JP5009514B2 - Non-oriented electrical steel sheet - Google Patents

Non-oriented electrical steel sheet Download PDF

Info

Publication number
JP5009514B2
JP5009514B2 JP2005231454A JP2005231454A JP5009514B2 JP 5009514 B2 JP5009514 B2 JP 5009514B2 JP 2005231454 A JP2005231454 A JP 2005231454A JP 2005231454 A JP2005231454 A JP 2005231454A JP 5009514 B2 JP5009514 B2 JP 5009514B2
Authority
JP
Japan
Prior art keywords
less
magnetic
steel sheet
annealing
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005231454A
Other languages
Japanese (ja)
Other versions
JP2007046104A (en
Inventor
善彦 尾田
雅昭 河野
智幸 大久保
正昭 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005231454A priority Critical patent/JP5009514B2/en
Publication of JP2007046104A publication Critical patent/JP2007046104A/en
Application granted granted Critical
Publication of JP5009514B2 publication Critical patent/JP5009514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、無方向性電磁鋼板、特に、実質的にAl無添加で、磁性焼鈍後の鉄損の低い無方向性電磁鋼板に関する。   The present invention relates to a non-oriented electrical steel sheet, and more particularly to a non-oriented electrical steel sheet that is substantially free of Al and has low iron loss after magnetic annealing.

無方向性電磁鋼板は、その製造方法によりフルプロセス材とセミプロセス材に分けられる。このうち、フルプロセス材は、鉄鋼メーカー側の仕上焼鈍により所定の磁気特性が付与され、需要家においてはそのまま使用される。一方、セミプロセス材は、鉄鋼メーカー側の仕上焼鈍は行われる場合もあるが、需要家における打抜き加工後の歪取り焼鈍により所定の磁気特性が付与される。このセミプロセス材における歪取り焼鈍時には、加工歪みが除去されると同時に結晶粒も成長することから、より一層の鉄損の低減が可能となる。このため歪取り焼鈍は「磁性焼鈍」とも呼ばれている(以後、磁性焼鈍と呼ぶ)。   Non-oriented electrical steel sheets are classified into full-process materials and semi-process materials depending on the manufacturing method. Among these, the full process material is given a predetermined magnetic property by finish annealing on the steel manufacturer side, and is used as it is by customers. On the other hand, the semi-processed material may be subjected to finish annealing on the steel manufacturer side, but given magnetic properties are given by strain relief annealing after punching by the customer. At the time of strain relief annealing in the semi-process material, since the processing strain is removed and the crystal grains grow at the same time, the iron loss can be further reduced. For this reason, strain relief annealing is also called “magnetic annealing” (hereinafter referred to as magnetic annealing).

この磁性焼鈍時の粒成長性を良好にするためには、鋼板中の介在物や析出物の量を低減することが効果的である。特に、不純物として混入するVは磁性焼鈍時にVNとして析出し、粒成長性を阻害するため、VNの析出を抑制する方法が各種提案されている。例えば、Alを0.1〜1%添加することによりNをAlNとして析出させ、VNの析出を防止する技術が開示されている(特許文献1)。   In order to improve the grain growth at the time of magnetic annealing, it is effective to reduce the amount of inclusions and precipitates in the steel sheet. In particular, various methods for suppressing the precipitation of VN have been proposed because V mixed as an impurity precipitates as VN during magnetic annealing and inhibits grain growth. For example, a technique is disclosed in which 0.1 to 1% of Al is added to precipitate N as AlN to prevent VN precipitation (Patent Document 1).

しかし、最近、モータリサイクルの観点から、使用済みのモータのコアを溶解し、鋳物としてモータ枠等に再利用しようという動きがあるが、特許文献1のようなAlの添加された電磁鋼板を再利用しようとすると、鋳込み時に溶鋼の粘性が増大して引け巣が生じるという問題が起こる。そのため、電磁鋼板を鋳物として再利用リサイクルする場合には、実質的にAl無添加とする必要がある。   However, recently, from the viewpoint of motor recycling, there is a movement to melt the core of a used motor and reuse it as a casting in a motor frame or the like. If it tries to use, the problem that the viscosity of molten steel will increase at the time of casting and a shrinkage cavity will arise will arise. Therefore, when reusing and recycling the electromagnetic steel sheet as a casting, it is necessary to substantially add no Al.

