JPH0832927B2 - Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density - Google Patents

Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Info

Publication number
JPH0832927B2
JPH0832927B2 JP63137651A JP13765188A JPH0832927B2 JP H0832927 B2 JPH0832927 B2 JP H0832927B2 JP 63137651 A JP63137651 A JP 63137651A JP 13765188 A JP13765188 A JP 13765188A JP H0832927 B2 JPH0832927 B2 JP H0832927B2
Authority
JP
Japan
Prior art keywords
hot
magnetic flux
flux density
annealing
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63137651A
Other languages
Japanese (ja)
Other versions
JPH01306523A (en
Inventor
一郎 塚谷
忠迪 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63137651A priority Critical patent/JPH0832927B2/en
Publication of JPH01306523A publication Critical patent/JPH01306523A/en
Publication of JPH0832927B2 publication Critical patent/JPH0832927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁束密度の高い無方向性電磁鋼板の製造方法
に関し、さらに詳しくは、電気機器鉄心材料として使用
される鉄損が低く、磁束密度の高い無方向性電磁鋼板の
製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a non-oriented electrical steel sheet having a high magnetic flux density, and more specifically, a low iron loss used as a core material for electric equipment and a magnetic flux density. The present invention relates to a method for manufacturing a high-oriented non-oriented electrical steel sheet.

[従来技術] 近年、電気機器の高性能化は、電力およびエネルギー
を節約することが世界的に叫ばれている中で強く要望さ
ててきている。
[Prior Art] In recent years, there has been a strong demand for higher performance of electric devices in the worldwide call for saving power and energy.

特に、連続使用される回転機等の技術分野において
は、高効率化や省エネルギー化が積極的に推進されてい
る。そして、高効率化や省エネルギー化を図るために
は、鉄損が低いことと共に磁束密度の高い材料を使用す
ることが必要がある。
In particular, in the technical field of continuously used rotating machines and the like, high efficiency and energy saving are actively promoted. In order to achieve high efficiency and energy saving, it is necessary to use a material having a low iron loss and a high magnetic flux density.

しかして、従来の電磁鋼板においては、鉄損を低くす
るためには一般に、固有抵抗増加による過電流損低下の
点から、Si或いはAl等の含有量を多くすることが行なわ
れてきた。その結果として、高級鋼ほど磁束密度は低い
傾向を示していた。
However, in the conventional magnetic steel sheet, in order to reduce the iron loss, it has been generally performed to increase the content of Si, Al or the like from the viewpoint of reducing the overcurrent loss due to the increase in the specific resistance. As a result, the higher the steel, the lower the magnetic flux density tended to be.

この磁束密度を支配する要因としては集合組織が挙げ
られるが、無方向生鋼の場合、集合組織を改良して磁束
密度を向上させる方法は殆ど知られていない。この無方
向性鋼板としては(100)面が板面に平行な、所謂、面
内無方向性が理想的であり、この製造方法が数多く提案
されているが、工業的生産には製造コストが高いという
問題がある。
The texture is a factor that controls the magnetic flux density, but in the case of non-oriented raw steel, there is almost no known method of improving the texture to improve the magnetic flux density. For this non-oriented steel sheet, the so-called in-plane non-directionality, in which the (100) plane is parallel to the plate surface, is ideal, and many production methods have been proposed, but industrial production has high production costs. There is a problem of being expensive.

上記した集合組織の改善による磁束密度を向上させる
方法について、特開昭54−068716号公報においてSbを含
有させた珪素鋼のホットコイルを800℃の温度において
5時間HNxガス中で焼鈍を行ない、冷間圧延以降の工程
は公知の方法で処理することによって、{100}(u,v,
w)近傍の集積が強くなる方法が説明されている。ま
た、特公昭61−004892号公報、特公昭61−0074446号公
報等にも磁束密度を向上させるこについての説明があ
る。
Regarding the method of improving the magnetic flux density by improving the above-mentioned texture, the hot coil of silicon steel containing Sb is annealed in HNx gas at a temperature of 800 ° C. for 5 hours in JP-A-54-068716, The process after cold rolling is {100} (u, v,
w) Explains how the accumulation in the neighborhood becomes stronger. Further, Japanese Patent Publication No. 61-004892, Japanese Patent Publication No. 61-0074446, etc. also describe how to improve the magnetic flux density.

しかし、これらの公報記載の技術においても、未だ充
分に磁束密度の向上は期待することはできなかった。
However, even with the techniques described in these publications, it has not been possible to expect a sufficient improvement in the magnetic flux density.

[発明が解決しようとする課題] 本発明は従来の電磁鋼板における高珪素鋼板の磁束密
度が低いという問題点に鑑み、本発明者が鋭意研究を行
ない、検討を重ねた結果、集合組織を改良することによ
り、熱延板焼鈍後の熱延鋼板の結晶粒度および集合組織
の板厚方向における変化を無くすることにより、最終焼
鈍板の集合組織を磁区向上に有効な方向に制御すること
ができる磁束密度の高い無方向性電磁鋼板の製造方法を
開発したのである。
[Problems to be Solved by the Invention] In view of the problem that the magnetic flux density of the high silicon steel sheet in the conventional electromagnetic steel sheet is low, the present inventors have conducted intensive studies and studied, and as a result, improved texture. By eliminating the change in the grain size and texture of the hot-rolled steel sheet after hot-rolled sheet annealing in the sheet thickness direction, the texture of the final annealed sheet can be controlled in a direction effective for improving magnetic domains. We have developed a manufacturing method for non-oriented electrical steel sheets with high magnetic flux density.

[課題を解決するための手段] 本発明に係る磁束密度の高い無方向性電磁鋼板の製造
方法の特徴とするところは、 C<0.01wt%、Si0.5〜3.0wt%、Mn0.1〜1.5wt%、 P0.005〜0.016wt%、S<0,005wt%、Al0.1〜1.0wt% を含有し、残部Feおよび不可避不純物からなる鋼スラブ
を熱間圧延後、この熱間圧延板に圧下率5〜20%の軽圧
下冷間圧延を行なった後、850〜1000℃の温度において
0.5〜10分或いは750〜850℃の温度において1〜10時間
の熱延板焼鈍を行ない、次いで、50%以上の冷間圧延を
行ない、さらに、800〜1000℃の温度において10秒〜3
分の最終焼鈍を行なうことにある。
[Means for Solving the Problem] The feature of the method for manufacturing a non-oriented electrical steel sheet having a high magnetic flux density according to the present invention is that C <0.01 wt%, Si0.5 to 3.0 wt%, Mn0.1 to A steel slab containing 1.5wt%, P0.005-0.016wt%, S <0.005wt%, Al0.1-1.0wt% and the balance Fe and unavoidable impurities was hot-rolled and then hot-rolled into this hot-rolled sheet. After performing light reduction cold rolling with a reduction rate of 5 to 20%, at a temperature of 850 to 1000 ℃
Hot-rolled sheet is annealed at a temperature of 0.5 to 10 minutes or 750 to 850 ° C for 1 to 10 hours, followed by cold rolling of 50% or more, and at a temperature of 800 to 1000 ° C for 10 seconds to 3
The purpose is to perform the final annealing for minutes.

本発明に係る磁束密度の高い無方向性電磁鋼板の製造
方法について、以下詳細に説明する。
A method for manufacturing a non-oriented electrical steel sheet having a high magnetic flux density according to the present invention will be described in detail below.

通常、無潤滑の熱間圧延においては、圧延方向へのロ
ールの拘束によって熱間圧延鋼板の表層(t/4程度ま
で)に剪断歪領域が存在する。この剪断歪領域は中心層
に比べて高い歪が付与されており、そのため板厚方向に
歪分布が存在するばかりか、集合組織も板厚方向の位置
によって異なる。そして、熱間圧延後、オーステナイト
→フェライト変態する鋼種では変態に際してランダム化
するため、このような板厚方向における分布略消滅する
が、高Si鋼ではオーステナイト→フェライト変態がない
ため(何れの温度域でもフェライト単相)、圧延におけ
る状態が巻取後に持ち来される。
Usually, in unlubricated hot rolling, a shear strain region exists in the surface layer (up to about t / 4) of the hot rolled steel sheet due to the restraint of the roll in the rolling direction. A strain higher than that in the central layer is applied to this shear strain region, so that not only a strain distribution exists in the plate thickness direction, but also the texture differs depending on the position in the plate thickness direction. Then, after hot rolling, the austenite → ferrite transformation steel type is randomized at the time of transformation, so the distribution in the plate thickness direction almost disappears, but in the high Si steel there is no austenite → ferrite transformation (any temperature range However, ferrite single phase), the state in rolling is brought after winding.

高品位の無方向性電磁鋼板は良好な磁気特性とするた
め、冷間圧延前に熱間圧延が行なわれているが、上記に
説明したように板厚方向における歪や集合組織が異なる
と、熱延板焼鈍後の組織もその影響を受けるため板厚方
向において異なる。例えば、表層部においては粒径が微
細であるのに対し、中心層では展伸した粗大粒である。
Since high-quality non-oriented electrical steel sheets have good magnetic properties, hot rolling is performed before cold rolling, but as described above, when strain and texture in the sheet thickness direction are different, The structure after hot-rolled sheet annealing is also affected by it, and therefore differs in the sheet thickness direction. For example, the grain size in the surface layer is fine, whereas the grain size in the center layer is coarse and expanded.

従って、冷間圧延→焼鈍後、焼鈍板の粒径は温度等の
調節により最適の粒径に調整することができるため、鉄
損は低い値が得られるのに対して、集合組織が磁束密度
に対して都合の良い方位(軸)を有しないために低い磁
束密度しか得られない。
Therefore, after cold rolling → annealing, the grain size of the annealed plate can be adjusted to the optimum grain size by adjusting the temperature, etc., so that the core loss is low, whereas the texture has a magnetic flux density. Since it does not have a convenient orientation (axis), a low magnetic flux density can be obtained.

しかして、熱間圧延後、熱延板焼鈍前に圧下率5〜20
%の軽圧下冷間圧延を行なうことにより、熱延板焼鈍に
際して熱延板表層部の粒成長が促進され、かつ板厚の各
位置における熱延板集合組織が変化し、その結果、引き
続いて行なう冷間圧延→焼鈍工程後の集合組織におい
て、磁化容易軸である<001>や<011>が板面に多く存
在するものが得られた。
Then, after hot rolling, before the hot-rolled sheet annealing, the reduction rate is 5 to 20.
% Light reduction cold rolling promotes grain growth in the surface layer of the hot-rolled sheet during annealing of the hot-rolled sheet, and changes the texture of the hot-rolled sheet at each position of the sheet thickness. In the texture after the cold rolling → annealing process to be performed, the ones in which a lot of <001> and <011>, which are easy axes of magnetization, existed on the plate surface were obtained.

次に、本発明に係る磁束密度の高い無方向性電磁鋼板
の製造方法において使用する鋼スラブの含有成分および
含有割合について説明する。
Next, the content components and content ratio of the steel slab used in the method for producing a non-oriented electrical steel sheet having a high magnetic flux density according to the present invention will be described.

Cは磁気特性を保持するためには有害な元素であり、
含有量は0.01wt%以下とする必要があり、少ないほど好
ましく、そのため最終焼鈍磁な脱炭するか、溶鋼脱炭に
より低減するのがよく、さらに磁気時効を防止するため
には0.005wt%以下とするのがよい。よって、C含有量
は0.01wt%以下とする。
C is a harmful element for maintaining magnetic properties,
The content should be 0.01 wt% or less, and the smaller the content, the better. Therefore, it is better to reduce it by decarburizing by final annealing magnetism or decarburizing molten steel, and 0.005 wt% or less to prevent magnetic aging. It is good to say Therefore, the C content is 0.01 wt% or less.

Siは固有抵抗増加による鉄損改善のために必要な元素
であり、含有量が0.5wt%未満では効果が少なく、ま
た、3.0wt%を越えると磁束密度の効果がなくなる。よ
って、Si含有量は0.5〜3.0wt%とする。
Si is an element necessary for improving iron loss due to an increase in specific resistance. When the content is less than 0.5 wt%, the effect is small, and when it exceeds 3.0 wt%, the effect of magnetic flux density disappears. Therefore, the Si content is 0.5 to 3.0 wt%.

Mnは熱間圧延時の赤熱防止および集合組織の改善によ
る磁性向上に効果のある元素であり、含有量が0.1wt%
未満では効果が少なく、また、1.5wt%を越えると磁性
特性を劣化させる。よって、Mn含有量は0.1〜1.5wt%と
する。
Mn is an element that is effective in preventing red heat during hot rolling and improving magnetism by improving texture, and its content is 0.1wt%.
If it is less than 1.5 wt%, the effect is small, and if it exceeds 1.5 wt%, the magnetic properties are deteriorated. Therefore, the Mn content is 0.1 to 1.5 wt%.

Pは鉄損改善に効果のある元素であり、含有量が0.05
wt%未満ではこの効果が少なく、また、0.016wt%を越
えて含有されると磁束密度が低下する。よって、P含有
量は0.005〜0.016wt%とする。
P is an element effective in improving iron loss, and its content is 0.05.
If it is less than wt%, this effect will be small, and if it exceeds 0.016 wt%, the magnetic flux density will decrease. Therefore, the P content is set to 0.005 to 0.016 wt%.

Sは磁性向上に有害なMnS等の非金属介在物を生成さ
せる元素であり、少ないほど好ましく、0.005wt%以下
でなければ安定した磁性改善効果は得られない。よっ
て、S含有量は0.005wt%以下とする。
S is an element that forms non-metallic inclusions such as MnS that are harmful to the improvement of magnetism, and the smaller the content, the more preferable. If it is 0.005 wt% or less, a stable magnetism improving effect cannot be obtained. Therefore, the S content is 0.005 wt% or less.

Alは(100)結晶方向の成分を発達させること、およ
び、Siと同様に比抵抗を増加させること以外に、無方向
性珪素鋼板の磁性特性上有害なNを固定させる元素であ
り、含有量が0.1wt%未満ではこの効果が少なく、ま
た、1.0wt%を越えて含有されると磁束密度が低下す
る。よって、Al含有量は0.1〜1.0wt%とする。
Al is an element that fixes N, which is harmful to the magnetic properties of the non-oriented silicon steel sheet, in addition to developing a component in the (100) crystal direction and increasing the specific resistance like Si. If less than 0.1 wt%, this effect is small, and if more than 1.0 wt%, the magnetic flux density decreases. Therefore, the Al content is 0.1 to 1.0 wt%.

本発明に係る磁束密度の高い無方向性電磁鋼板の製造
方法について説明する。
A method for manufacturing a non-oriented electrical steel sheet having a high magnetic flux density according to the present invention will be described.

即ち、本発明に係る磁束密度の高い無方向性電磁鋼板
の製造方法においては、上記に説明した含有成分および
含有割合の組成のFeを通常の方法により溶製してから、
連続鋳造により鋼スラブに鋳造するか、または、従来の
造塊法により鋼塊を作製し、これを分塊圧延により鋼ス
ラブに形成してもよい。
That is, in the method for producing a non-oriented electrical steel sheet having a high magnetic flux density according to the present invention, after the Fe is melted by the usual method for the composition of the content components and the content ratios described above,
It may be cast into a steel slab by continuous casting, or a steel ingot may be produced by a conventional ingot making method, and this may be formed into a steel slab by slab rolling.

このようにして作製された鋼スラブを熱間圧延によ
り、厚さ1.5〜3.0mmの熱延板を製造し、この熱延板は熱
延板焼鈍前に軽圧下冷間圧延を行なうのであるが、この
圧下率が5%未満または20%を越えると熱延板表層のみ
の粒成長および熱延板集合組織制御が充分でない。よっ
て、軽圧下冷間圧延の圧下率は5〜20%とする。
The steel slab thus produced is hot-rolled to produce a hot-rolled sheet having a thickness of 1.5 to 3.0 mm, and this hot-rolled sheet is subjected to light pressure cold rolling before hot-rolled sheet annealing. If the rolling reduction is less than 5% or more than 20%, the grain growth of only the surface layer of the hot rolled sheet and the control of the texture of the hot rolled sheet are not sufficient. Therefore, the reduction rate of the light reduction cold rolling is set to 5 to 20%.

次いで、このように軽圧下冷間圧延が行なわれた熱延
板は、熱延板焼鈍を行なうことにより、集合組織が改善
され、かつ、磁性が向上する。
Then, the hot-rolled sheet thus cold-rolled under light reduction is subjected to hot-rolled sheet annealing to improve the texture and magnetism.

そして、焼鈍条件は850〜1000℃の温度において0.5〜
5分の間保持する連続焼鈍を行なうか、また、750〜850
℃の温度において1〜10時間の間保持する箱焼鈍を行な
うのである。
And the annealing condition is 0.5 ~ at the temperature of 850 ~ 1000 ℃.
Perform continuous annealing for 5 minutes or 750-850
Box annealing is carried out at a temperature of ° C for 1 to 10 hours.

この焼鈍条件において、850℃未満の低温度では連続
焼鈍において熱延板の組織が改善されず焼鈍効果が期待
できず、また、1000℃を越える高温焼鈍では以後の工程
における酸洗性および冷間圧延性の劣化を招来する。よ
って、連続焼鈍の場合の焼鈍温度は850〜1000℃とす
る。
Under this annealing condition, at a low temperature of less than 850 ° C, the structure of the hot-rolled sheet is not improved in continuous annealing and the annealing effect cannot be expected, and in the case of high-temperature annealing exceeding 1000 ° C, pickling property and cold This causes deterioration of rolling property. Therefore, the annealing temperature in the case of continuous annealing is set to 850 to 1000 ° C.

また、保持時間については、焼鈍時間は温度に応じて
適宜に決定すればよいのであるが、0.5分未満の短時間
では組織が改善されず、また、10分を越える長時間の保
持は連続焼鈍炉のラインスピードを遅らせる結果とな
る。よって、連続焼鈍における保持時間は0.5〜10分と
する。
Regarding the holding time, the annealing time may be appropriately determined according to the temperature, but the structure is not improved in a short time of less than 0.5 minutes, and the holding time of more than 10 minutes is continuous annealing. This results in slowing down the line speed of the furnace. Therefore, the holding time in continuous annealing is set to 0.5 to 10 minutes.

次に、箱焼鈍の場合には、750℃未満の低温度では熱
延板の組織が改善されず箱焼鈍の効果が期待できず、ま
た、850℃の高温焼鈍を行なうと酸洗性が劣化すると共
に冷間圧延性も悪化する。よって、箱焼鈍における焼鈍
温度は750〜850℃とする。
Next, in the case of box annealing, the structure of the hot-rolled sheet is not improved at a low temperature of less than 750 ° C and the effect of box annealing cannot be expected, and when picked up at a high temperature of 850 ° C, the pickling property deteriorates. At the same time, the cold rolling property deteriorates. Therefore, the annealing temperature in box annealing is 750 to 850 ° C.

また、箱焼鈍における保持時間は、1時間未満では熱
延板の組織が改善せれず、また、10時間をこえる長時間
の箱焼鈍では結晶粒の過度の成長を招来し、冷間圧延性
を悪化させ、さらに、エネルギーの消費が過多となる。
よって、箱焼鈍の焼鈍時間は1〜10時間とする。
If the holding time in box annealing is less than 1 hour, the structure of the hot-rolled sheet cannot be improved, and in box annealing for a long time of more than 10 hours, excessive growth of crystal grains is caused and cold rolling property is deteriorated. Worsens and consumes too much energy.
Therefore, the annealing time for box annealing is set to 1 to 10 hours.

この熱延板焼鈍を終了した熱間圧延板は、通常の方法
によりスケール除去のために酸洗を行なった後、圧下率
50%以上の冷間圧延を行なう。
The hot-rolled sheet that has undergone this hot-rolled sheet annealing is pickled for scale removal by a conventional method and then rolled
Perform 50% or more cold rolling.

冷間圧延された冷間圧延板は800〜1000℃の温度にお
いて、10秒〜3分の最終焼鈍を行なうことによって、集
合組織が発達し、磁気特性が改善される。
By subjecting the cold-rolled cold-rolled sheet to final annealing at a temperature of 800 to 1000 ° C. for 10 seconds to 3 minutes, a texture is developed and magnetic properties are improved.

なお、鉄損や磁束密度に対して最適な焼鈍板粒径と集
積の高い{100}<u,v,w>集合組織を得るためには、50
%以上の冷間圧延率が必要である。
In order to obtain the optimal grain size and {100} <u, v, w> texture of the annealed plate for iron loss and magnetic flux density, 50
A cold rolling rate of at least% is required.

この場合、最終焼鈍温度が800℃未満では焼鈍時の粒
成長が悪く、磁性が改善されず、また、1000℃を越える
と逆に磁束密度が低下し、連続焼鈍炉の炉温の上昇は不
利である。よって、最終焼鈍温度は800〜1000℃とす
る。
In this case, if the final annealing temperature is less than 800 ° C, the grain growth during annealing is poor and the magnetism is not improved, and if it exceeds 1000 ° C, the magnetic flux density decreases, and the rise of the furnace temperature in the continuous annealing furnace is disadvantageous. Is. Therefore, the final annealing temperature is 800 to 1000 ° C.

この最終焼鈍の保持時間は温度によって適宜に選択す
ればよいが、10秒未満では再結晶組織が得られず、さら
に、磁性不良を招来するという問題があり、また、保持
時間が3分を越えると連続焼鈍炉の操業においてライン
スピードが過度に遅くなる。よって、最終焼鈍保持時間
は10秒〜3分とする。
The holding time of this final annealing may be appropriately selected depending on the temperature, but if it is less than 10 seconds, there is a problem that a recrystallized structure cannot be obtained, and further, magnetic failure occurs, and the holding time exceeds 3 minutes. And the line speed becomes too slow in the operation of continuous annealing furnace. Therefore, the final annealing holding time is 10 seconds to 3 minutes.

[実 施 例] 本発明に係る磁束密度の高い無方向性電磁鋼板の製造
方法の実施例を説明する。
[Examples] Examples of the method for producing a non-oriented electrical steel sheet having a high magnetic flux density according to the present invention will be described.

実施例1 真空溶解炉において、第1表に示す含有成分、含有割
合の鋼の100kgを溶製して鋼塊とした後、1150℃の温度
に加熱してから20mmの厚さのシートバーを作製した。
Example 1 In a vacuum melting furnace, 100 kg of the steel having the components and content shown in Table 1 was melted to form a steel ingot, which was heated to a temperature of 1150 ° C. and then a sheet bar having a thickness of 20 mm was used. It was made.

このシートバーを1150℃の温度に加熱して、2.0mmの
厚さまで熱間圧延を行なった。熱間圧延後、圧延率が約
10%の軽圧下冷間圧延を行なった。
The sheet bar was heated to a temperature of 1150 ° C. and hot rolled to a thickness of 2.0 mm. After hot rolling, the rolling rate is about
Cold rolling was performed under 10% light pressure.

さらに、酸洗後0.5mmまで冷間圧延を行ない、その
後、950℃の温度において2分間の熱間圧延板焼鈍を行
ない、この冷間圧延板を950℃の温度において1.5分間の
連続焼鈍を行なった。
Furthermore, after pickling, cold rolling is performed to 0.5 mm, and then hot rolling sheet annealing is performed at a temperature of 950 ° C. for 2 minutes, and this cold rolling sheet is continuously annealed at a temperature of 950 ° C. for 1.5 minutes. It was

製造された焼鈍板からエプスタイン試験片を剪断によ
り採取して磁気特性を測定した。
The Epstein test piece was sampled from the manufactured annealed plate by shearing and the magnetic properties were measured.

第1表にその結果を示す。 Table 1 shows the results.

第1表において、3、5、7、9、11は本発明に係る
磁束密度の高い無方向性電磁鋼板の製造方法により製造
された本発明の例であ。
In Table 1, 3, 5, 7, 9, and 11 are examples of the present invention manufactured by the method for manufacturing a non-oriented electrical steel sheet having a high magnetic flux density according to the present invention.

この第1表および第1図から明らかなように、本発明
の例によると、鉄損を低下させながら、磁束密度を高く
できることがわかる。即ち、鉄損が低く、磁束密度の高
い無方向性電磁鋼板が製造することができる。
As is clear from Table 1 and FIG. 1, according to the example of the present invention, it is possible to increase the magnetic flux density while reducing the iron loss. That is, a non-oriented electrical steel sheet with low iron loss and high magnetic flux density can be manufactured.

実施例2 第2表に示す含有成分および含有割合の鋼を連続鋳造
により、(フルプロセス)無方向性電磁鋼板を製造し
た。最終製品厚さは0.5mmである。
Example 2 A (full process) non-oriented electrical steel sheet was produced by continuous casting of the steel having the content components and content ratios shown in Table 2. The final product thickness is 0.5 mm.

熱間圧延後、製造された熱延板に圧下率が3〜22%の
軽圧下冷間圧延を行なった後、熱延板焼鈍を行ない、さ
らに、酸洗→冷間圧延→最終焼鈍を行なった。
After hot rolling, the produced hot-rolled sheet is cold-rolled at a reduction rate of 3 to 22%, then hot-rolled sheet is annealed, and then pickled → cold-rolled → final annealed. It was

熱延板焼鈍条件、冷間圧延および最終焼鈍条件を第2
表に示す。
The hot-rolled sheet annealing conditions, cold rolling and final annealing conditions are set to the second
Shown in the table.

また、焼鈍後の鉄損W15/50および磁束密度B50を第2
表に示す。
Also, the iron loss W15 / 50 and magnetic flux density B 50 after annealing the second
Shown in the table.

第2表から明らかなように、本発明に係る磁束密度の
高い無方向性電磁鋼板の製造方法による試験片C、D、
Eは比較材A、B、Fに比較して鉄損および磁束密度と
もに優れていることがわかる。
As is apparent from Table 2, test pieces C, D by the method for manufacturing a non-oriented electrical steel sheet having a high magnetic flux density according to the present invention,
It can be seen that E is superior to the comparative materials A, B and F in terms of iron loss and magnetic flux density.

[発明の効果] 以上説明したように、本発明に係る磁束密度の高い無
方向性電磁鋼板の製造方法は上記のような構成であるか
ら、電磁鋼板としての鉄損が低く、かつ、磁束密度が高
いという優れた効果を有するものである。
[Advantages of the Invention] As described above, since the method for manufacturing a non-oriented electrical steel sheet having a high magnetic flux density according to the present invention has the above-described configuration, the iron loss as an electrical steel sheet is low and the magnetic flux density is low. It has an excellent effect of high.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】C<0.01wt%、Si0.5〜3.0wt%、Mn0.1〜
1.5wt%、 P0.005〜0.016wt%、S<0,005wt%、Al0.1〜1.0wt% を含有し、残部Feおよび不可避不純物からなる鋼スラブ
を熱間圧延後、この熱間圧延板に圧下率5〜20%の軽圧
下冷間圧延を行なった後、850〜1000℃の温度において
0.5〜10分或いは750〜850℃の温度において1〜10時間
の熱延板焼鈍を行ない、次いで、50%以上の冷間圧延を
行ない、さらに、800〜1000℃の温度において10秒〜3
分の最終焼鈍を行なうことを特徴とする磁束密度の高い
無方向生電磁鋼板の製造方法。
1. C <0.01 wt%, Si0.5-3.0 wt%, Mn0.1-
A steel slab containing 1.5wt%, P0.005-0.016wt%, S <0.005wt%, Al0.1-1.0wt% and the balance Fe and unavoidable impurities was hot-rolled and then hot-rolled into this hot-rolled sheet. After performing light reduction cold rolling with a reduction rate of 5 to 20%, at a temperature of 850 to 1000 ℃
Hot-rolled sheet is annealed at a temperature of 0.5 to 10 minutes or 750 to 850 ° C for 1 to 10 hours, followed by cold rolling of 50% or more, and at a temperature of 800 to 1000 ° C for 10 seconds to 3
Minute non-oriented electrical steel sheet having a high magnetic flux density, which is characterized by performing a final annealing.
JP63137651A 1988-06-04 1988-06-04 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density Expired - Lifetime JPH0832927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63137651A JPH0832927B2 (en) 1988-06-04 1988-06-04 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63137651A JPH0832927B2 (en) 1988-06-04 1988-06-04 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPH01306523A JPH01306523A (en) 1989-12-11
JPH0832927B2 true JPH0832927B2 (en) 1996-03-29

Family

ID=15203624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63137651A Expired - Lifetime JPH0832927B2 (en) 1988-06-04 1988-06-04 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH0832927B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525236B2 (en) * 1989-02-14 1996-08-14 日本鋼管株式会社 Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties
TW198734B (en) * 1990-12-10 1993-01-21 Kawasaki Steel Co
JP2500033B2 (en) * 1990-12-10 1996-05-29 川崎製鉄株式会社 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance
JP3890876B2 (en) * 2000-10-05 2007-03-07 住友金属工業株式会社 Method for producing non-oriented electrical steel sheet
CN102373366A (en) * 2010-08-26 2012-03-14 宝山钢铁股份有限公司 Method for improving coarse grains on surface of non-oriented silicon steel
CN102373367A (en) * 2010-08-26 2012-03-14 宝山钢铁股份有限公司 Cold-rolled electromagnetic steel plate for rapid cycling synchrotron and manufacturing method thereof
CN105463310A (en) * 2015-12-07 2016-04-06 本钢板材股份有限公司 Production method of non-oriented silicon steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186823A (en) * 1987-01-27 1988-08-02 Sumitomo Metal Ind Ltd Production of electromagnetic steel plate having excellent magnetic characteristic

Also Published As

Publication number Publication date
JPH01306523A (en) 1989-12-11

Similar Documents

Publication Publication Date Title
EP0588342B1 (en) Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
JPH03219020A (en) Production of nonoriented silicon steel sheet
JPH0832927B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP5005873B2 (en) Method for producing directional electromagnetic steel strip
JPH0742501B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing
JPH055126A (en) Production of nonoriented silicon steel sheet
JPH0717959B2 (en) Method for manufacturing unidirectional high magnetic flux density electrical steel sheet
JPH0757888B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
KR970007033B1 (en) Method for manufacturing oriented electrical steel sheet
JPS59123715A (en) Production of non-directional electromagnetic steel
JPH04224624A (en) Manufacture of silicon steel sheet excellent in magnetic property
KR20000031656A (en) Process for preparing non-directional electric steel plate which has good magnetic property and low magnetic-bi-directional property
KR100321035B1 (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH01306524A (en) Production of non-oriented electrical sheet having high magnetic flux density
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JPH0580527B2 (en)
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP4253854B2 (en) Manufacturing method of unidirectional silicon steel sheet with simplified manufacturing process
JPH02310316A (en) Production of nonoriented silicon steel sheet having developed (100)&lt;uvw&gt; aggregate structure