JPH04280921A - Production of steel sheet for particle accelerator by continuous annealing - Google Patents

Production of steel sheet for particle accelerator by continuous annealing

Info

Publication number
JPH04280921A
JPH04280921A JP4156691A JP4156691A JPH04280921A JP H04280921 A JPH04280921 A JP H04280921A JP 4156691 A JP4156691 A JP 4156691A JP 4156691 A JP4156691 A JP 4156691A JP H04280921 A JPH04280921 A JP H04280921A
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
continuous annealing
magnetic properties
particle accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4156691A
Other languages
Japanese (ja)
Other versions
JPH08931B2 (en
Inventor
Morio Shiozaki
塩崎 守雄
Takahide Shimazu
高英 島津
Etsuo Hagiwara
萩原 悦男
Michihiro Koino
通博 濃野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4156691A priority Critical patent/JPH08931B2/en
Publication of JPH04280921A publication Critical patent/JPH04280921A/en
Publication of JPH08931B2 publication Critical patent/JPH08931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To mass-produce a steel sheet for particle accelerator excellent in magnetic properties at a low cost. CONSTITUTION:A slab having a composition consisting of, by weight, <=0.01% C, <=0.3% Si, 0.1-1.0% Mn, <=0.3% P, <=0.02% S, <=0.01% Sol.Al, <=0.01% N, and the balance iron with inevitable impurities is heated at 950-1150 deg.C and finishing temp. is regulated to >=950 deg.C to form a hot rolled coil. This coil is cold-rolled to 0.9-2.5mm thickness. The resulting steel sheet is subjected to recrystallization annealing at 750-900 deg.C by means of continuous annealing and cooled slowly from the recrystallization temp. down to 450 deg.C at 1-20 deg.C/sec cooling rate, and the final temper rolling is done at <=0.4% reduction of area. By this method, the steel sheet for particle accelerator excellent in magnetic properties as to have >=2800 D.C. magnetic permeability at 10e can be produced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、基本的には粒子加速器
用鋼板の製造に関するもので、円形または直線型の加速
器のヨーク材として用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention basically relates to the production of steel plates for particle accelerators, which are used as yoke materials for circular or linear accelerators.

【0002】0002

【従来の技術】素粒子研究や放射光利用研究のため、大
型粒子加速器の建設が近年盛んである。粒子加速器には
ヨークとしての鋼材が必要である。現在、計画の粒子加
速器の中には周長が90kmにも及ぶものがあり、ヨー
ク用の鋼板として数万トンが必要となる。このヨーク材
に求められる特性は、直流での励磁特性が優れているこ
と及び構造用としての強度である。粒子加速器のヨーク
に要求される励磁特性は、低磁場から高磁場まで安定し
て高い磁束密度であるため、Si などは少量の純鉄系
の鋼板となるが、とくに低磁場での磁束密度も求められ
る。また、構造用としての強度を確保するため板厚は0
.9mm以上が用いられるが、厚くなり過ぎると最終工
程での打ち抜きが困難になるため、2.5mm以下で使
用されることが多い。
BACKGROUND OF THE INVENTION In recent years, construction of large particle accelerators has become popular for research on elementary particles and research using synchrotron radiation. A particle accelerator requires a steel material as a yoke. Currently, some planned particle accelerators have circumferential lengths of up to 90 km, requiring tens of thousands of tons of steel plates for the yokes. The characteristics required of this yoke material are excellent DC excitation characteristics and strength for structural use. The excitation characteristic required for the yoke of a particle accelerator is a stable and high magnetic flux density from low to high magnetic fields, so a pure iron steel plate with a small amount of Si, etc. is required, but the magnetic flux density is particularly low in low magnetic fields. Desired. In addition, the plate thickness is 0 to ensure strength for structural use.
.. A thickness of 9 mm or more is used, but if it becomes too thick, it becomes difficult to punch out in the final process, so a thickness of 2.5 mm or less is often used.

【0003】従来、電磁鋼板の一種としての無方向性電
磁鋼板は、優れた磁気特性を有することで知られるが、
板厚は0.5mmまたは0.35mmが殆どであり、0
.9mm以上の板厚を製造することは電磁鋼板生産ライ
ンの制約もあって出来ない。また、電磁厚板としての厚
みが20mm以上の鋼板で磁気特性を改良した例が、例
えば特開平1−142028号公報などで知られている
が、コイルとして巻取れないので生産性が悪い。更には
、自動車用鋼板などの冷延鋼板で、0.5〜3mm厚程
度のものが連続焼鈍で製造されているが、磁気特性は極
めて不満足である。また、電磁軟鉄板としての材料は板
厚が0.6〜4.5mmであり、磁気特性はJIS C
 2504に規定される如く優れたものがある。 しかしながら、製造には高温・長時間のバッチ焼鈍が必
要であること、使用用途が小型機器に限定されているこ
となどのため、粒子加速器用として必要な大量生産が可
能で且つ低コストの条件に合致しない。このように、粒
子加速器として必要な磁気特性の優れた厚み0.9〜2
.5mmの鋼板が現在まで製造されていない。
Conventionally, non-oriented electrical steel sheets, which are a type of electrical steel sheets, are known to have excellent magnetic properties.
Most plate thicknesses are 0.5 mm or 0.35 mm, and 0.
.. It is not possible to manufacture sheets with a thickness of 9 mm or more due to restrictions on the electromagnetic steel sheet production line. Further, an example of improving the magnetic properties of a steel plate having a thickness of 20 mm or more as an electromagnetic thick plate is known, for example, in Japanese Patent Application Laid-Open No. 1-142028, but productivity is poor because it cannot be wound into a coil. Furthermore, cold-rolled steel sheets such as steel sheets for automobiles with a thickness of about 0.5 to 3 mm are manufactured by continuous annealing, but their magnetic properties are extremely unsatisfactory. In addition, the material used as the electromagnetic soft iron plate has a thickness of 0.6 to 4.5 mm, and its magnetic properties are JIS C
There are some excellent ones as defined in 2504. However, manufacturing requires high-temperature, long-time batch annealing, and the application is limited to small equipment, so it is not possible to mass-produce and at low cost, which is necessary for particle accelerators. Doesn't match. In this way, the thickness of 0.9 to 2
.. 5mm steel plates have not been manufactured to date.

【0004】0004

【発明が解決しようとする課題】本発明は、上記課題を
解決すべく具体的には、1Oeでの直流透磁率μ1 が
2800以上の優れた磁気特性を有する板厚0.9〜2
.5mmの粒子加速器用鋼板を製造する方法を提供する
ものである。
[Problems to be Solved by the Invention] In order to solve the above-mentioned problems, the present invention specifically provides a plate having a thickness of 0.9 to 2,000, which has excellent magnetic properties with a DC magnetic permeability μ1 of 2,800 or more at 1 Oe.
.. A method for manufacturing a 5 mm steel plate for particle accelerators is provided.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明の特徴は重量%でC≦0.01%,Si ≦0
.3%,Mn :0.1〜1.0%,P≦0.3%,S
≦0.02%,Sol.Al≦0.01%,N≦0.0
1%残部が鉄および不可避的不純物からなるスラブを 
950〜1150℃で加熱し、熱間圧延し、仕上温度を
 910℃以上として熱延コイルを得た後、冷間圧延し
て0.9〜2.5mmとし、次いで、連続焼鈍で 75
0〜 900℃で再結晶焼鈍し、再結晶温度から 45
0℃迄の間に、1〜20℃/秒で徐冷し、最後の調質圧
延の圧下率を0.4%以下で実施することにより、1O
eでの直流透磁率が2800以上の優れた磁気特性を有
する粒子加速器用鋼板を製造するところにある。以下、
本発明の詳細を説明すると、次の通りである。
[Means for Solving the Problems] The features of the present invention for solving the above problems are as follows: C≦0.01% by weight, Si≦0
.. 3%, Mn: 0.1-1.0%, P≦0.3%, S
≦0.02%, Sol. Al≦0.01%, N≦0.0
A slab with 1% balance of iron and unavoidable impurities.
After heating at 950 to 1150°C and hot rolling to a finishing temperature of 910°C or higher to obtain a hot rolled coil, cold rolling to 0.9 to 2.5 mm, and then continuous annealing to 75 mm.
Recrystallization annealing at 0 to 900℃, from recrystallization temperature to 45
1O
The objective is to manufacture a steel plate for particle accelerators that has excellent magnetic properties with a DC magnetic permeability of 2,800 or more. below,
The details of the present invention are as follows.

【0006】[0006]

【作用】本発明者等は高い磁束密度を得るためには、1
)強磁性以外の元素を少なくし、磁壁および結晶粒界と
交互作用を持つ微細なサイズの析出物を極力減らすこと
。 2)結晶粒径を大きくして結晶粒界を少なくすること。 3)結晶の集合組織を変革して、製品での{100 }
面方位粒を増やすこと。 4)製品での内部応力を極力少なくすること。 などが、必要であることを確認し、製造手段を設計し試
験を行って本発明を完成した。
[Function] In order to obtain a high magnetic flux density, the inventors believe that 1.
) Minimize the amount of non-ferromagnetic elements and minimize the number of fine-sized precipitates that interact with domain walls and grain boundaries. 2) To increase the grain size and reduce the number of grain boundaries. 3) Changing the crystal texture to improve {100} in products
To increase the number of grains with plane orientation. 4) Minimize internal stress in the product as much as possible. The present invention was completed by confirming the necessity of the above, designing a manufacturing means, and conducting tests.

【0007】まず、成分組成の限定理由について述べる
。 C:Cの量が多いと炭化物を析出して磁気特性を劣化さ
せるので、0.01%以下とする。 Si :Si は鋼板強度を確保するのに有効な元素で
あるが、添加コストの問題があるため、0.3%以下と
する。 Mn :Mn は硫化物の析出サイズを制御するために
重要で、0.1%未満ではMnS が微細析出して結晶
粒成長や磁壁の動きを阻害し、とくに低磁場の励磁特性
を劣化させるため避けなければならない。また、1.0
%超では添加コストの問題があるので、1.0%以下と
する。
First, the reason for limiting the component composition will be described. C: If the amount of C is too large, carbides will precipitate and the magnetic properties will deteriorate, so the content should be 0.01% or less. Si: Although Si is an effective element for ensuring the strength of the steel sheet, it is limited to 0.3% or less due to the problem of addition cost. Mn: Mn is important for controlling the size of sulfide precipitation; if it is less than 0.1%, MnS will precipitate finely, inhibiting crystal grain growth and domain wall movement, and particularly deteriorating excitation characteristics in low magnetic fields. Must be avoided. Also, 1.0
If it exceeds 1.0%, there is a problem of addition cost, so it should be 1.0% or less.

【0008】P:Pは、鋼板強度を上昇させるのに非常
に効果のある元素であるが、0.3%を越えると粒界や
鋼板表面に偏析して結晶粒成長を抑制するため、0.3
%以下の添加量とする。 S:Sは硫化物を形成せしめ、粒成長を阻害すると同時
に磁壁移動も抑制して低磁場特性を悪くするので、0.
02%以下とする。 Sol.Al:Sol.Alは窒化物を形成して、粒成
長を阻害すると同時に磁壁移動も抑制して低磁場特性を
悪くするので、0.01%以下とする。 N:NはAl と結合し窒化物を形成して、粒成長を阻
害すると同時に磁壁移動も抑制して低磁場特性を悪くす
るので、0.01%以下とする。なお、B,Cu など
のNやSの固定元素や集合組織改善のためのSn,Sb
 などの粒界偏析型元素を添加しても本発明の効果を損
なうものでない。
P: P is an element that is very effective in increasing the strength of steel sheets, but when it exceeds 0.3%, it segregates at grain boundaries and on the steel sheet surface, suppressing grain growth. .3
% or less. S: S forms sulfides, inhibits grain growth, and at the same time suppresses domain wall movement, worsening low magnetic field characteristics.
0.2% or less. Sol. Al: Sol. Al forms nitrides that inhibit grain growth and at the same time suppress domain wall motion, resulting in poor low-field characteristics, so the content should be 0.01% or less. N: N combines with Al to form nitrides, inhibiting grain growth and at the same time suppressing domain wall motion, resulting in poor low-field characteristics, so the content should be 0.01% or less. In addition, fixed elements of N and S such as B and Cu, and Sn and Sb for texture improvement
Addition of grain boundary segregation type elements such as these does not impair the effects of the present invention.

【0009】上記元素を含む溶鋼を、連続鋳造してスラ
ブを造り、スラブ加熱を実施するが加熱温度は 950
〜1150℃の範囲とする。この理由は、1150℃超
では硫化物や窒化物の固溶が起きて、熱間圧延中に微細
析出物が生じ、結晶粒成長を抑制するからである。また
、 950℃未満では後述の熱間圧延の仕上温度 91
0℃以上を確保することが出来ないからである。熱間圧
延のうち、仕上圧延完了温度(仕上温度)の制御は必要
で仕上温度は 910℃以上必要である。なぜなら、γ
相の 910℃以上で結晶粒径の大きなホットコイル組
織が得られ、このことが最終製品でも粗大結晶粒を得る
ことが出来、更には、最終製品での{100 }面方位
粒を増やすことが出来るからである。また、巻取温度は
とくに規制するものでないが、自己焼鈍の意味から 6
00℃以上が望ましい。ホットコイル厚みは1.5〜6
.5mmが好ましい。理由は、続く冷間圧延の圧下率は
40〜75%が集合組織の面から適当であるからである
Molten steel containing the above elements is continuously cast to form a slab, and the slab is heated at a heating temperature of 950℃.
The temperature should be in the range of ~1150°C. The reason for this is that at temperatures above 1150°C, solid solution of sulfides and nitrides occurs, producing fine precipitates during hot rolling, which suppresses grain growth. In addition, if it is less than 950°C, the finishing temperature of hot rolling described below 91
This is because it is not possible to ensure a temperature of 0°C or higher. During hot rolling, it is necessary to control the finish rolling completion temperature (finishing temperature), and the finishing temperature needs to be 910°C or higher. Because γ
A hot coil structure with a large crystal grain size can be obtained at temperatures above 910°C, and this makes it possible to obtain coarse crystal grains in the final product, and furthermore, it is possible to increase the number of grains with {100} plane orientation in the final product. Because it can be done. In addition, the winding temperature is not particularly regulated, but from the point of view of self-annealing.
00°C or higher is desirable. Hot coil thickness is 1.5-6
.. 5 mm is preferred. The reason is that a reduction ratio of 40 to 75% in the subsequent cold rolling is appropriate from the viewpoint of texture.

【0010】熱間圧延したコイルを酸洗し、冷間圧延す
る。冷延後の仕上厚みは、粒子加速器のヨーク鋼板に求
められる0.9〜2.5mmである。冷延後の再結晶焼
鈍の到達温度は、 750〜 900℃の必要がある。  750℃未満では、結晶粒径が小さいのでμ1 ≧2
800を確保出来ない。  900℃超のγ相に入ると、集合組織がランダム化す
ること、冷却時の変態歪みが入ることなどにより磁性が
劣化するため 900℃を越える温度は避けなければな
らない。
[0010] The hot rolled coil is pickled and cold rolled. The finished thickness after cold rolling is 0.9 to 2.5 mm, which is required for a yoke steel plate for a particle accelerator. The temperature reached in recrystallization annealing after cold rolling needs to be 750 to 900°C. Below 750℃, the crystal grain size is small, so μ1 ≧2
I can't secure 800. Temperatures exceeding 900°C must be avoided because if the material enters the γ phase at a temperature exceeding 900°C, the texture will become random and the magnetism will deteriorate due to transformation strain during cooling.

【0011】また、この時の最高到達温度からの冷却速
度は重要である。更に、続く調質圧延の圧下率も大事で
ある。これら冷速と調圧の圧下率について実験した例を
以下に報告する。供試材の成分を表1に示す。
[0011] Also, the cooling rate from the maximum temperature at this time is important. Furthermore, the rolling reduction rate of the subsequent temper rolling is also important. Examples of experiments conducted regarding these cooling speeds and pressure adjustment reduction rates are reported below. Table 1 shows the components of the sample materials.

【表1】 この成分と残り実質的にFe を含むスラブを、110
0℃で加熱して仕上温度 950℃として3.5mm厚
のホットコイルを製造し、これを酸洗、冷延して1.5
mm厚とし、連続焼鈍の到達温度 800℃とした。 
800℃から 450℃までの冷却に際して、冷却速度
を変える実験を行ってから、調圧を0.38%実施して
磁気測定し、図1を得た。また、これら冷却速度を変更
した材料について調圧の圧下率を振らせて実験した例を
図2に示す。図1,2から判明する如く、冷却速度が2
0℃/秒以下で且つ、調圧が0.4%以下がμ1 ≧2
800を得るための必要な条件である。この冷却速度は
例えば、窒素と水スプレーの所謂、気水冷却などによっ
て得られる。なお、冷却速度は最高温度から 450℃
までが重要であって、本発明者らの実験では、 450
℃以下の温度では 150℃/秒迄の冷却速度までは磁
性に問題ない。また 450℃以下の温度では途中の室
温までの冷却速度で、均熱などの熱履歴を入れても磁気
特性に悪い影響を与えない。最高温度から 450℃ま
での冷却速度が遅い方が磁気特性が良いが、過度の徐冷
では生産性が問題となるため下限を1℃/秒とする。結
局、最高温度から少なくとも 450℃までの適切な冷
却速度は1〜20℃/秒で、且つ調質圧延の圧下率は0
.4%以下でなければならない。なお、調質圧延の形状
矯正の他に、レベラーなどを使用することも可能である
が伸び率は同様に0.4%以下に制御する必要がある。 次いで、実施例について説明する。
[Table 1] A slab containing this component and the rest substantially containing Fe is 110
A hot coil with a thickness of 3.5 mm was produced by heating at 0°C to a finishing temperature of 950°C, which was pickled and cold rolled to a 1.5mm thick coil.
mm thickness, and the temperature reached by continuous annealing was 800°C.
After conducting an experiment in which the cooling rate was varied during cooling from 800°C to 450°C, the pressure was adjusted to 0.38% and magnetic measurements were taken to obtain Figure 1. Further, FIG. 2 shows an example in which an experiment was conducted by varying the rolling reduction ratio of pressure regulation for materials whose cooling rates were changed. As can be seen from Figures 1 and 2, the cooling rate is 2.
μ1 ≧2 when the temperature is 0℃/second or less and the pressure regulation is 0.4% or less
This is a necessary condition to obtain 800. This cooling rate can be achieved, for example, by so-called air-water cooling using nitrogen and water spray. The cooling rate is 450℃ from the maximum temperature.
Up to 450 is important, and in our experiments, up to 450
At temperatures below °C, there is no problem with magnetism at cooling rates up to 150 °C/sec. Furthermore, at temperatures below 450°C, the magnetic properties will not be adversely affected even if a thermal history such as soaking is included at a cooling rate halfway to room temperature. The slower the cooling rate from the maximum temperature to 450°C, the better the magnetic properties, but excessive slow cooling poses a problem in productivity, so the lower limit is set at 1°C/sec. After all, the appropriate cooling rate from the maximum temperature to at least 450°C is 1~20°C/sec, and the reduction rate of skin pass rolling is 0.
.. Must be 4% or less. In addition to shape correction by skin pass rolling, it is also possible to use a leveler or the like, but the elongation rate must similarly be controlled to 0.4% or less. Next, examples will be described.

【0012】0012

【実施例】(実施例1)表2に示した化学成分を含む溶
鋼を連続鋳造してスラブとし、スラブ加熱を1000℃
で行い、仕上温度を 950℃とした熱間圧延を行い、
巻取温度を 650℃として3.7mm厚のホットコイ
ルと成した。次いで、1.8mmまで冷延した後、 8
30℃×10秒の均熱を実施した後、 350℃まで3
0秒間で冷却(冷速:16℃/秒)して、次いで60℃
/秒の冷速で室温まで冷した。調圧を0.3%圧下率で
実施して形状矯正し、磁気特性測定用の試料をリング(
外径 120mm×内径80mm)にワイヤーカットで
切りだし、5枚重ねで直流磁気特性をJIS C 25
50に準拠して測定し表2を得た。
[Example] (Example 1) Molten steel containing the chemical components shown in Table 2 was continuously cast into a slab, and the slab was heated to 1000°C.
Hot rolling was carried out at a finishing temperature of 950°C.
The coiling temperature was set at 650°C to form a hot coil with a thickness of 3.7 mm. Then, after cold rolling to 1.8 mm, 8
After soaking at 30℃ for 10 seconds, heat to 350℃ 3
Cool for 0 seconds (cooling rate: 16℃/second), then 60℃
The mixture was cooled to room temperature at a cooling rate of 1/sec. Pressure adjustment was carried out at a reduction rate of 0.3% to correct the shape, and the sample for magnetic property measurement was placed in a ring (
Wire cut into pieces (outer diameter 120 mm x inner diameter 80 mm), and stack 5 sheets to meet JIS C 25 DC magnetic properties.
Table 2 was obtained by measuring according to 50.

【表2】 表2に示す如く、本発明範囲成分の試料No.(1)と
(2)は透磁率μ1 が2800を越えた。C,Mn 
,P,S,Sol.Al,Nなどが本発明を外れた比較
例の試料No.(3),(4),(5),(6),(7
)および(8)は透磁率μ1 ≧2800を満足出来な
かった。
[Table 2] As shown in Table 2, sample No. 1 containing the components within the scope of the present invention. In (1) and (2), the magnetic permeability μ1 exceeded 2800. C,Mn
, P.S., Sol. Comparative sample No. 1 in which Al, N, etc. are outside the scope of the present invention. (3), (4), (5), (6), (7
) and (8) could not satisfy the magnetic permeability μ1≧2800.

【0013】(実施例2)表2に示す試料No.(1)
の化学成分を含むスラブを表3に示す条件で熱間圧延し
、巻取温度を 600℃として3.2mm厚のホットコ
イルを製造した。次いで、1.2mmまで冷延してから
 800℃×6秒の再結晶焼鈍を窒素中で施し 450
℃まで10℃/秒で冷却した。その後 450℃で15
秒の均熱処理を施し、 100℃/秒で室温まで冷却し
た。形状矯正はレベラーを利用し、伸び率を0.1%と
した。磁気特性を実施例1と同様に測定した。
(Example 2) Sample No. 2 shown in Table 2. (1)
A slab containing the chemical components of was hot-rolled under the conditions shown in Table 3, and a hot coil with a thickness of 3.2 mm was manufactured at a coiling temperature of 600°C. Next, it was cold rolled to 1.2 mm and recrystallized annealed at 800°C for 6 seconds in nitrogen.
℃ at 10℃/sec. Then 15 at 450℃
It was subjected to soaking treatment for 2 seconds and cooled to room temperature at 100° C./second. A leveler was used for shape correction, and the elongation rate was set to 0.1%. Magnetic properties were measured in the same manner as in Example 1.

【表3】 表で見る如く、所望の透磁率を得るにはスラブ加熱温度
と仕上温度が本発明の範囲内にあることが必要であった
[Table 3] As seen in the table, it was necessary for the slab heating temperature and finishing temperature to be within the range of the present invention to obtain the desired magnetic permeability.

【0014】(実施例3)表4に示す成分の溶鋼を連続
鋳造して、1020℃×20分のスラブ加熱し、仕上温
度 920℃、巻取温度 630℃とし、4.0mm厚
のホットコイルを製造した。次いで、冷延して2.3m
m厚とし、表5の実験を行い、磁性を測定した。
(Example 3) Molten steel having the components shown in Table 4 was continuously cast, and the slab was heated at 1020°C for 20 minutes.The finishing temperature was 920°C, the coiling temperature was 630°C, and a 4.0 mm thick hot coil was formed. was manufactured. Then, cold rolled to 2.3m
The experiment shown in Table 5 was conducted to measure the magnetism.

【表4】[Table 4]

【表5】 再結晶温度は 750〜 900℃がμ1 ≧2800
に必要であり(試料(1)〜(4)の実験)、 450
℃迄の冷却速度は20℃/秒以下が必要であり(試料(
5)〜(8)の実験)、調質圧延の圧下率は0.4%以
下が必要であった(試料(9)〜(11)の実験)。こ
れらのことより、本発明の範囲を満足させる条件のみで
、優れた磁気特性を得ることが出来た。
[Table 5] Recrystallization temperature is 750 to 900℃, μ1 ≧2800
(experiments of samples (1) to (4)), 450
The cooling rate to ℃ must be 20℃/second or less (sample (
5) to (8) experiments), the reduction ratio of skin pass rolling was required to be 0.4% or less (experiments of samples (9) to (11)). From these facts, it was possible to obtain excellent magnetic properties only under conditions that satisfied the scope of the present invention.

【0015】[0015]

【発明の効果】以上説明したように、本発明は成分、熱
延条件、連続焼鈍条件を厳密に制御することにより、磁
気特性に優れた粒子加速器用鋼板を低コストで大量に生
産しうる効果を有する。
[Effects of the Invention] As explained above, the present invention has the effect of making it possible to mass-produce steel sheets for particle accelerators with excellent magnetic properties at low cost by strictly controlling the composition, hot rolling conditions, and continuous annealing conditions. has.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】再結晶焼鈍後の冷却速度と透磁率の関係を示す
図である。
FIG. 1 is a diagram showing the relationship between cooling rate and magnetic permeability after recrystallization annealing.

【図2】再結晶焼鈍後の各々の冷却速度での調質圧延の
圧下率と透磁率の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the reduction ratio of temper rolling and magnetic permeability at each cooling rate after recrystallization annealing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  重量%でC≦0.01%,Si ≦0
.3%,Mn :0.1〜1.0%,P≦0.3%,S
≦0.02%,Sol.Al≦0.01%,N≦0.0
1%残部が鉄および不可避的不純物からなるスラブを 
950〜1150℃で加熱し、熱延し、仕上温度を 9
10℃以上として熱延コイルを得た後、冷間圧延して0
.9〜2.5mmとし、次いで、連続焼鈍で 750〜
 900℃で再結晶焼鈍し、再結晶温度から 450℃
迄の間に1〜20℃/秒の冷却速度で冷却し、最後の調
質圧延の圧下率を0.4%以下で実施することを特徴と
する、1Oeでの直流透磁率が2800以上の優れた磁
気特性を有する連続焼鈍による粒子加速器用鋼板の製造
方法。
[Claim 1] C≦0.01% by weight, Si≦0
.. 3%, Mn: 0.1-1.0%, P≦0.3%, S
≦0.02%, Sol. Al≦0.01%, N≦0.0
A slab with 1% balance of iron and unavoidable impurities.
Heating at 950-1150℃, hot rolling, finishing temperature 9
After obtaining a hot-rolled coil at 10°C or higher, it is cold-rolled to 0.
.. 9~2.5mm, then continuous annealing to 750~
Recrystallization annealed at 900℃, then 450℃ from the recrystallization temperature
The product has a DC magnetic permeability of 2800 or more at 1 Oe, which is characterized by cooling at a cooling rate of 1 to 20°C/sec during the rolling process, and performing the final temper rolling at a reduction rate of 0.4% or less. A method for manufacturing a steel plate for particle accelerators using continuous annealing that has excellent magnetic properties.
JP4156691A 1991-03-07 1991-03-07 Manufacturing method of steel plate for particle accelerator by continuous annealing Expired - Lifetime JPH08931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4156691A JPH08931B2 (en) 1991-03-07 1991-03-07 Manufacturing method of steel plate for particle accelerator by continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4156691A JPH08931B2 (en) 1991-03-07 1991-03-07 Manufacturing method of steel plate for particle accelerator by continuous annealing

