JP3073598B2 - Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density - Google Patents

Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density

Info

Publication number
JP3073598B2
JP3073598B2 JP04102938A JP10293892A JP3073598B2 JP 3073598 B2 JP3073598 B2 JP 3073598B2 JP 04102938 A JP04102938 A JP 04102938A JP 10293892 A JP10293892 A JP 10293892A JP 3073598 B2 JP3073598 B2 JP 3073598B2
Authority
JP
Japan
Prior art keywords
slab
steel sheet
continuous cast
electrical steel
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04102938A
Other languages
Japanese (ja)
Other versions
JPH05295439A (en
Inventor
穂高 本間
浩昭 増井
宗弘 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP04102938A priority Critical patent/JP3073598B2/en
Publication of JPH05295439A publication Critical patent/JPH05295439A/en
Application granted granted Critical
Publication of JP3073598B2 publication Critical patent/JP3073598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁束密度の高い一方向
性電磁鋼板を安定に製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stably producing a grain-oriented electrical steel sheet having a high magnetic flux density.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、結晶構造が体心立方
格子である鉄系合金において、磁化容易軸である〈10
0〉方向が皆同一の方向に揃った鋼板である。工業的に
得られる一般の鋼板は多結晶体であり、結晶粒の向きは
粒毎によってまちまちである。この結晶粒の向きを、圧
延、再結晶を利用して、圧延方向にゴス方位と言われる
(110)〈001〉方向に揃えたものが方向性電磁鋼
板である。また、ここで利用する再結晶は、いわゆる二
次再結晶であって、結晶粒が通常の鋼板に比べて極端に
大きく成長する。その大きさは、数ミリから数センチメ
ートルにいたる。一般に、結晶構造を持つ強磁性金属
は、結晶軸の向きによって磁化特性の良否が異なり、
〈100〉軸が最も優れている。そのため方向性電磁鋼
板は、圧延方向への磁化特性が非常に優れている。さら
に結晶粒が大きいことと、磁化容易軸が圧延方向だけで
あることから、磁化の向きを区切る境界である磁壁はす
べてブロックタイプの180°磁壁となる。鋼板トータ
ルとしての磁化特性は磁壁の移動の迅速さで決まるが、
180°磁壁は移動が容易なので、方向性電磁鋼板は磁
化特性に優れた鋼板になるのである。磁化特性に優れて
いるということは、磁化過程においてエネルギー損失が
少ないということである。
2. Description of the Related Art A grain-oriented electrical steel sheet has an easy axis of <10 in an iron-based alloy having a crystal structure of a body-centered cubic lattice.
0> The steel plates are all aligned in the same direction. A general steel plate obtained industrially is a polycrystalline body, and the direction of crystal grains varies depending on each grain. A grain-oriented electrical steel sheet is one in which the orientation of the crystal grains is aligned with the (110) <001> direction called the Goss orientation in the rolling direction by using rolling and recrystallization. The recrystallization used here is a so-called secondary recrystallization, in which crystal grains grow extremely large as compared with a normal steel sheet. Its size ranges from a few millimeters to a few centimeters. In general, ferromagnetic metals having a crystal structure have different magnetization characteristics depending on the direction of the crystal axis.
The <100> axis is the best. Therefore, the grain-oriented electrical steel sheet has extremely excellent magnetization characteristics in the rolling direction. Further, since the crystal grains are large and the axis of easy magnetization is only in the rolling direction, all the domain walls which are boundaries that separate the directions of magnetization are block-type 180 ° domain walls. The magnetization properties of the steel sheet as a whole are determined by the speed of domain wall movement,
Since the 180 ° domain wall is easy to move, the grain-oriented electrical steel sheet becomes a steel sheet having excellent magnetization characteristics. Excellent magnetizing properties mean that energy loss is small in the magnetizing process.

【0003】ところで、外部からの磁化力によって、鋼
板の磁化の向きが変化すると、磁気誘導の法則にしたが
って鋼板内に磁化の変化を打ち消すように渦電流が流れ
て、磁化の変化を妨げようとする。また、磁壁の移動に
対しても同様で、磁壁周辺に微少な渦電流が生じる。こ
の渦電流によって生じるジュール熱は鋼板の磁化過程に
おいてエネルギー損失となる。この損失は渦電流損と呼
ばれる。渦電流損は磁壁の移動速度に比例するので、例
えば、電磁鋼板を高周波変圧器などに用いる際は渦電流
損が小さいことが特に要求される。渦電流損を減少させ
るには、鋼板の電気抵抗を大きくすればよく、そのため
に電磁鋼板ではSiを2〜4%添加する。
When the direction of magnetization of a steel sheet changes due to an external magnetizing force, an eddy current flows in the steel sheet according to the law of magnetic induction so as to cancel the change in magnetization, and the change in magnetization is prevented. I do. The same applies to the movement of the domain wall, and a small eddy current is generated around the domain wall. Joule heat generated by the eddy current causes energy loss in the magnetization process of the steel sheet. This loss is called eddy current loss. Since the eddy current loss is proportional to the moving speed of the domain wall, for example, when an electromagnetic steel sheet is used for a high-frequency transformer or the like, it is particularly required that the eddy current loss be small. The eddy current loss can be reduced by increasing the electric resistance of the steel sheet. For that purpose, 2 to 4 % of Si is added to the electromagnetic steel sheet.

【0004】電磁鋼板は、その磁化特性の良好さから、
軟磁性材料として変圧器の鉄心、モーターコア等、交流
磁化下での利用に多く供されてきた。電磁鋼板を軟磁性
材料として交流磁化した場合、エネルギー損失が熱とし
て現れる。エネルギー損失を少なくするためには、鋼板
の電気抵抗を大きくすると共に、二次再結晶で得られた
ゴス方位粒の向きをよりシャープに揃え、かつ、二次再
結晶を安定的に生じさせることが必須である。
[0004] The electrical steel sheet has a good magnetizing property,
It has been widely used as a soft magnetic material for applications under AC magnetization, such as transformer cores and motor cores. When an electromagnetic steel sheet is AC-magnetized as a soft magnetic material, energy loss appears as heat. To reduce energy loss, increase the electrical resistance of the steel sheet, align the Goss orientation grains obtained in the secondary recrystallization more sharply, and stably generate the secondary recrystallization. Is required.

【0005】二次再結晶を安定的に生じさせるために
は、二次再結晶に先立って生じる一次再結晶時に、集合
組織が理想的であることと、結晶粒径が適切で、かつ揃
っていることが必要である。一次再結晶集合組織は、熱
間圧延、冷間圧延及び焼鈍によって整えられる。このと
きわずかなゴス粒と、ゴス粒が粒成長するときに侵食さ
れる大量の(111)〈112〉方位粒が存在している
ことが望ましい。
[0005] In order to stably generate secondary recrystallization, it is necessary to ensure that the texture is ideal and the crystal grain size is appropriate and uniform at the time of primary recrystallization that occurs prior to secondary recrystallization. It is necessary to be. The primary recrystallization texture is adjusted by hot rolling, cold rolling and annealing. At this time, it is desirable that a small number of goss grains and a large amount of (111) <112> orientation grains eroded when the goss grains grow are present.

【0006】一次再結晶粒径は、焼鈍温度と、粒成長を
抑える働きをするAlN,MnS等のインヒビターによ
って決定される。また、(100)粒のように、回復、
その場で再結晶が起こり易い粒や、変形前の結晶粒が大
きかったものは、一次再結晶後の結晶粒径が大きい。
[0006] The primary recrystallized grain size is determined by the annealing temperature and an inhibitor such as AlN or MnS which functions to suppress grain growth. Also, like (100) grains,
Grains in which recrystallization is likely to occur on the spot or crystal grains before deformation are large have a large crystal grain size after primary recrystallization.

【0007】1250℃以上の高温でスラブ加熱を行
い、電磁鋼板を製造する場合には、スラブ内の結晶粒
が、数cmにまで粗大化するものがあるために、熱延、冷
延後の再結晶挙動に場所的な不均一が生じ、二次再結晶
が不安定になることが多い。これについては(パス毎エ
ージング)等の発明によって解決された部分もあるが、
根本的な問題は素材である鋳造組織にあって、その面か
らの対策は成されておらず不十分であった。
When a slab is heated at a high temperature of 1250 ° C. or more to manufacture an electromagnetic steel sheet, some of the crystal grains in the slab may be coarsened to several centimeters. Secondary recrystallization often becomes unstable due to spatial non-uniformity in the recrystallization behavior. This has been partially solved by inventions such as (Each Path Aging),
The fundamental problem was the casting structure, which was the raw material, and no measures were taken from that point, which was insufficient.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上述した鋳
造組織の問題点を解決し、より安定した二次再結晶プロ
セスを提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the cast structure and provides a more stable secondary recrystallization process.

【0009】[0009]

【課題を解決するための手段】1250℃以上のスラブ
加熱によって、スラブの結晶粒は粗大化するが、その程
度は鋳造組織によって異なり、等軸晶は柱状晶に比べて
優先的に成長する。大きな結晶粒は熱延、冷延を経た後
の再結晶後も結晶粒径が大きい。二次再結晶に際して
は、結晶粒径の小さなものほど侵食され易いので、大き
な一次再結晶粒が存在することは、二次再結晶の進行に
対して不利である。
The slab heating at 1250 ° C. or more causes the slab crystal grains to become coarse, but the degree depends on the casting structure, and the equiaxed crystal grows preferentially as compared with the columnar crystal. Large crystal grains have a large crystal grain size even after recrystallization after hot rolling and cold rolling. During secondary recrystallization, the smaller the crystal grain size is, the more likely it is to be eroded, and the presence of large primary recrystallized grains is disadvantageous for the progress of secondary recrystallization.

【0010】ところで、二次再結晶粒の発生位置は、鋼
板の表面側であることが知られている。これは、集合組
織の影響である。熱間圧延において、表面側はせん断変
形をするために、集合組織は(110)面が主となる。
これが冷間圧延、一次再結晶されると、大量の(11
1)〈112〉とわずかなゴス方位が生成される。これ
は、二次再結晶に対して、理想的な集合組織である。一
方中心部は、熱延においても通常の冷延集合組織と変わ
らないので、(111)面と、(100)面の両者が存
在する集合組織となる。従って、集合組織的に表面側
が、二次再結晶に有利である。
It is known that secondary recrystallized grains are generated on the surface side of a steel sheet. This is the effect of the texture. In hot rolling, since the surface side undergoes shear deformation, the texture is mainly the (110) plane.
When this is cold rolled and primary recrystallized, a large amount of (11
1) A slight Goss orientation is generated as <112>. This is an ideal texture for secondary recrystallization. On the other hand, the central portion is not different from the ordinary cold-rolled texture even in hot rolling, and thus has a texture in which both the (111) plane and the (100) plane are present. Therefore, the surface side in texture is advantageous for secondary recrystallization.

【0011】二次再結晶粒の核が表面側に発生すると、
結晶粒は、板厚方向に板を貫通するまで成長する。板厚
中央部は集合組織的には余り有利ではないので、粒成長
には結晶粒径が影響を及ぼす。即ち、粒径の小さな結晶
粒が優先的に侵食されていく。だから、二次再結晶の核
に侵食される板厚中央部に、粗大な結晶粒が存在する
と、二次再結晶の進行が妨げられる。
When nuclei of secondary recrystallized grains are generated on the surface side,
The crystal grains grow in the thickness direction until they penetrate the plate. Since the central portion of the plate thickness is not so advantageous in terms of texture, the grain size affects the grain growth. That is, crystal grains having a small particle size are preferentially eroded. Therefore, if coarse crystal grains are present at the center of the plate thickness eroded by the nucleus of the secondary recrystallization, the progress of the secondary recrystallization is hindered.

