the resin increases and shrinkage cavities occur, it is difficult to recycle, and it is necessary to make Al substantially free.
[0007]
As a technique for reducing iron loss in Al-free steel, Japanese Patent No. 2718410 discloses Si: 1.0% or less, Al: 0.004% or less, and the relationship between V and N in the steel is log (V × N) < An electromagnetic steel sheet is disclosed in which the iron loss is reduced by setting −5.44.
[0008]
[Problems to be solved by the invention]
However, in order to stably reduce V, it is necessary to use expensive low-V ore or to perform refining for a long time in the steelmaking stage, and it is inevitable that the cost increases. .
[0009]
The present invention has been made in view of such circumstances, and an object thereof is to provide a non-oriented electrical steel sheet having low iron loss after magnetic annealing in an Al-free electrical steel sheet.
[0010]
[Means for Solving the Problems]
As a result of intensive studies on non-oriented electrical steel sheets with low iron loss after magnetic annealing in Al-free electrical steel sheets, the present inventors have obtained the following knowledge. That is, when the present inventors examined the improvement of grain growth during magnetic annealing of the V-mixed material, by aggregating VN with MnS as a nucleus, grain growth is remarkably improved, and low iron loss can be achieved. .
[0011]
This invention is made | formed based on the said knowledge, and has the following structures.
[0012]
In mass%, C: 0.005% or less, Si: 1.5% or less, Al: 0.004% or less, P: 0.2% or less, Mn: 0.1 to 1%, S: 0.001 -0.02%, V: 0.001-0.01%, N: 0.005% or less, comprising the balance Fe and inevitable impurities , VN and MnS satisfy the following relationship Non- oriented electrical steel sheet.
[0013]
Number of composite precipitates of MnS and VN / (Number of composite precipitates of MnS + VN + MnS and VN) ≧ 0.2
In addition, in this specification, all% which shows the component of steel is mass%.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
First, the present invention will be described in detail based on experimental results.
[0015]
In order to investigate the effects of V and N on iron loss, C: 0.0030%, Si: 0.30%, Mn: 0.30%, P: 0.100%, Al: tr, S: 0.00. 002%, N: 0.0025%, V: tr. And V: 0.004% of two steel types were dissolved in a laboratory, and after hot rolling, pickling was performed. Subsequently, this hot-rolled sheet was cold-rolled to a thickness of 0.5 mm, subjected to finish annealing for 720 ° C. × 1 min, and further subjected to magnetic annealing at 750 ° C. × 2 hr. Table 1 shows the iron loss values of the samples thus obtained. Here, the measurement of magnetic characteristics was performed using a 25 cm Epstein test piece.
[0016]
[Table 1]
Figure 0004240921
[0017]
From Table 1, V: tr. It can be seen that the iron loss is significantly higher than In order to investigate this cause, the structure of the sample after SRA was observed by TEM. As a result of TEM observation, in the V: 0.004% material, a very large number of very fine VNs of about 80 nm were observed at the grain boundaries, and it was found that these VNs hindered grain growth.
[0018]
From the above TEM observation results, it is considered that reducing V is a simple and effective technique for reducing iron loss. In order to stably reduce V, it is necessary to use low V ore with a small amount of V mixing or to reduce V in the steelmaking stage. However, using only low V ore not only does not allow the elastic operation of iron ore, but also leads to a significant cost increase. In addition, in order to reduce V in the steelmaking stage, it is necessary to move V from molten steel into the slag by increasing the slag volume, leading to an increase in the amount of slag.
[0019]
Therefore, a method for improving grain growth on the premise of V mixing was examined. C: 0.0025%, Si: 0.5%, Mn: 0.50%, P: 0.100%, Al: tr, S: 0.003%, N: 0.0020%, V: 0.00. 004% steel was melted, hot rolled, and pickled. Subsequently, the hot-rolled sheet annealing was first performed under conditions of 800 ° C. × 3 hr, and then changed to 720 ° C. × 0.1-6 hr to change the precipitate form, and then cold-rolled to a thickness of 0.5 mm. Rolled. Next, finish annealing was performed for 720 ° C. × 1 min, and magnetic annealing was further performed at 750 ° C. × 2 hr.
[0020]
In order to investigate the precipitate form of the sample thus obtained, a thin film was collected from the central part of the plate thickness, and TEM observation was performed at a magnification of 1000 to 10,000 times according to the size of the precipitate. The observation visual field was 0.05 mm 2 . As a result, it was observed that the precipitates observed in the above component system were VN and MnS, and the size and agglomeration state of the precipitates were different due to the difference in the hot-rolled sheet annealing conditions. Therefore, the number of MnS and VN compositely precipitated and coarsened, and the number of MnS and VN existing individually were arranged.
[0021]
FIG. 1 shows the relationship between the iron loss W15 / 50 of the sample thus obtained and the precipitate.
[0022]
From FIG. 1, it can be seen that iron loss is reduced when the number of composite precipitates of MnS and VN is 20% or more of the total number of precipitates including the number of MnS and VN existing individually. Recognize.
[0023]
The mechanism by which the grain growth property is improved by this composite precipitation is considered as follows.
[0024]
VN, which is finely precipitated during hot rolling, re-dissolves during finish annealing, but preferentially precipitates again at the grain boundaries as VN during SRA, reducing the grain growth by pinning the grain boundaries firmly. Let On the other hand, VN that has been complex-precipitated with MnS as the nucleus by optimizing the hot-rolled sheet annealing conditions is thermodynamically stable and hardly dissolves during short-time finish annealing. For this reason, it is considered that the amount of fine VN that precipitates alone during SRA is reduced and the grain growth property is improved.
[0025]
From the above, in order to improve the grain growth at the time of SRA, it is effective to complex precipitate VN into MnS. From FIG. 1, the number of complex precipitates is 20% or more of the total number of precipitates. In this case, since the iron loss is reduced, in the present invention, (number of composite precipitates of MnS and VN) / (number of composite precipitates of MnS + VN + MnS and VN) ≧ 0.2.
[0026]
Next, the reasons for limiting other components will be described.
[0027]
Si is an effective element for increasing the specific resistance of the steel sheet. However, if it exceeds 1.5%, the magnetic flux density decreases with a decrease in saturation magnetic flux density, so the upper limit was made 1.5% or less.
[0028]
When Al is added in a small amount, fine AlN is formed and the magnetic properties are hindered, so the content is made 0.004% or less.
[0029]
C has a problem of magnetic aging, so it is made 0.005% or less.
[0030]
Mn is required to be 0.1% or more in order to prevent red hot brittleness during hot rolling, but if it exceeds 1%, the magnetic flux density is lowered, so it was made 0.1 to 1%.
[0031]
In general, S is required to be reduced as much as possible because it forms MnS and inhibits grain growth. However, in the present invention, it is an element that plays an important role as a precipitation nucleus of VN, and the lower limit is made 0.001%. When S exceeds 0.02%, the precipitation amount of MnS increases and the grain growth property decreases, so the upper limit is made 0.02%.
[0032]
When V exceeds 0.01%, for example, carbide other than nitride is formed and the grain growth is inhibited, so 0.01% or less is preferable. Further, if V is made 0.001% or less, the cost will increase significantly, so the lower limit is made 0.001%.
[0033]
P is an element necessary for improving the punchability of the steel sheet, but if added over 0.2%, the steel sheet becomes brittle, so it was made 0.2% or less.
[0034]
It should be noted that Sb, Sn, B, and Zr can be added to improve the magnetic characteristics.
[0035]
Next, the manufacturing method of the non-oriented electrical steel sheet of this invention is demonstrated.
[0036]
In the present invention, the precipitation form of MnS and VN in the steel sheet only needs to be within a predetermined range. For example, by performing long-time hot-rolled sheet annealing at about 750 to 850 ° C. for about 3 to 10 hours. MnS-VN composite precipitates can be formed by performing Ostwald growth of MnS and subsequently performing hot-rolled sheet annealing for about 3 to 10 hours at about 700 to 750 ° C., which is a VN precipitation region. The above is an example, and the method for producing the non-oriented electrical steel sheet of the present invention is not limited to this method. It is sufficient that other components including the precipitation form of MnS and VN in the steel sheet satisfy the scope of the present invention, and the production method may be a normal method. That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, followed by casting and hot rolling. After hot rolling, hot-rolled sheet annealing is performed, and then the final annealing is performed after the cold rolling is performed once or a predetermined sheet thickness is obtained by two or more cold rolling sandwiching the intermediate annealing.
[0037]
【Example】
The steel shown in Table 2 was blown in a converter and then degassed and then cast into a predetermined component, which was then cast and hot rolled to a thickness of 2.0 mm. Next, this hot-rolled sheet was pickled and subjected to hot-rolled sheet annealing under various conditions shown in Table 2 in order to control the form of precipitates of MnS and VN. Then, it cold-rolled to plate | board thickness 0.5mm, annealed on the finishing annealing conditions shown in Table 2, and also magnetic annealing of 750 degreeC x 2 hr was performed.
[0038]
These steel plate samples were evaluated for magnetic properties. Magnetic properties were obtained using 25 cm Epstein specimens. The magnetic properties of each steel sheet are also shown in Table 2.
[0039]
[Table 2]
Figure 0004240921
[0040]
From Table 2, it can be seen that in the steel of the present invention in which the precipitate form of MnS and VN is controlled within the range of the present invention, a steel sheet having a very low iron loss after magnetic annealing can be obtained.
[0041]
On the other hand, in the comparative example in which the precipitates of the components or MnS and VN are outside the scope of the present invention, the iron loss value after magnetic annealing is very high, or the iron loss value is low but the magnetic flux density is reduced. You can see that there is a problem.
[0042]
【The invention's effect】
As described above, according to the present invention, a steel sheet having low iron loss after magnetic annealing can be obtained in an Al-free electromagnetic steel sheet. In addition, since the present invention is premised on the inclusion of V, it is not necessary to use expensive low-V ore or to perform smelting for a long time at the steelmaking stage, which is economical.
[Brief description of the drawings]
FIG. 1 is a view showing a relationship between a MnS-VN composite precipitate ratio and iron loss.

Claims (1)

mass%で、C:0.005%以下、Si:1.5%以下、Al:0.004%以下、P:0.2%以下、Mn:0.1〜1%、S:0.001〜0.02%、V:0.001〜0.01%、N:0.005%以下を含み、残部Fe及び不可避的不純物からなり、VNとMnSが以下の関係を満たすことを特徴とする無方向性電磁鋼板。
MnSとVNの複合析出物数/(MnS+VN+MnSとVNの複合析出物数)≧0.2
In mass%, C: 0.005% or less, Si: 1.5% or less, Al: 0.004% or less, P: 0.2% or less, Mn: 0.1 to 1%, S: 0.001 -0.02%, V: 0.001-0.01%, N: 0.005% or less, comprising the balance Fe and inevitable impurities , VN and MnS satisfy the following relationship Non- oriented electrical steel sheet.
Number of composite precipitates of MnS and VN / (Number of composite precipitates of MnS + VN + MnS and VN) ≧ 0.2
JP2002183990A 2002-06-25 2002-06-25 Non-oriented electrical steel sheet with low iron loss after magnetic annealing Expired - Fee Related JP4240921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002183990A JP4240921B2 (en) 2002-06-25 2002-06-25 Non-oriented electrical steel sheet with low iron loss after magnetic annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002183990A JP4240921B2 (en) 2002-06-25 2002-06-25 Non-oriented electrical steel sheet with low iron loss after magnetic annealing

Publications (2)

Publication Number Publication Date
JP2004027278A JP2004027278A (en) 2004-01-29
JP4240921B2 true JP4240921B2 (en) 2009-03-18

Family

ID=31180004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002183990A Expired - Fee Related JP4240921B2 (en) 2002-06-25 2002-06-25 Non-oriented electrical steel sheet with low iron loss after magnetic annealing

Country Status (1)

Country Link
JP (1) JP4240921B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973627B1 (en) 2005-07-07 2010-08-02 수미도모 메탈 인더스트리즈, 리미티드 Non-oriented electromagnetic steel sheet and process for producing the same
CN101258730B (en) 2005-09-30 2012-12-26 三菱电机研究实验室 Training signal for choosing aerial and wave beam in MIMO wireless LAN
JP5573147B2 (en) * 2009-12-22 2014-08-20 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
JP2015131993A (en) * 2014-01-14 2015-07-23 Jfeスチール株式会社 Non-oriented silicon steel sheet having excellent magnetic property

Also Published As

Publication number Publication date
JP2004027278A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP7462737B2 (en) 600MPa-class non-oriented electrical steel sheet and its manufacturing method
JP5200376B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3305806B2 (en) Manufacturing method of high tensile non-oriented electrical steel sheet
EP3719160A1 (en) Non-oriented electrical steel sheet with excellent magnetism and manufacturing method therefor
JP4207231B2 (en) Method for producing non-oriented electrical steel sheet
JP4240921B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP2004332042A (en) Method for producing non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction and perpendicular direction on sheet surface
JP5009514B2 (en) Non-oriented electrical steel sheet
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JP4987190B2 (en) Method for producing non-oriented electrical steel sheet with good workability and low iron loss after processing and strain relief annealing
JP2021080501A (en) Non-oriented magnetic steel sheet
JP3956596B2 (en) Non-oriented electrical steel sheet
JP3887833B2 (en) Electrical steel sheet
JP3952762B2 (en) Non-oriented electrical steel sheet with excellent iron loss and caulking properties
JP3352599B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP3766745B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP2720871B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JPH1046245A (en) Manufacture of nonoriented magnetic steel sheet reduced in iron loss after magnetic annealing
JPH1088297A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH10237606A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JP4259011B2 (en) Non-oriented electrical steel sheet
JPH10204593A (en) Nonoriented magnetic steel sheet reduced in iron loss after magnetic annealing
JP3997667B2 (en) Manufacturing method of steel plate for electric power steering motor core
JP2718403B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JPH09263909A (en) Nonoriented silicon steel sheet excellent in core loss characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4240921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees