JP3956596B2 - Non-oriented electrical steel sheet - Google Patents

Non-oriented electrical steel sheet Download PDF

Info

Publication number
JP3956596B2
JP3956596B2 JP2000279595A JP2000279595A JP3956596B2 JP 3956596 B2 JP3956596 B2 JP 3956596B2 JP 2000279595 A JP2000279595 A JP 2000279595A JP 2000279595 A JP2000279595 A JP 2000279595A JP 3956596 B2 JP3956596 B2 JP 3956596B2
Authority
JP
Japan
Prior art keywords
steel sheet
fatigue
steel
iron loss
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000279595A
Other languages
Japanese (ja)
Other versions
JP2002088452A (en
Inventor
善彦 尾田
孝 寒川
義彦 小野
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000279595A priority Critical patent/JP3956596B2/en
Priority to CNB018014402A priority patent/CN1183269C/en
Priority to PCT/JP2001/005001 priority patent/WO2001098550A1/en
Priority to TW90114696A priority patent/TW494414B/en
Publication of JP2002088452A publication Critical patent/JP2002088452A/en
Application granted granted Critical
Publication of JP3956596B2 publication Critical patent/JP3956596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T10/641

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄損が低く疲労特性に優れた電磁鋼板に関するもので、電気自動車用モータや高効率エアコン用モータの鉄心材料等に使用される電磁鋼板に関する。
【0002】
【従来の技術】
電気自動車用モータや高効率エアコン用モータは小型化、高効率化の観点より永久磁石をローター内部に埋め込んだIPMモータが主流となっており、その駆動周波数は電気自動車では200Hz〜1kHz、エアコンでは200Hz程度となっている。
【0003】
上記モータのコア材として使用される無方向性電磁鋼板には、高周波鉄損が低いこと以外に、モータの可変速運転に伴い、ローターに加わる遠心力も大きく変化するため優れた疲労特性も要求される。
【0004】
疲労特性を向上させる手段としては、結晶粒の細粒化が挙げられる。また、Siを4%以上に高めることにより高周波鉄損の低減および疲労特性の改善をはかることが可能となる。
【0005】
【発明が解決しようとする課題】
しかしながら、疲労特性を向上させるためには、結晶粒の細粒化が有効であるが、細粒化は鉄損を増大させるため電磁鋼板における疲労特性の改善手法としては望ましくない。
【0006】
また、Siを4%以上に高めることは高周波鉄損の低減および疲労特性の改善に効果的であるが、Siを高めた場合には鋼板が脆化するため冷間圧延が困難となり、さらに著しい硬度上昇に起因し、打ち抜き時の金型損耗が激しくなるといった問題点を有している。
【0007】
このため、著しい鋼板の脆化や硬度上昇を伴うこと無く高周波鉄損と疲労特性を改善する手法が望まれている。
【0008】
本発明はこのような事情に鑑みなされたものであり、鉄損が低く疲労特性に優れた無方向性電磁鋼板を提供するものである。
【0009】
【課題を解決するための手段】
本発明者らが上記課題の解決に関し鋭意検討したところ、Crを適量添加した鋼板にMgを添加することにより高周波鉄損が低くかつ疲労特性に優れた電磁鋼板が得られることを見出した。
【0010】
本発明はかかる知見に基づきなされたもので、以下のような構成を有する。
【0011】
mass%で、C:0.005%以下、P:0.1%以下、Si:1〜4%、Mn:0.05〜2%、Al:0.1〜2%、S:0.02%以下、N:0.005%以下、 O:0.002%以下、Cr:0.4〜5%、Mg:0.0001〜0.005%を含み、残部Fe及び不可避不純物であることを特徴とする無方向性電磁鋼板である。
【0012】
なお、本明細書において、鋼の成分を示す%およびppmはすべてmass%、mass ppmである。
【0013】
【発明の実施の形態】
以下、本発明の詳細をその限定理由とともに説明する。
【0014】
まず最初に、磁気特性に及ぼすCrの影響について調査するため、C:0.0025%、Si:2.5%、Al:1.3%、Mn:0.20%、P:0.01%、S:0.002%、N:0.0021%、O: 0.0015%とし、Cr量を0〜6%程度まで変化させた鋼を実験室にて溶解し、熱間圧延後、酸洗を行った。引き続きこの熱間圧延板に75%H2-25%N2雰囲気で830℃×3hrの熱延板焼鈍を施し、さらに、板厚0.35mmまで冷間圧延し、20%H2-80%N2雰囲気で950℃×1min間の仕上焼鈍を行った。
【0015】
図1に、このようにして得られた供試材のCr添加量と鉄損W10/600、磁束密度B50およびビッカース硬度HVの関係を示す。ここで、磁気特性の評価には得られた供試材を用いて作成した外径45mm、内径33mmのリングサンプルを一次100ターン、二次100ターンと巻線したものを用いた。また、ビッカース硬度HVは鋼板断面のビッカース硬度(荷重100g)で評価した。
【0016】
図1より、 Cr=0.4〜5%の範囲で鉄損が低下することがわかる。0.4%〜5%の領域で鉄損が低下した理由は、固有抵抗の増大による渦電流損の低減効果と磁気異方性の低下によるヒステリシス損の低減効果の相乗作用によるものと考えられる。
【0017】
一方、 Cr:5%超えで鉄損は増大するがこれは磁束密度の低下に伴いヒステリシス損が増大するためである。
【0018】
また、硬度に着目するとCr添加はビッカース硬度をほとんど変化させないことがわかる。
【0019】
以上よりCr添加量は0.4〜5%とし、磁束密度の観点から望ましくは0.4〜1.4%、より望ましくは0.4%〜0.9%とする。
【0020】
ところで、電気自動車用モータ、高効率エアコンモータ等で現在主流となっているIPMモータは永久磁石がローター内部に埋め込まれ、高速での可変速回転時に磁石に不規則な遠心力が加わることから、コア材として使用される電磁鋼板には優れた疲労特性が要求される。
【0021】
電磁鋼板の疲労特性を向上させるためには、
1)疲労亀裂のイニシエーションサイトとなる介在物、析出物の総量を低減すること
2)疲労限を低下させる粗大介在物の形成を防止すること
等が有効であると考えられる。
【0022】
そこで、 Al脱酸鋼をベースとすることにより鋼中の酸化物量を低減し、さらに介在物形態コントロールを行なうためMg添加について検討した。最初にC:0.0025%、Si:3.05%、Mn:0.20%、P:0.01%、S:0.0020%、Al:1.05%、Cr:0.95%、N:0.0018%、O:0.0012%とし、Mg量をtr.〜50ppmの範囲で変化させた鋼を実験室にて溶解し、熱間圧延後、酸洗し、830℃×3hrの熱延板焼鈍を行い、板厚0.35mmまで冷間圧延を行った。引き続き冷間圧延板に950℃×1 min (10%H2-90%N2雰囲気)の仕上焼鈍を行った。疲労試験は仕上焼鈍材より平行部の幅5mm、長さ150mmのサンプルを圧延方向と平行に切り出し、平行部端面を800番のエメリー紙で圧延方向に研磨したのち、応力比0.1、周波数20Hzの部分片振り(引張り-引張り)で行った。
【0023】
図2、このようにして得られた供試材(サンプル)のMg添加量と疲労限の関係を示す。ここで、疲労限は繰り返し数107 回において破壊が生じない応力振幅とした。
【0024】
図2より、Mgを1ppm以上添加した場合に疲労限が向上することがわかる。この原因を調査するためSEMにて鋼板断面の鋼中介在物のSEM観察を行った。その結果、Mg無添加鋼では粗大なクラスター状のAl23粒子が多数認められた。これに対しMg添加鋼ではAl23のクラスターが低減していることが判明した。このことから、疲労限すなわち疲労特性の向上は、Mg添加により、疲労の起点となる粗大なAl23クラスターが低減したことによるものと考えられる。
【0025】
以上のことより、Mgの下限を0.0001%(1ppm)とする。また、上限はコストの観点から0.005%(50ppm)とする。より疲労特性に優れた鋼板を得るために、さらに好ましくは0.0005(5ppm)〜0.005(50ppm)とする。
【0026】
次に、その他の成分の限定理由について説明する。
【0027】
Siは鋼板の固有抵抗を上げるために有効な元素であるため下限を1.0%とする。一方、4%を超えると飽和磁束密度の低下に伴い磁束密度が低下するため上限は4%とした。
【0028】
AlはSiと同様、固有抵抗を上げるために有効な元素であるが、2%を超えると飽和磁束密度の低下に伴い磁束密度が低下するため上限を2%とした。また、0.1%未満の場合にはAlNが微細化し粒成長性が低下するため下限を0.1%とした。
【0029】
Cは磁気時効の問題があるため0.005%以下とする。
【0030】
Mnは熱間圧延時の赤熱脆性を防止するために、0.05%以上必要であるが、2%超えになると磁束密度を低下させるので0.05〜2%とした。
【0031】
Pは0.1%を超えて添加すると鋼板が硬くなるため0.1%以下とする。
【0032】
Nは、含有量が多い場合にはAlNの析出量が多くなり、鉄損を増大させるため0.005%以下とした。
【0033】
Sは0.02%を超えるとMnSの析出により鉄損が増大するため、上限を0.02%とする。
【0034】
Oは0.002%を超えると疲労き裂のイニシエーションサイトが増大するため0.002%以下とする。
【0035】
なお、本発明の効果を損なわない範囲でSb、Sn、REM、Ni、Cu、Co等の元素を添加することができる。
【0036】
次に本発明の鋼板の製造方法について説明する。
【0037】
本発明の鋼板を得るには、例えば、転炉で吹練した溶鋼を脱ガス処理し所定の成分に調整し、引き続き鋳造、熱間圧延を行う。熱間圧延時の仕上焼鈍温度、巻取り温度は特に規定する必要はなく、通常でかまわない。また、熱延後の熱延板焼鈍は行っても良いが必須ではない。次いで一回の冷間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間圧延により所定の板厚とした後に、最終焼鈍を行う。
【0038】
ここで、本発明で規定するCr、Mgは、例えば、スラグもしくは鋼の酸素ポテンシャルをコントロ−ルすることにより、本発明の範囲とすることができる。
【0039】
【実施例】
転炉で吹練した溶鋼を脱ガス処理し、表1の成分に鋳造後、1140℃×1hrのスラブ加熱を行った後、板厚2.0mmまで熱間圧延を行った。熱間圧延仕上げ温度は800℃、巻取り温度は610℃とした。巻取り後、75%H2-25%N2雰囲気で890℃×3hrの熱延板焼鈍を施した。その後、板厚0.35mmまで冷間圧延を行い、10%H2-90%N2雰囲気で表1に示す条件において仕上焼鈍を行った。
【0040】
磁気特性の測定は、外径45mm、内径33mmのリングサンプルを用い、一次100ターン、二次100ターンと巻線したものを用いた。疲労試験は仕上焼鈍材より平行部の幅5mm、長さ150mmのサンプルを圧延方向と平行に切り出し、平行部を800番のエメリー紙で研磨したのち、応力比0.1、周波数20Hzの部分片振り(引張り-引張り)で行った。
【0041】
各鋼板の磁気特性および疲労特性を表1に併せて示す。
【0042】
【表1】

Figure 0003956596
【0043】
表1より、Cr、Mg量が本発明の範囲内である本発明鋼において、磁気特性および疲労特性に優れた鋼板が得られることがわかる。
【0044】
一方、比較鋼においては、磁気特性もしくは疲労特性のいずれか一方が劣っている。
【0045】
【発明の効果】
以上述べたように、本発明によれば、鉄損が低く疲労特性に優れた鋼板を得ることができる。また、本発明により得られる鋼板は、電気自動車、エアコン、サーボモータ等の高周波域で可変速運転されるモータのコア材料として好適である。
【図面の簡単な説明】
【図1】Cr添加量と鉄損、磁束密度および硬度との関係を示すグラフ
【図2】Mg添加量と疲労限との関係を示すグラフ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic steel sheet having low iron loss and excellent fatigue characteristics, and relates to a magnetic steel sheet used for iron core materials of motors for electric vehicles and motors for high efficiency air conditioners.
[0002]
[Prior art]
From the viewpoint of miniaturization and high efficiency, motors for electric vehicles and motors for high-efficiency air conditioners are mainly IPM motors with permanent magnets embedded in the rotor. The drive frequency is 200 Hz to 1 kHz for electric vehicles, and for air conditioners. It is about 200 Hz.
[0003]
The non-oriented electrical steel sheet used as the core material of the motor is required to have excellent fatigue characteristics because the centrifugal force applied to the rotor changes greatly with the variable speed operation of the motor in addition to low high-frequency iron loss. The
[0004]
As a means for improving the fatigue characteristics, there is a refinement of crystal grains. Further, by increasing Si to 4% or more, it is possible to reduce high-frequency iron loss and improve fatigue characteristics.
[0005]
[Problems to be solved by the invention]
However, in order to improve the fatigue characteristics, it is effective to refine the crystal grains. However, the refinement is not desirable as a technique for improving the fatigue characteristics of the electrical steel sheet because it increases the iron loss.
[0006]
In addition, increasing Si to 4% or more is effective in reducing high-frequency iron loss and improving fatigue properties. However, if Si is increased, the steel sheet becomes brittle and cold rolling becomes difficult, which is further remarkable. Due to the increase in hardness, there is a problem that die wear during punching becomes severe.
[0007]
For this reason, a technique for improving high-frequency iron loss and fatigue characteristics without causing significant embrittlement and hardness increase of the steel sheet is desired.
[0008]
The present invention has been made in view of such circumstances, and provides a non-oriented electrical steel sheet having low iron loss and excellent fatigue characteristics.
[0009]
[Means for Solving the Problems]
When the present inventors diligently studied about the solution of the said subject, it discovered that the electromagnetic steel plate with a low high-frequency iron loss and excellent fatigue characteristics was obtained by adding Mg to the steel plate which added Cr in an appropriate amount.
[0010]
The present invention has been made based on such knowledge, and has the following configuration.
[0011]
In mass%, C: 0.005% or less, P: 0.1% or less, Si: 1-4%, Mn: 0.05-2%, Al: 0.1-2%, S: 0.02 %: N: 0.005% or less, O: 0.002% or less, Cr: 0.4-5%, Mg: 0.0001-0.005%, the balance being Fe and inevitable impurities It is a non-oriented electrical steel sheet characterized.
[0012]
In addition, in this specification,% and ppm which show the component of steel are all mass% and mass ppm.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the details of the present invention will be described together with the reasons for limitation.
[0014]
First, in order to investigate the influence of Cr on magnetic properties, C: 0.0025%, Si: 2.5%, Al: 1.3%, Mn: 0.20%, P: 0.01% , S: 0.002%, N: 0.0021%, O: 0.0015%, steel with the Cr amount changed to about 0-6% was melted in the laboratory, and after hot rolling, acid Washed. Subsequently, the hot-rolled sheet was subjected to hot-rolled sheet annealing at 830 ° C. × 3 hr in a 75% H 2 -25% N 2 atmosphere, and further cold-rolled to a sheet thickness of 0.35 mm, and 20% H 2 -80%. Finish annealing was performed in N 2 atmosphere for 950 ° C. × 1 min.
[0015]
FIG. 1 shows the relationship between the amount of Cr added to the specimen thus obtained, iron loss W10 / 600, magnetic flux density B50, and Vickers hardness HV. Here, for the evaluation of the magnetic characteristics, a ring sample having an outer diameter of 45 mm and an inner diameter of 33 mm prepared using the obtained specimen was wound with a primary turn of 100 and a secondary turn of 100. The Vickers hardness HV was evaluated by the Vickers hardness (load 100 g) of the steel sheet cross section.
[0016]
From FIG. 1, it can be seen that the iron loss decreases in the range of Cr = 0.4 to 5%. The reason why the iron loss decreased in the range of 0.4% to 5% is considered to be due to the synergistic effect of the reduction effect of the eddy current loss due to the increase of the specific resistance and the reduction effect of the hysteresis loss due to the reduction of the magnetic anisotropy. .
[0017]
On the other hand, when Cr exceeds 5%, the iron loss increases because the hysteresis loss increases as the magnetic flux density decreases.
[0018]
Further, when focusing on the hardness, it can be seen that the addition of Cr hardly changes the Vickers hardness.
[0019]
From the above, the amount of Cr added is 0.4 to 5%, preferably 0.4 to 1.4%, more preferably 0.4 to 0.9% from the viewpoint of magnetic flux density.
[0020]
By the way, since the permanent magnet is embedded in the rotor of the IPM motor, which is currently mainstream in motors for electric vehicles, high efficiency air conditioner motors, etc., irregular centrifugal force is applied to the magnet during variable speed rotation at high speed. The electrical steel sheet used as the core material is required to have excellent fatigue characteristics.
[0021]
In order to improve the fatigue properties of electrical steel sheets,
1) It is considered effective to reduce the total amount of inclusions and precipitates that become initiation sites of fatigue cracks, and 2) to prevent the formation of coarse inclusions that lower the fatigue limit.
[0022]
Therefore, Mg addition was studied in order to reduce the amount of oxide in the steel by using Al deoxidized steel as a base and to further control the inclusion morphology. Initially C: 0.0025%, Si: 3.05%, Mn: 0.20%, P: 0.01%, S: 0.0020%, Al: 1.05%, Cr: 0.95% , N: 0.0018%, O: 0.0012%, and the Mg content is tr. Steel changed in the range of ˜50 ppm was melted in the laboratory, hot-rolled, pickled, annealed at 830 ° C. × 3 hr, and cold-rolled to a thickness of 0.35 mm. . Subsequently, finish annealing at 950 ° C. × 1 min (10% H 2 -90% N 2 atmosphere) was performed on the cold-rolled sheet. In the fatigue test, a sample having a parallel part width of 5 mm and a length of 150 mm was cut from the finish annealed material in parallel with the rolling direction, and the end face of the parallel part was polished in the rolling direction with No. 800 emery paper. It was performed by partial swinging (tensile-tensile) at 20 Hz.
[0023]
FIG. 2 shows the relationship between the amount of Mg added to the specimen (sample) thus obtained and the fatigue limit. Here, the fatigue limit was set to a stress amplitude at which no fracture occurred at 10 7 repetitions.
[0024]
FIG. 2 shows that the fatigue limit is improved when 1 ppm or more of Mg is added. In order to investigate this cause, SEM observation of the inclusions in the steel in the cross section of the steel sheet was performed by SEM. As a result, many coarse clustered Al 2 O 3 particles were observed in the Mg-free steel. On the other hand, it was found that Al 2 O 3 clusters were reduced in Mg-added steel. From this, it is considered that the fatigue limit, that is, the improvement in fatigue characteristics, is due to the reduction of coarse Al 2 O 3 clusters that become the starting point of fatigue by the addition of Mg.
[0025]
From the above, the lower limit of Mg is set to 0.0001% (1 ppm). The upper limit is set to 0.005% (50 ppm) from the viewpoint of cost. In order to obtain a steel sheet with more excellent fatigue characteristics, it is more preferably 0.0005 (5 ppm) to 0.005 (50 ppm).
[0026]
Next, the reasons for limiting other components will be described.
[0027]
Since Si is an effective element for increasing the specific resistance of the steel sheet, the lower limit is set to 1.0%. On the other hand, if it exceeds 4%, the magnetic flux density decreases as the saturation magnetic flux density decreases, so the upper limit was made 4%.
[0028]
Al, like Si, is an effective element for increasing the specific resistance. However, when the content exceeds 2%, the magnetic flux density decreases with a decrease in the saturation magnetic flux density, so the upper limit is set to 2%. Further, when the content is less than 0.1%, AlN becomes finer and the grain growth property decreases, so the lower limit was made 0.1%.
[0029]
C has a problem of magnetic aging, so 0.005% or less.
[0030]
Mn is required to be 0.05% or more in order to prevent red hot brittleness during hot rolling, but if it exceeds 2%, the magnetic flux density is lowered, so 0.05 to 2% was set.
[0031]
If P is added in excess of 0.1%, the steel sheet becomes hard, so the content is made 0.1% or less.
[0032]
N is made 0.005% or less in order to increase the iron loss when the content is large and to increase the iron loss.
[0033]
If S exceeds 0.02%, iron loss increases due to precipitation of MnS, so the upper limit is made 0.02%.
[0034]
If O exceeds 0.002%, the initiation site of fatigue cracks increases, so 0.002% or less.
[0035]
In addition, elements such as Sb, Sn, REM, Ni, Cu, and Co can be added as long as the effects of the present invention are not impaired.
[0036]
Next, the manufacturing method of the steel plate of this invention is demonstrated.
[0037]
In order to obtain the steel sheet of the present invention, for example, the molten steel blown in a converter is degassed and adjusted to a predetermined component, followed by casting and hot rolling. The finish annealing temperature and the coiling temperature during hot rolling need not be specified and may be normal. Moreover, although hot-rolled sheet annealing after hot rolling may be performed, it is not essential. Next, after a predetermined sheet thickness is obtained by one cold rolling or two or more cold rollings with intermediate annealing, final annealing is performed.
[0038]
Here, Cr and Mg specified in the present invention can be within the scope of the present invention by controlling the oxygen potential of slag or steel, for example.
[0039]
【Example】
The molten steel blown in the converter was degassed, cast into the components shown in Table 1, slab heated at 1140 ° C. × 1 hr, and then hot-rolled to a thickness of 2.0 mm. The hot rolling finishing temperature was 800 ° C., and the winding temperature was 610 ° C. After winding, hot-rolled sheet annealing was performed at 890 ° C. for 3 hours in an atmosphere of 75% H 2 -25% N 2 . Then, cold rolling was performed to a plate thickness of 0.35 mm, and finish annealing was performed under the conditions shown in Table 1 in a 10% H 2 -90% N 2 atmosphere.
[0040]
For the measurement of the magnetic characteristics, a ring sample having an outer diameter of 45 mm and an inner diameter of 33 mm was used and wound with a primary turn of 100 and a secondary turn of 100. In the fatigue test, a sample having a parallel part width of 5 mm and a length of 150 mm was cut from the finish annealed material in parallel with the rolling direction, and the parallel part was polished with # 800 emery paper, and then a piece with a stress ratio of 0.1 and a frequency of 20 Hz. Swing (tensile-tensile) was performed.
[0041]
Table 1 shows the magnetic properties and fatigue properties of each steel plate.
[0042]
[Table 1]
Figure 0003956596
[0043]
From Table 1, it can be seen that a steel sheet excellent in magnetic characteristics and fatigue characteristics can be obtained in the steel of the present invention in which the Cr and Mg amounts are within the range of the present invention.
[0044]
On the other hand, in the comparative steel, either the magnetic property or the fatigue property is inferior.
[0045]
【The invention's effect】
As described above, according to the present invention, a steel sheet having low iron loss and excellent fatigue characteristics can be obtained. Further, the steel sheet obtained by the present invention is suitable as a core material for a motor that is operated at a variable speed in a high frequency range such as an electric vehicle, an air conditioner, and a servo motor.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between Cr addition amount and iron loss, magnetic flux density and hardness. FIG. 2 is a graph showing the relationship between Mg addition amount and fatigue limit.

Claims (1)

mass%で、C:0.005%以下、P:0.1%以下、Si:1〜4%、Mn:0.05〜2%、Al:0.1〜2%、S:0.02%以下、N:0.005%以下、 O:0.002%以下、Cr:0.4〜5%、Mg:0.0001〜0.005%を含み、残部Fe及び不可避不純物であることを特徴とする無方向性電磁鋼板。In mass%, C: 0.005% or less, P: 0.1% or less, Si: 1-4%, Mn: 0.05-2%, Al: 0.1-2%, S: 0.02 %: N: 0.005% or less, O: 0.002% or less, Cr: 0.4-5%, Mg: 0.0001-0.005%, the balance being Fe and inevitable impurities A non-oriented electrical steel sheet.
JP2000279595A 2000-06-19 2000-09-14 Non-oriented electrical steel sheet Expired - Fee Related JP3956596B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000279595A JP3956596B2 (en) 2000-09-14 2000-09-14 Non-oriented electrical steel sheet
CNB018014402A CN1183269C (en) 2000-06-19 2001-06-13 Non-oriented electromagnetic steel sheet and method for producing therefor
PCT/JP2001/005001 WO2001098550A1 (en) 2000-06-19 2001-06-13 Non-oriented electromagnetic steel sheet and method for production thereof
TW90114696A TW494414B (en) 2000-06-19 2001-06-18 Non-oriented electromagnetic steel sheet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000279595A JP3956596B2 (en) 2000-09-14 2000-09-14 Non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2002088452A JP2002088452A (en) 2002-03-27
JP3956596B2 true JP3956596B2 (en) 2007-08-08