【0012】本発明の請求項1は次の通りである。重量
比で、C:0.01〜0.2%、Si:2〜4%、酸可
溶性Al:0.010〜0.060%、N:0.003
0〜0.0130%、S:0.01〜0.06%、M
n:0.080〜0.45%、残部Fe及び不可避的不
純物からなる電磁鋼スラブを、1250℃以上の温度域
に加熱した後熱間圧延し、冷間圧延、脱炭及び一次再結
晶のための焼鈍を施し、焼鈍分離剤を塗布した後仕上焼
鈍する一方向性電磁鋼板の製造方法において、AlN及
びMnSをインヒビターとして機能せしめ、厚さ方向に
少なくとも40%の柱状晶域を、少なくとも一方のスラ
ブ表面から有する連続鋳造スラブを出発材とすることを
特徴とする磁束密度の高い一方向性電磁鋼板の製造方
法。ここで、本発明の柱状晶域が40%以上の場合と、
従来法の40%未満の場合を比較する。スラブ中心部の
等軸晶域の厚さに対する比である等軸晶率は、図1に示
すように電磁撹拌の有無にかかわらず、タンディッシュ
溶鋼温度により制御することができる。
The first aspect of the present invention is as follows. By weight ratio, C: 0.01 to 0.2%, Si: 2 to 4%, acid-soluble Al: 0.010 to 0.060%, N: 0.003
0 to 0.0130%, S: 0.01 to 0.06%, M
n: 0.080 to 0.45%, electromagnetic steel slab consisting of balance Fe and unavoidable impurities is heated to a temperature range of 1250 ° C. or higher, then hot-rolled, and subjected to cold rolling, decarburization and primary recrystallization. the method of manufacturing a grain-oriented electrical steel sheet annealing alms, annealing finishing after applying an annealing separating agent for, AlN及
And MnS function as an inhibitor, and a starting material is a continuous cast slab having at least one slab surface with at least 40% of a columnar crystal region in a thickness direction. Manufacturing method. Here, the case where the columnar crystal region of the present invention is 40% or more,
The case of less than 40% of the conventional method is compared. The equiaxed crystal ratio, which is the ratio to the thickness of the equiaxed crystal region at the center of the slab, can be controlled by the temperature of the tundish molten steel regardless of the presence or absence of electromagnetic stirring as shown in FIG.

【0013】本発明においては、スラブの中心層は柱状
であるか、又は比較的粒の小さい等軸晶であり、従っ
て冷延、焼鈍後の一次再結晶粒も小さい。これに対し、
従来法のスラブの中心層は比較的大きな粒の等軸晶であ
り、冷延、焼鈍後の一次再結晶粒も比較的大きい。従っ
て本発明の方が二次再結晶に有利である。
[0013] In the present invention, the central layer of the slab is columnar.
Or a crystal, or a relatively particle small equiaxed crystal, thus cold-rolled, the primary recrystallized grains after annealing is small. In contrast,
The center layer of the conventional slab is equiaxed with relatively large grains, and the primary recrystallized grains after cold rolling and annealing are relatively large. Therefore, the present invention is more advantageous for secondary recrystallization.

【0014】上記のごとく、二次再結晶の核は板の表面
近くに発生し、二次再結晶粒は板を貫通するので、柱状
晶域は少くとも板の表面の少くとも一方に、ある比率以
上発生すれば良いものと考えられる。従って、同一の等
軸晶率であれば、湾曲型の連続鋳造機によって等軸晶を
スラブの中心よりずらしてやれば、等軸晶の位置が集合
組織的に有利な表面層に近づくので、二次再結晶にとっ
て更に有利となる。二次再結晶を有利にせしめる柱状晶
の比率は、実施例に見られるように、片側において
くとも40%以上(条件A,B)である。
As described above, since the nuclei of the secondary recrystallization are generated near the surface of the plate and the secondary recrystallized grains penetrate the plate, the columnar crystal region is present on at least one of the surfaces of the plate. It is considered that the ratio should be higher than the ratio. Therefore, if the equiaxed crystal ratio is the same, if the equiaxed crystal is shifted from the center of the slab by a curved continuous casting machine, the position of the equiaxed crystal becomes closer to the surface layer which is advantageous in terms of texture. This is more advantageous for the next recrystallization. Columnar crystals favor secondary recrystallization
The ratio of the band, as seen in the examples, a small <br/> Kutomo 40% on one side (conditions A, B).

【0015】[0015]

【実施例】表1に、湾曲型連続鋳造機を用いて製造した
珪素鋼スラブを出発材として、二次再結晶工程をプロセ
ッシングさせたときの二次再結晶状況を示す。鋳造され
たスラブは表1に示された条件でスラブ加熱された後、
所定の厚さまで熱間圧延を施し、1120℃の焼鈍を行
って冷間圧延を行った。冷間圧延は1回或いは中間焼鈍
をはさんで2回行った。このときの1回目の冷間圧延の
圧延率を表中に示す。3種の連続鋳造スラブは、全て同
一成分であり、図1に従って鋳造時のタンディッシュ温
度を変えて、等軸晶率を変えた。
EXAMPLES Table 1 shows the state of secondary recrystallization when the secondary recrystallization step is processed using a silicon steel slab produced by using a curved continuous caster as a starting material. After the cast slab was heated under the conditions shown in Table 1,
Hot rolling was performed to a predetermined thickness, annealing was performed at 1120 ° C., and cold rolling was performed. Cold rolling was performed once or twice with intermediate annealing. The rolling ratio of the first cold rolling at this time is shown in the table. All three types of continuously cast slabs have the same composition, and the equiaxed crystal ratio was changed by changing the tundish temperature during casting according to FIG.

【0016】この場合は湾曲型連続鋳造機であり、等軸
晶は、スラブ中心より下側にずれた位置に存在する。本
実施例で用いた鋼片素材について、上側の柱状晶、等軸
晶、下側の柱状晶の比率(%)は、表中の記号を用い
て、それぞれA:70/10/20、B:40/30/
30、C:30/50/20である。実施例中、出発素
材にA及びB材を用いたものが本発明に相当する。
In this case, it is a curved continuous casting machine, and the equiaxed crystal is present at a position shifted downward from the center of the slab. Regarding the billet material used in this example, the ratio (%) of the upper columnar crystal, equiaxed crystal, and lower columnar crystal was A: 70/10/20 and B, respectively, using the symbols in the table. : 40/30 /
30, C: 30/50/20. In the examples, those using materials A and B as starting materials correspond to the present invention.

【0017】二次再結晶状況は、線状細粒発生率で表し
た。スラブ加熱温度が高く、スラブの結晶粒が30mm程
度に大きくなると、その部分だけ適正な圧延再結晶集合
組織形成が行われずに、線状細粒となる。線状細粒発生
率が低いほど二次再結晶が良好に行われており、本発明
の効果が現れていることを意味する。
The state of the secondary recrystallization was represented by a linear fine grain generation rate. When the slab heating temperature is high and the crystal grain size of the slab is as large as about 30 mm, the rolled recrystallized texture is not properly formed in that portion, and the slab becomes linear fine grains. The lower the linear fine grain generation rate, the better the secondary recrystallization is performed, which means that the effect of the present invention is exhibited.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】本発明により、1250℃以上のスラブ
加熱による一方向性電磁鋼板の製造において、二次再結
晶がより良好に生じ、これまで以上の安定製造が可能と
なるのである。
According to the present invention, in the production of a grain-oriented electrical steel sheet by heating a slab at 1250 ° C. or more, secondary recrystallization is more favorably generated, and a more stable production than before can be attained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】連続鋳造法において、スラブを作成した際の、
タンディッシュ溶鋼温度と等軸晶の比率を示す図表であ
る。
FIG. 1 shows a slab created by a continuous casting method.
It is a chart which shows the ratio of a tundish molten steel temperature and an equiaxed crystal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土田 宗弘 北九州市戸畑区飛幡町1番1号 新日本 製鐵株式会社 八幡製鐵所内 (56)参考文献 特開 平4−17617(JP,A) 特公 昭50−37009(JP,B2) 特公 昭54−27820(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Munihiro Tsuchida Inventor 1-1, Tobata-cho, Tobata-ku, Kitakyushu Nippon Steel Corporation Yawata Works (56) References JP-A-4-17617 (JP, A) Japanese Patent Publication No. 50-37009 (JP, B2) Japanese Patent Publication No. 54-27820 (JP, B2)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比で、 C :0.01〜0.2%、 Si:2〜4%、 酸可溶性Al:0.010〜0.060%、 N :0.0030〜0.0130%、 S :0.01〜0.06%、 Mn:0.080〜0.45%、 残部Fe及び不可避的不純物からなる電磁鋼スラブを、
1250℃以上の温度域に加熱した後熱間圧延し、冷間
圧延、脱炭及び一次再結晶のための焼鈍を施し、焼鈍分
離剤を塗布した後仕上焼鈍する一方向性電磁鋼板の製造
方法において、AlN及びMnSをインヒビターとして
機能せしめ、厚さ方向に少なくとも40%の柱状晶域
を、少なくとも一方のスラブ表面から有する連続鋳造ス
ラブを出発材とすることを特徴とする磁束密度の高い一
方向性電磁鋼板の製造方法。
1. C: 0.01 to 0.2%, Si: 2 to 4%, acid-soluble Al: 0.010 to 0.060%, N: 0.0030 to 0.0130% by weight , S: 0.01 to 0.06%, Mn: 0.080 to 0.45%, An electromagnetic steel slab consisting of the balance Fe and unavoidable impurities,
A method for producing a unidirectional electrical steel sheet which is heated to a temperature range of 1250 ° C. or higher, then hot-rolled, cold-rolled, decarburized and subjected to annealing for primary recrystallization, coated with an annealing separator, and finish-annealed. In the above, AlN and MnS as inhibitors
A method for producing a grain-oriented electrical steel sheet having a high magnetic flux density, wherein a starting material is a continuous cast slab having at least one slab surface having at least 40% columnar crystal regions in a thickness direction.
【請求項2】 厚さ方向に少なくとも40%の柱状晶域
を、少なくとも一方のスラブ表面から有する連続鋳造ス
ラブが、水平連続鋳造法によって製造され、或いは、湾
曲型連続鋳造プロセスにおける非垂直部において凝固を
完了せしめられ、等軸晶が厚さ方向中央部から片面側に
偏位せしめられたことを特徴とする請求項1記載の磁束
密度の高い一方向性電磁鋼板の製造方法。
2. A continuous cast slab having at least one slab surface having at least 40% columnar regions in the thickness direction is produced by a horizontal continuous cast method, or in a non-vertical portion of a curved continuous cast process. 2. The method according to claim 1, wherein the solidification is completed, and the equiaxed crystal is displaced to one side from the center in the thickness direction.
【請求項3】 重量比で、 C :0.01〜0.2%、 Si:2〜4%、 酸可溶性Al:0.010〜0.060%、 N :0.0030〜0.0130%、 S :0.01〜0.06%、 Mn:0.080〜0.45%、 残部Fe及び不可避的不純物からなる電磁鋼スラブを、
1250℃以上の温度域に加熱した後熱間圧延し、冷間
圧延、脱炭及び一次再結晶のための焼鈍を施し、焼鈍分
離剤を塗布した後仕上焼鈍する一方向性電磁鋼板の製造
方法において、AlN及びMnSをインヒビターとして
機能せしめ、厚さ方向に少なくとも40%の柱状晶域
を、少なくとも一方のスラブ表面から有する連続鋳造ス
ラブを出発材とするとともに、冷間圧延を1回だけ行
う、或いは最終圧下率が85%以上であることを特徴と
する磁束密度の高い一方向性電磁鋼板の製造方法。
3. A weight ratio of C: 0.01 to 0.2%, Si: 2 to 4%, acid-soluble Al: 0.010 to 0.060%, N: 0.0030 to 0.0130% , S: 0.01 to 0.06%, Mn: 0.080 to 0.45%, An electromagnetic steel slab consisting of the balance Fe and unavoidable impurities,
A method for producing a unidirectional electrical steel sheet which is heated to a temperature range of 1250 ° C. or higher, then hot-rolled, cold-rolled, decarburized and subjected to annealing for primary recrystallization, coated with an annealing separator, and finish-annealed. In the above, AlN and MnS as inhibitors
A continuous cast slab having at least one slab surface with at least 40% columnar crystal area in the thickness direction is used as a starting material, and cold rolling is performed only once, or final rolling reduction is 85% or more. A method for producing a grain-oriented electrical steel sheet having a high magnetic flux density.
【請求項4】 厚さ方向に少なくとも40%の柱状晶域
を、少なくとも一方のスラブ表面から有する連続鋳造ス
ラブが、水平連続鋳造法によって製造され、或いは、湾
曲型連続鋳造プロセスにおける非垂直部において凝固を
完了せしめられ、等軸晶が厚さ方向中央部から片面側に
偏位せしめられたことを特徴とする請求項3記載の磁束
密度の高い一方向性電磁鋼板の製造方法。
4. A continuous cast slab having at least one slab surface with at least 40% of columnar areas in the thickness direction is produced by a horizontal continuous cast method, or in a non-vertical portion in a curved continuous cast process. 4. The method according to claim 3, wherein the solidification is completed, and the equiaxed crystal is displaced to one side from the center in the thickness direction.
JP04102938A 1992-04-22 1992-04-22 Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density Expired - Lifetime JP3073598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04102938A JP3073598B2 (en) 1992-04-22 1992-04-22 Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04102938A JP3073598B2 (en) 1992-04-22 1992-04-22 Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPH05295439A JPH05295439A (en) 1993-11-09
JP3073598B2 true JP3073598B2 (en) 2000-08-07