実質的にAl無添加の電磁鋼板として、本発明者らは、Si:1.0%以下、Al:0.004%以下とし、かつ不純物としてのVとNの関係をlog(V×N)<−5.44とした低磁場特性に優れた無方向性電磁鋼板を提案している(特許文献2)。
特開平10‐18006号公報 特許第2718410号公報
As a substantially Al-free electrical steel sheet, the present inventors made Si: 1.0% or less, Al: 0.004% or less, and the relationship between V and N as impurities log (V × N) <− 5.44. A non-oriented electrical steel sheet excellent in low magnetic field characteristics has been proposed (Patent Document 2).
Japanese Patent Laid-Open No. 10-18006 Japanese Patent No. 2718410

しかしながら、本発明者らがその後調査したところ、特許文献2に記載の電磁鋼板のように、たとえ実質的にAl無添加とし、不純物としてのVとNの関係を制御したとしても、磁性焼鈍後に必ずしも十分に低い鉄損が得られない場合があることが明らかになった。   However, when the inventors subsequently investigated, as in the electromagnetic steel sheet described in Patent Document 2, even if Al was substantially not added, even if the relationship between V and N as impurities was controlled, after magnetic annealing It has become clear that a sufficiently low iron loss may not always be obtained.

本発明は、実質的にAl無添加で、磁性焼鈍後の鉄損の低い無方向性電磁鋼板を提供することを目的とする。   An object of the present invention is to provide a non-oriented electrical steel sheet that is substantially free from Al and has low iron loss after magnetic annealing.

本発明者らが、実質的にAl無添加の電磁鋼板を用い、磁性焼鈍時の粒成長性や磁気特性について検討したところ、以下のことを見出した。
(1) 不純物として、Vのみならず、Nb量を、質量%で、従来の0.002%よりも大幅に低減するとともに、Al、V、Nb量の重み付き合計量を所定の値以下に制御することが粒成長の促進に効果的である。
(2) 低磁場における磁束密度の向上には、磁性焼鈍後の結晶粒の均一性を制御することが有効である。
The present inventors have examined the grain growth property and magnetic characteristics during magnetic annealing using a magnetic steel sheet substantially free of Al, and found the following.
(1) As impurities, not only V, but also the amount of Nb in mass% is significantly reduced from the conventional 0.002%, and the weighted total amount of Al, V, and Nb is controlled to a predetermined value or less. This is effective in promoting grain growth.
(2) To improve the magnetic flux density in a low magnetic field, it is effective to control the uniformity of crystal grains after magnetic annealing.

本発明は、このような知見に基づきなされたもので、質量%で、C:0.005%以下、Si:4%以下、P:0.2%以下、Mn:0.05〜1.0%、S:0.005%以下、N:0.005%以下、Nb:0.0008%以下、Al:0.004%以下、V:0.004%以下を含有し、残部Feおよび不可避的不純物からなり、かつ[Al]+[V]+5×[Nb]≦0.002%を満たす無方向性電磁鋼板を提供する;ただし、[M]は元素Mの含有量(質量%)を表す。 The present invention has been made based on such knowledge, in mass%, C: 0.005% or less, Si: 4% or less, P: 0.2% or less, Mn: 0.05 to 1.0%, S: 0.005% or less, N: 0.005% or less, Nb: 0.0008% or less, Al: 0.004% or less, V: 0.004% or less, the balance being Fe and inevitable impurities, and [Al] + [V] + 5 × [Nb] A non-oriented electrical steel sheet satisfying ≦ 0.002% is provided; provided that [M] represents the content (mass%) of the element M.

また、750℃×2hrの磁性焼鈍後の鋼板板厚断面において、平均結晶粒径の3倍を超える結晶粒の総面積をS1とし、3倍以下の結晶粒の総面積をS2としたとき、S1/S2が0.3以下であるとより高い磁束密度B3が得られる。 In addition, in the steel plate thickness cross section after magnetic annealing at 750 ° C. × 2 hr, when the total area of crystal grains exceeding 3 times the average crystal grain size is S1, and the total area of crystal grains of 3 times or less is S2, S1 / S2 is the higher the magnetic flux density B 3 0.3 or less is obtained.

本発明では、さらに、質量%で、Sb:0.001〜0.05%、Sn:0.001〜0.1%、Ni:0.1〜5%、Co:0.1〜5%のうちから選ばれる少なくとも1種の元素を含有させることができる。   In the present invention, at least one element selected from Sb: 0.001 to 0.05%, Sn: 0.001 to 0.1%, Ni: 0.1 to 5%, and Co: 0.1 to 5% is further contained in mass%. be able to.

本発明により、実質的にAl無添加で、磁性焼鈍後の鉄損の低い無方向性電磁鋼板が得られる。   According to the present invention, a non-oriented electrical steel sheet having substantially no Al added and low iron loss after magnetic annealing can be obtained.

以下に、本発明の詳細を説明する。(なお、成分に関する「%」表示は、特に断らない限り質量%を意味するものとする。)
1. 成分
C: 磁気時効が問題とならないように、0.005%以下とする。
Details of the present invention will be described below. (Note that “%” in relation to ingredients means mass% unless otherwise specified.)
1. Ingredients
C: 0.005% or less so that magnetic aging does not become a problem.

Si: 鋼板の固有抵抗を上げ、鉄損を低下させるのに有効な元素であるが、4%を超えると飽和磁束密度の低下にともない低磁場における磁束密度を低下させるので、4%以下とし、好ましくは0.1%以上とする。   Si: It is an element effective in increasing the specific resistance of the steel sheet and lowering the iron loss, but if it exceeds 4%, the magnetic flux density in the low magnetic field is reduced with the reduction of the saturation magnetic flux density, so 4% or less, Preferably it is 0.1% or more.

P: 鋼板の打抜き加工性を改善するために有効な元素であるが、0.2%を超えると鋼板が脆化するので、0.2%以下とし、好ましくは0.005%以上する。   P: An element effective for improving the punching workability of the steel sheet, but if it exceeds 0.2%, the steel sheet becomes brittle, so it is 0.2% or less, preferably 0.005% or more.

Mn: 熱間圧延時の赤熱脆性を防止するために0.05%以上にする必要があるが、1.0%を超えると磁束密度が低下するので、0.05〜1.0%とする。   Mn: 0.05% or more is necessary to prevent red hot brittleness during hot rolling, but if it exceeds 1.0%, the magnetic flux density decreases, so 0.05 to 1.0%.

S: MnSとして析出し粒成長性を阻害するため、0.005%以下とする。   S: Precipitated as MnS and hinders grain growth, so 0.005% or less.

N: 後述する極微量のAl、V、Nbと微細な窒化物を形成し、磁性焼鈍時の粒成長を阻害するので、0.005%以下とする。   N: Since a very small amount of Al, V, Nb, which will be described later, and fine nitrides are formed and grain growth is inhibited during magnetic annealing, it is set to 0.005% or less.

Nb: 磁性焼鈍後の鉄損に及ぼすNbの影響を調査するため、C:0.0030%、Si:0.50%、Mn:0.30%、P:0.100%、Al:tr、S:0.002%、V:tr.、N:0.0025%と一定にし、Nb量を0.0001〜0.0070%の範囲で変化させた鋼を実験室にて溶解し、熱間圧延後、酸洗し、板厚0.5mmまで冷間圧延し、750℃×30sの仕上焼鈍を施し、さらに750℃×2hrの磁性焼鈍を行った。そして、25cmエプスタイン試験片を用いて磁気特性を測定した。また、Nbの分析はICP(誘導結合プラズマ)質量分析にて行った。図1にNb量と鉄損(W15/50)との関係を示すが、Nb量を0.0008%以下とすると、4.4W/kg以下の低いW15/50が得られることがわかる。さらに、Nb量を0.0004%以下にすると4.0W/kg以下のより低いW15/50が得られる。一方、Nb量が0.0009%以上では、鉄損が著しく高い。この原因を調査するために、透過電子顕微鏡(TEM)で磁性焼鈍後のサンプルの組織観察を行ったところ、80nm程度の非常に微細なNb系析出物が粒界に多数認められ、この微細な析出物が粒成長性を阻害して鉄損を著しく高くしていることが判明した。また、このことから、実質的にAl無添加の電磁鋼板においては、Nbは極微量であっても粒成長性を著しく阻害することが明らかになった。 Nb: To investigate the effect of Nb on iron loss after magnetic annealing, C: 0.0030%, Si: 0.50%, Mn: 0.30%, P: 0.100%, Al: tr, S: 0.002%, V: tr ., N: 0.0025% constant, steel with varying Nb content in the range of 0.0001-0.0070% was melted in the laboratory, hot-rolled, pickled, and cold-rolled to a thickness of 0.5 mm Finish annealing at 750 ° C. × 30 s and magnetic annealing at 750 ° C. × 2 hr were further performed. Then, magnetic properties were measured using a 25 cm Epstein test piece. Nb was analyzed by ICP (inductively coupled plasma) mass spectrometry. FIG. 1 shows the relationship between the Nb amount and the iron loss (W 15/50 ). It can be seen that when the Nb amount is 0.0008% or less, a low W 15/50 of 4.4 W / kg or less can be obtained. Further, when the Nb content is 0.0004% or less, a lower W 15/50 of 4.0 W / kg or less is obtained. On the other hand, when the Nb content is 0.0009% or more, the iron loss is remarkably high. In order to investigate this cause, when the structure of the sample after magnetic annealing was observed with a transmission electron microscope (TEM), many very fine Nb-based precipitates of about 80 nm were observed at the grain boundaries. It was found that the precipitates inhibited the grain growth and markedly increased the iron loss. From this, it has been clarified that, in a magnetic steel sheet substantially free of Al, even if the amount of Nb is extremely small, the grain growth property is remarkably inhibited.

Al: 微量に存在すると微細なAlNを形成し磁気特性を阻害するため、0.004%以下とする。   Al: If present in a trace amount, fine AlN is formed and magnetic properties are inhibited, so 0.004% or less.

V: 窒化物以外のたとえば炭化物等を形成し粒成長性を阻害するため、0.004%以下とする。   V: For example, carbide other than nitride is formed to inhibit grain growth, so 0.004% or less.

[Al]+[V]+5×[Nb]: 上記のようにNb、Al、Vの量を制御した上で、さらに[Al]+[V]+5×[Nb]を次に説明するように制御する必要がある。C:0.0025%、Si:0.50%、Mn:0.30%、P:0.09%、S:0.002%、N:0.0020%と一定にし、Vを0.001〜0.006%、Nbを0.0001〜0.0030%、Alを0.001〜0.005%と変化させた鋼を実験室にて溶解し、熱間圧延後、酸洗し、板厚0.5mmまで冷間圧延し、720℃×1minの仕上焼鈍を施し、さらに750℃×2hrの磁性焼鈍を行った。そして、上記の方法で鉄損(W15/50)を測定した。図2に示すように、[Al]+[V]+5×[Nb]≦0.002%とした場合に鉄損が著しく低下することがわかる。この原因を調査するために、TEMで磁性焼鈍後のサンプルの組織観察を行ったところ、鉄損の高い材料では100nm程度の非常に微細なV‐Nb系およびV‐Nb‐Al系析出物が粒界に多数認められ、この微細な析出物が粒成長性を阻害して鉄損を著しく高くしていることが判明した。このことから、Al、V、Nbが共存した場合には、これらが複合析出物を形成することから、Nb単独で存在する場合よりも不純物としてのNbの混入量を制限する必要があることが明らかとなった。ここで、[Al]+[V]+5×[Nb]と鉄損(W15/50)との相関が良好なのは、NbがAl、Vに比べ磁性焼鈍時の粒成長抑制効果が5倍程度強いためと考えられる。 [Al] + [V] + 5 × [Nb]: After controlling the amounts of Nb, Al, and V as described above, [Al] + [V] + 5 × [Nb] will be described next. Need to be controlled. C: 0.0025%, Si: 0.50%, Mn: 0.30%, P: 0.09%, S: 0.002%, N: 0.0020%, V is 0.001 to 0.006%, Nb is 0.0001 to 0.0030%, Al is 0.001 The steel changed to ~ 0.005% was melted in the laboratory, hot-rolled, pickled, cold-rolled to a thickness of 0.5 mm, subjected to finish annealing at 720 ° C x 1 min, and further 750 ° C x 2 hr Magnetic annealing was performed. Then, iron loss (W 15/50 ) was measured by the above method. As shown in FIG. 2, it is understood that the iron loss is remarkably reduced when [Al] + [V] + 5 × [Nb] ≦ 0.002% . In order to investigate this cause, the structure of the sample after magnetic annealing was observed with TEM. As a result, very fine V-Nb and V-Nb-Al precipitates of about 100 nm were observed in materials with high iron loss. A large number were observed at the grain boundaries, and it was found that the fine precipitates hindered the grain growth and significantly increased the iron loss. From this, when Al, V, and Nb coexist, they form a composite precipitate, so it is necessary to limit the amount of Nb as an impurity compared to the case where Nb exists alone. It became clear. Here, the correlation between [Al] + [V] + 5 × [Nb] and iron loss (W 15/50 ) is good. Nb is Al, V is 5 times the grain growth suppression effect during magnetic annealing This is thought to be due to the strength.

上記成分元素以外の残部はFeおよび不可避的不純物であるが、さらに、Sb:0.001〜0.05%、Sn:0.001〜0.1%、Ni:0.1〜5%、Co:0.1〜5%のうちから選ばれる少なくとも1種の元素を磁気特性向上のために添加できる。   The balance other than the above component elements is Fe and inevitable impurities, and is further selected from Sb: 0.001 to 0.05%, Sn: 0.001 to 0.1%, Ni: 0.1 to 5%, Co: 0.1 to 5% At least one element can be added to improve magnetic properties.

ところで、モータコア材には低鉄損以外にトルクの観点から磁束密度、特に、B3が高いことも要求される。これは、コンプレッサーモータ等での動作磁束密度は1.5T程度の領域であり、B3すなわち磁化力300A/mで励磁したときの磁束密度がほぼ1.5T程度となるため、この磁化力における磁束密度が重要となるためである。そこで、C:0.0025%、Si:0.60%、Mn:0.25%、P:0.09%、S:0.002%、N:0.0020%、Nb:0.0002%、Al:0.0005%、V:0.0010%を含有する鋼を実験室にて真空溶解し、熱間圧延後、酸洗し、板厚0.5mmまで冷間圧延し、750〜850℃×1minの仕上焼鈍を施し、さらに750℃×2hrの磁性焼鈍を行い、B3を測定した。その結果、Al、V、Nb量が本発明の範囲内であっても、磁束密度B3がばらつく場合があることが判明した。この磁束密度のばらつきの原因を調査するため、鋼板板厚断面の組織を光学顕微鏡にて調査したところ、磁束密度の低い材料では結晶粒径に著しい不均一が認められた。結晶粒径の均一性と磁気特性の関係を定量化するため、JIS G 0552の線分法にて測定した平均結晶粒径の3倍を超える結晶粒の総面積をS1とし、3倍以下の結晶粒の総面積をS2とし、S1/S2と磁束密度B3との関係を調査した結果を図3に示す。ここで、各結晶粒の粒径は結晶粒の面積を画像処理により求め、それを円換算して円の直径(円相当径)として求めた。図3より、1.5T程度の高いB3を得るには、S1/S2を0.3以下にする必要があることがわかる。S1/S2が0.3を超えると結晶粒径に著しい不均一が生じ、磁化の不均一が生じやすいことから、磁束密度が低下したものと考えられる。このような不均一な結晶粒径となる原因を調査したところ、仕上焼鈍の温度が高いことに起因していることが判明した。これは、仕上焼鈍の温度が高いと析出物が一部再固溶し、その後の磁性焼鈍時にもさらに一部の析出物が固溶することにより、析出物による結晶粒界のピン留め効果が弱まり、異常粒成長が生じたためと考えられる。したがって、S1/S2を0.3以下にするには、仕上焼鈍の温度を800℃以下にすることが望ましい。 Incidentally, the motor core material is required to have a high magnetic flux density, in particular, B 3 from the viewpoint of torque in addition to the low iron loss. This operation magnetic flux density at the compressor motor or the like is a region of about 1.5T, the magnetic flux density when excited by B 3 That magnetizing force 300A / m is substantially 1.5T about, magnetic flux density at magnetization power Is important. Therefore, steel containing C: 0.0025%, Si: 0.60%, Mn: 0.25%, P: 0.09%, S: 0.002%, N: 0.0020%, Nb: 0.0002%, Al: 0.0005%, V: 0.0010% In a laboratory, hot-rolled, pickled, cold-rolled to a thickness of 0.5 mm, subjected to finish annealing at 750 to 850 ° C x 1 min, and further magnetic annealing at 750 ° C x 2 hr. , it was measured B 3. As a result, it has been found that the magnetic flux density B 3 may vary even if the amounts of Al, V, and Nb are within the range of the present invention. In order to investigate the cause of the variation in the magnetic flux density, the structure of the steel plate thickness cross section was investigated with an optical microscope. As a result, a material with a low magnetic flux density showed a marked nonuniformity in crystal grain size. In order to quantify the relationship between the uniformity of the crystal grain size and the magnetic properties, the total area of crystal grains exceeding three times the average grain size measured by the line segment method of JIS G 0552 is defined as S1, and it is 3 times or less. the total area of crystal grains and S2, shown in FIG. 3 the results of investigating the relationship between S1 / S2 and the magnetic flux density B 3. Here, the grain size of each crystal grain was obtained by calculating the area of the crystal grain by image processing and converting it into a circle as a circle diameter (equivalent circle diameter). FIG. 3 shows that S1 / S2 needs to be 0.3 or less in order to obtain B 3 as high as 1.5T. When S1 / S2 exceeds 0.3, the crystal grain size is remarkably non-uniform, and magnetization non-uniformity is likely to occur. Therefore, it is considered that the magnetic flux density is lowered. When the cause of such a non-uniform crystal grain size was investigated, it was found that this was due to the high temperature of finish annealing. This is because part of the precipitate is re-dissolved when the temperature of the finish annealing is high, and a part of the precipitate is further dissolved during the subsequent magnetic annealing. This is thought to be due to weakening and abnormal grain growth. Therefore, in order to make S1 / S2 0.3 or less, it is desirable that the temperature of finish annealing be 800 ° C. or less.

本発明の無方向性電磁鋼板においては、成分が所定の範囲内であれば目的が達成され、その製造方法には通常の方法を適用できる。すなわち、転炉で吹練した溶鋼を脱ガス処理して所定の成分に調整し、鋳造、熱間圧延を行い、次いで、必要に応じて熱延板焼鈍を行い、一回の冷間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間圧延により所定の板厚とした後に、仕上焼鈍を行う。仕上焼鈍の温度は、上記のように、800℃以下が望ましい。   In the non-oriented electrical steel sheet of the present invention, the object is achieved if the components are within a predetermined range, and a normal method can be applied to the manufacturing method. That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, cast, hot rolled, then hot-rolled sheet annealed as necessary, one cold rolling, Alternatively, finish annealing is performed after a predetermined thickness is obtained by cold rolling at least twice with intermediate annealing. As described above, the finish annealing temperature is desirably 800 ° C. or lower.

転炉で吹練した後に脱ガス処理を行って表1に示す成分に調整した鋼1〜30を鋳造後、熱間圧延を行って板厚2.3mmの熱延板を作製した。次に、この熱延板を酸洗し、板厚0.5mmまで冷間圧延を行い、表1に示す温度で30秒間の仕上焼鈍を行い、さらに750℃×2hrの磁性焼鈍を行った。なお、鋼28は、P量が多いためと思われるが、冷間圧延時に割れが発生したため、その後の焼鈍は行われていない。そして、上記のような方法で、磁気特性や結晶粒の測定を行った。   After the steel 1-30 adjusted to the components shown in Table 1 by degassing after blowing in a converter, the steel 1-30 was hot-rolled to produce a hot-rolled sheet having a thickness of 2.3 mm. Next, this hot-rolled sheet was pickled, cold-rolled to a thickness of 0.5 mm, subjected to finish annealing at the temperature shown in Table 1 for 30 seconds, and further subjected to magnetic annealing at 750 ° C. × 2 hours. Steel 28 seems to have a large amount of P, but cracking occurred during cold rolling, and subsequent annealing was not performed. And the magnetic characteristic and the crystal grain were measured by the above methods.

結果を表1に示す。成分を本発明の範囲内に制御した発明例である鋼2〜15、22〜24では、磁性焼鈍後のW15/50が4.5W/kg以下で、非常に低い鉄損が得られることがわかる。また、成分が本発明の範囲内であり、かつ仕上温度が800℃以下である鋼2〜15、22、29、および30では、S1/S2が0.3以下となり、1.50以上のB3が得られることがわかる。 The results are shown in Table 1. In Steels 2 to 15 and 22 to 24, which are inventive examples in which the components are controlled within the scope of the present invention, W 15/50 after magnetic annealing is 4.5 W / kg or less, and very low iron loss can be obtained. Recognize. Further, in steels 2 to 15, 22, 29, and 30 whose components are within the scope of the present invention and whose finishing temperature is 800 ° C. or less, S1 / S2 is 0.3 or less, and B 3 of 1.50 or more is obtained. I understand that.

Figure 0005009514
Figure 0005009514

[Nb]と磁性焼鈍後の鉄損(W15/50)との関係を示す図である。FIG. 3 is a diagram showing the relationship between [Nb] and iron loss after magnetic annealing (W 15/50 ). [Al]+[V]+5×[Nb]と磁性焼鈍後の鉄損(W15/50)との関係を示す図である。It is a figure which shows the relationship between [Al] + [V] + 5x [Nb] and the iron loss ( W15 / 50 ) after magnetic annealing. S1/S2と磁性焼鈍後の磁束密度B3との関係を示す図であるIs a diagram showing the relation between S1 / S2 and the magnetic flux density B 3 after magnetic annealing

Claims (3)

質量%で、C:0.005%以下、Si:4%以下、P:0.2%以下、Mn:0.05〜1.0%、S:0.005%以下、N:0.005%以下、Nb:0.0008%以下、Al:0.004%以下、V:0.004%以下を含有し、残部Feおよび不可避的不純物からなり、かつ[Al]+[V]+5×[Nb]≦0.002%を満たす無方向性電磁鋼板;ただし、[M]は元素Mの含有量(質量%)を表す。 In mass%, C: 0.005% or less, Si: 4% or less, P: 0.2% or less, Mn: 0.05 to 1.0%, S: 0.005% or less, N: 0.005% or less, Nb: 0.0008% or less, Al: 0.004 %, V: 0.004% or less, non-oriented electrical steel sheet consisting of remaining Fe and inevitable impurities and satisfying [Al] + [V] + 5 × [Nb] ≦ 0.002% ; ] Represents the content (mass%) of the element M. 750℃×2hrの磁性焼鈍後の鋼板板厚断面において、平均結晶粒径の3倍を超える結晶粒の総面積をS1とし、3倍以下の結晶粒の総面積をS2としたとき、S1/S2が0.3以下である請求項1に記載の無方向性電磁鋼板。   In the steel plate thickness section after magnetic annealing at 750 ° C. × 2 hr, the total area of crystal grains exceeding 3 times the average crystal grain size is S1, and when the total area of crystal grains of 3 times or less is S2, S1 / 2. The non-oriented electrical steel sheet according to claim 1, wherein S2 is 0.3 or less. さらに、質量%で、Sb:0.001〜0.05%、Sn:0.001〜0.1%、Ni:0.1〜5%、Co:0.1〜5%のうちから選ばれる少なくとも1種の元素を含有する請求項1または請求項2に記載の無方向性電磁鋼板。   Furthermore, the mass% contains at least one element selected from Sb: 0.001 to 0.05%, Sn: 0.001 to 0.1%, Ni: 0.1 to 5%, and Co: 0.1 to 5%. The non-oriented electrical steel sheet according to claim 2.
JP2005231454A 2005-08-10 2005-08-10 Non-oriented electrical steel sheet Active JP5009514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231454A JP5009514B2 (en) 2005-08-10 2005-08-10 Non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231454A JP5009514B2 (en) 2005-08-10 2005-08-10 Non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2007046104A JP2007046104A (en) 2007-02-22
JP5009514B2 true JP5009514B2 (en) 2012-08-22

Family

ID=37849182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231454A Active JP5009514B2 (en) 2005-08-10 2005-08-10 Non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5009514B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892327B2 (en) 2012-03-15 2016-03-23 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
CN104937118A (en) * 2013-02-21 2015-09-23 杰富意钢铁株式会社 Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
JP6057082B2 (en) 2013-03-13 2017-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
JP2015131993A (en) * 2014-01-14 2015-07-23 Jfeスチール株式会社 Non-oriented silicon steel sheet having excellent magnetic property

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259011B2 (en) * 2001-11-08 2009-04-30 Jfeスチール株式会社 Non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2007046104A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
KR102095142B1 (en) Non-oriented electrical steel sheet and production method thereof
KR100658408B1 (en) An electromagnetic steel sheet having superior formability and magnetic properties and a process for the production of the same
JP5360336B1 (en) Non-oriented electrical steel sheet
JP5200376B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5181439B2 (en) Non-oriented electrical steel sheet
JP5009514B2 (en) Non-oriented electrical steel sheet
JP4259177B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3843955B2 (en) Non-oriented electrical steel sheet
JP4622162B2 (en) Non-oriented electrical steel sheet
JP2004332031A (en) Method for manufacturing non-oriented electromagnetic steel sheet superior in magnetic properties
CN114901850A (en) Hot-rolled steel sheet for non-oriented electromagnetic steel sheet
JP4240921B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JP3952762B2 (en) Non-oriented electrical steel sheet with excellent iron loss and caulking properties
US20230392227A1 (en) Non-oriented electrical steel sheet, method for producing same, and hot-rolled steel sheet
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
US20240170190A1 (en) Hot rolled steel sheet for non oriented electrical steel sheet and producing method thereof
JP4259011B2 (en) Non-oriented electrical steel sheet
JP4852804B2 (en) Non-oriented electrical steel sheet
JP3362077B2 (en) Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss
JP2003183734A (en) Method for manufacturing non-oriented electromagnetic steel sheet superior in cold-rolling property
JP2720871B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP2003247052A (en) Nonoriented silicon steel sheet having excellent high frequency property
JP2005179746A (en) Nonoriented silicon steel sheet having excellent magnetic property, production method therefor, and stress relieving annealing method therefor
CN116867916A (en) Hot-rolled steel sheet for non-oriented electrical steel sheet, method for producing hot-rolled steel sheet for non-oriented electrical steel sheet, and method for producing non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110614

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110722

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5009514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250