Publications (2)

Publication Number Publication Date
JPH04280921A true JPH04280921A (en) 1992-10-06
JPH08931B2 JPH08931B2 (en) 1996-01-10

Family

ID=12611997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4156691A Expired - Lifetime JPH08931B2 (en) 1991-03-07 1991-03-07 Manufacturing method of steel plate for particle accelerator by continuous annealing

Country Status (1)

Country Link
JP (1) JPH08931B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0684320A1 (en) * 1994-04-26 1995-11-29 LTV STEEL COMPANY, Inc. Process of making electrical steels
US6068708A (en) * 1998-03-10 2000-05-30 Ltv Steel Company, Inc. Process of making electrical steels having good cleanliness and magnetic properties
US6217673B1 (en) 1994-04-26 2001-04-17 Ltv Steel Company, Inc. Process of making electrical steels
JP2007277700A (en) * 2006-03-14 2007-10-25 Jfe Steel Kk Steel sheet and its production method
JP2013227649A (en) * 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Steel plate for high output reluctance motor iron core, method of manufacturing the steel plate, rotor for reluctance motor and stator using the steel plate as raw material, and reluctance motor
WO2024162351A1 (en) * 2023-02-03 2024-08-08 Jfeスチール株式会社 Electromagnetic soft iron

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0684320A1 (en) * 1994-04-26 1995-11-29 LTV STEEL COMPANY, Inc. Process of making electrical steels
US5609696A (en) * 1994-04-26 1997-03-11 Ltv Steel Company, Inc. Process of making electrical steels
USRE35967E (en) * 1994-04-26 1998-11-24 Ltv Steel Company, Inc. Process of making electrical steels
US6217673B1 (en) 1994-04-26 2001-04-17 Ltv Steel Company, Inc. Process of making electrical steels
US6068708A (en) * 1998-03-10 2000-05-30 Ltv Steel Company, Inc. Process of making electrical steels having good cleanliness and magnetic properties
JP2007277700A (en) * 2006-03-14 2007-10-25 Jfe Steel Kk Steel sheet and its production method
JP2013227649A (en) * 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Steel plate for high output reluctance motor iron core, method of manufacturing the steel plate, rotor for reluctance motor and stator using the steel plate as raw material, and reluctance motor
WO2024162351A1 (en) * 2023-02-03 2024-08-08 Jfeスチール株式会社 Electromagnetic soft iron

Also Published As

Publication number Publication date
JPH08931B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
RU2318883C2 (en) Non-oriented electrical steel strip continuous casting method
CN106702260B (en) A kind of high-magnetic induction, low-iron loss non-orientation silicon steel and its production method
JP7260546B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2019132363A1 (en) Double oriented electrical steel sheet and method for manufacturing same
KR20150067381A (en) Oriented silicon steel and method for manufacturing same
KR20200076517A (en) Grain oriented electrical steel sheet and method for manufacturing therof
US20220049322A1 (en) Non-directional electrical steel sheet and method for producing same
JPH03219020A (en) Production of nonoriented silicon steel sheet
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
US5139582A (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characeristics
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH04280921A (en) Production of steel sheet for particle accelerator by continuous annealing
JP5005873B2 (en) Method for producing directional electromagnetic steel strip
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
JP4281119B2 (en) Manufacturing method of electrical steel sheet
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JP7288215B2 (en) Non-oriented electrical steel sheet
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP3073598B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
WO2024095665A1 (en) Non-oriented electromagnetic steel sheet and production method for same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960702