Family

ID=14340781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04102938A Expired - Lifetime JP3073598B2 (en) 1992-04-22 1992-04-22 Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JP3073598B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037009A (en) * 1973-08-03 1975-04-07
JPS5427820A (en) * 1977-08-02 1979-03-02 Shoei Kikai Seisakusho Kk Device for preventing wrong entry of paper to blade of buckle folding machine
JPS60411A (en) * 1983-06-16 1985-01-05 Matsushita Electric Ind Co Ltd Laser module device
JPH0730398B2 (en) * 1990-05-11 1995-04-05 新日本製鐵株式会社 Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density

Also Published As

Publication number Publication date
JPH05295439A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
KR101070064B1 (en) Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2010209467A (en) Improved method for producing non-oriented electrical steel sheet
EP0307905B1 (en) Method for producing grainoriented electrical steel sheet with very high magnetic flux density
JP2019026891A (en) Nonoriented magnetic steel sheet, and method of producing the same
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
EP0897993B1 (en) Electromagnetic steel sheet having excellent magnetic properties and production method thereof
Littmann Development of improved cube-on-edge texture from strand cast 3pct silicon-iron
JPH05306438A (en) Nonoriented electrical steel sheet extremely excellent in magnetic property and its manufacture
JP3073598B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPH0832927B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPH0443981B2 (en)
JPH04280921A (en) Production of steel sheet for particle accelerator by continuous annealing
JP4281119B2 (en) Manufacturing method of electrical steel sheet
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP4320793B2 (en) Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction
JPS61190017A (en) Production of grain oriented silicon steel sheet having low iron loss
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH1161357A (en) Electric steel sheet excellent in magnetic property in rolling direction and manufacture thereof
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2006241554A (en) Method for manufacturing non-oriented electromagnetic steel sheet having high magnetic flux density
JP3474586B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2588635B2 (en) Thin slabs for manufacturing unidirectional electrical steel sheets

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

EXPY Cancellation because of completion of term