Family

ID=18764573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279595A Expired - Fee Related JP3956596B2 (en) 2000-06-19 2000-09-14 Non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3956596B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492678B2 (en) 2017-12-26 2022-11-08 Posco Non-oriented electrical steel sheet and method for preparing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592974B2 (en) * 2001-02-14 2010-12-08 新日本製鐵株式会社 Continuous casting method of molten steel for non-oriented electrical steel sheet and slab for non-oriented electrical steel sheet
JP5699642B2 (en) * 2010-04-30 2015-04-15 Jfeスチール株式会社 Motor core
CN112662942B (en) * 2020-11-19 2022-04-19 南京钢铁股份有限公司 Damping steel and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492678B2 (en) 2017-12-26 2022-11-08 Posco Non-oriented electrical steel sheet and method for preparing same

Also Published As

Publication number Publication date
JP2002088452A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP4329538B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR100753940B1 (en) Non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction, and method for producing the same
JP5444812B2 (en) Core material for high-speed motors
JP2004068084A (en) Non-grain-oriented electromagnetic steel sheet with high magnetic-flux density for rotating machine, and member for rotating machine
KR102530720B1 (en) Non-oriented electrical steel sheet
JP3305806B2 (en) Manufacturing method of high tensile non-oriented electrical steel sheet
JP4696750B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
JP2004332042A (en) Method for producing non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction and perpendicular direction on sheet surface
JP4349340B2 (en) Method for producing Cu-containing non-oriented electrical steel sheet
JP2008031490A (en) Non-oriented electrical steel sheet
JP3956596B2 (en) Non-oriented electrical steel sheet
JP4681687B2 (en) Non-oriented electrical steel sheet
KR20210125073A (en) non-oriented electrical steel sheet
KR101403199B1 (en) Non-oriented electromagnetic steel sheet
JP4341476B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4613436B2 (en) Non-oriented electrical steel sheet
JP2019183231A (en) Nonoriented electromagnetic steel sheet, stater core, rotor core, and manufacturing method therefor
JP2004339537A (en) High magnetic flux density nonoriented silicon steel sheet having high strength and excellent workability and recycling property, and production method therefor
KR20220054871A (en) Non-oriented electrical steel sheet and its manufacturing method
JP2005344156A (en) Non-oriented electromagnetic steel sheet, non-oriented electromagnetic steel sheet to be heated for aging, and method for manufacturing them
JP3937685B2 (en) Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same
JP3934904B2 (en) Low iron loss non-oriented electrical steel sheet excellent in workability and manufacturing method thereof
JP4852804B2 (en) Non-oriented electrical steel sheet
JP2002212689A (en) Silicon steel sheet

Legal Events

Date Code Title Description
A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20040413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3956596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees