JP2500033B2 - Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance - Google Patents

Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance

Info

Publication number
JP2500033B2
JP2500033B2 JP3326163A JP32616391A JP2500033B2 JP 2500033 B2 JP2500033 B2 JP 2500033B2 JP 3326163 A JP3326163 A JP 3326163A JP 32616391 A JP32616391 A JP 32616391A JP 2500033 B2 JP2500033 B2 JP 2500033B2
Authority
JP
Japan
Prior art keywords
annealing
hot
less
rolled
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3326163A
Other languages
Japanese (ja)
Other versions
JPH05171280A (en
Inventor
昌彦 真鍋
吉成 室
孝宏 菅
隆史 小原
秀夫 小林
和巳 森田
嘉明 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3326163A priority Critical patent/JP2500033B2/en
Publication of JPH05171280A publication Critical patent/JPH05171280A/en
Application granted granted Critical
Publication of JP2500033B2 publication Critical patent/JP2500033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は磁気特性の優れた無方
向性電磁鋼板の製造方法に係わり、とくに磁束密度が高
く、かつ表面外観の良い無方向性電磁鋼板を製造する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, and more particularly to a method for producing a non-oriented electrical steel sheet having a high magnetic flux density and a good surface appearance. .

【0002】[0002]

【従来の技術】無方向性電磁鋼板は各種のモーターなど
の回転機や変圧器, 安定器などの静止器の鉄心材料に用
いられているが、これらの電気機器を小型化,高効率化
するためには使用する電磁鋼板の磁束密度の向上および
鉄損の低減が必要である。ところで、無方向性電磁鋼板
の磁性を向上させるには冷間圧延前の鋼帯の結晶粒を粗
大化すればよいことが知られている。
2. Description of the Related Art Non-oriented electrical steel sheets are used as iron core materials for rotating machines such as various motors and stationary machines such as transformers and ballasts. In order to do so, it is necessary to improve the magnetic flux density of the electromagnetic steel sheet used and reduce iron loss. By the way, it is known that in order to improve the magnetism of the non-oriented electrical steel sheet, the crystal grains of the steel strip before cold rolling may be coarsened.

【0003】この冷間圧延前の鋼帯の結晶粒粗大化方法
として、発明者らは先に特公昭57-35628号公報において
電磁鋼素材を熱間圧延する際、熱間圧延終了温度を鋼の
化学成分により求めたAr3変態点温度以上となし、次い
でこの熱延鋼帯をA3 変態点温度以下の温度で30秒以上
15分以下の時間、焼鈍する方法を提案した。さらに、特
開平2-182831 号公報には熱間圧延終了温度をAr3変態
点温度以上とし、次いでこの熱延鋼帯をA3 変態点温度
以下で30〜15秒保持したのちの冷却速度を制御する方法
を開示した。
As a method for coarsening the crystal grains of a steel strip before cold rolling, the inventors have previously disclosed that when hot rolling an electromagnetic steel material in Japanese Patent Publication No. 57-35628, the end temperature of hot rolling is set to the steel. The Ar 3 transformation point temperature determined by the chemical composition of the above is not exceeded, and then this hot-rolled steel strip is kept for 30 seconds or more at a temperature below the A 3 transformation point temperature.
A method of annealing for 15 minutes or less was proposed. Further, in Japanese Patent Laid-Open No. 2-182831, the hot rolling finish temperature is set to an Ar 3 transformation point temperature or higher, and then the hot rolling steel strip is kept at the A 3 transformation point temperature or lower for 30 to 15 seconds, and then the cooling rate is set. A method of controlling is disclosed.

【0004】しかし、これらの方法は熱延鋼帯焼鈍時間
が短時間側では結晶粒の粗大化が起こり難い場合があ
り、その結果磁気特性がバラツクという欠陥があった。
また長時間側では結晶粒が過大になる場合があり、その
結果、製品に畳じわが発生し表面外観を損なうという難
点があった。一方、特開昭58-136718 号公報には熱間圧
延を上述と同じく鋼中成分によって定まるAr3変態点温
度より50℃を超えて高くはない範囲内のγ相領域で終了
し、その巻取温度をA3 変態点以下から 700℃以上に
し、熱延鋼帯のフェライト結晶粒度を No.4以下の粗大
粒にして磁性の向上を図る方法が開示されている。
However, in these methods, there is a case in which coarsening of crystal grains does not easily occur on the side where the hot-rolled steel strip annealing time is short, and as a result, there is a defect that the magnetic characteristics vary.
In addition, the crystal grains may become excessive on the long time side, and as a result, there is a problem that the product is creased and the surface appearance is impaired. On the other hand, in Japanese Patent Application Laid-Open No. 58-136718, hot rolling is terminated in the γ phase region within a range not exceeding 50 ° C. higher than the Ar 3 transformation point temperature determined by the composition in the steel as described above, and the winding is performed. A method is disclosed in which the taking temperature is raised from the A 3 transformation point or lower to 700 ° C. or higher and the ferrite grain size of the hot-rolled steel strip is set to coarse grains of No. 4 or less to improve magnetism.

【0005】また特開昭54-76422号公報には熱間圧延後
の巻取温度 750〜1000℃とし、コイルの保有熱による自
己焼鈍により結晶粒度 No.5〜6に再結晶させて磁性向
上を図る方法が提案されている。しかしこれらの熱延後
の巻取温度を 700℃以上にして冷間圧延前の結晶粒を大
きくして磁性を改善する方法は、熱延鋼帯焼鈍を省略で
きるが、巻取温度が高いためコイルの内、外巻部及びエ
ッジ部がコイル中心部より速く冷えるのでコイル内温度
差が大きくなり、最終的にはコイル全体に亘って均一な
磁性が得られないこと及び熱延鋼帯の酸洗による脱スケ
ール性が悪い等の欠陥がある。
Further, in Japanese Patent Laid-Open No. 54-76422, the coiling temperature after hot rolling is set to 750 to 1000 ° C., and the magnetism is improved by self-annealing by the heat retained in the coil to recrystallize into grain sizes No. 5 to 6. A method for achieving this has been proposed. However, these methods of improving the magnetism by increasing the coiling temperature after hot rolling to 700 ° C or more and increasing the grain size before cold rolling can omit hot-rolled steel strip annealing, but the coiling temperature is high. Since the outer coil and the edge of the coil cool faster than the center of the coil, the temperature difference inside the coil becomes large, and eventually, uniform magnetism cannot be obtained over the entire coil and the acidity of the hot rolled steel strip. There are defects such as poor descaling property due to washing.

【0006】また、特公昭45-22211号公報には熱延鋼帯
に圧下率 0.5〜15%の冷間圧延を施したのち、再結晶温
度以上A3 変態点以下の温度範囲で比較的長時間の焼鈍
を行って引続く冷間圧延前の鋼帯の結晶粒の粗大化を図
って鉄損を向上させる方法が開示されている。しかしこ
の方法の熱延鋼帯の軽冷延後の焼鈍は比較的低温度短時
間と言えども 800〜 850℃, 30分〜20時間(なお実施例
での焼鈍時間はいずれも10時間)のいわゆる箱焼鈍を前
提とした長時間焼鈍であるため製造コスト面で不利であ
るばかりでなく、結晶粒が粒度No.2.2と過大粒になる場
合があり、表面外観を損なう欠陥があった。
In Japanese Patent Publication No. 452212/1985, a hot rolled steel strip is cold-rolled at a rolling reduction of 0.5 to 15%, and then relatively long in a temperature range from the recrystallization temperature to the A 3 transformation point. A method is disclosed in which iron loss is improved by performing annealing for a time to coarsen the crystal grains of the steel strip before the subsequent cold rolling. However, the annealing after light cold rolling of the hot-rolled steel strip by this method is carried out at 800 to 850 ° C for 30 minutes to 20 hours (the annealing time in each example is 10 hours) even though the temperature is relatively low and the time is short. Since it is a long-time annealing premised on so-called box annealing, not only is it disadvantageous in terms of manufacturing cost, but the crystal grains sometimes become excessively large with a grain size of No. 2.2, which is a defect that impairs the surface appearance.

【0007】また特開平1-306523 号公報では、熱延鋼
帯に5〜20%の軽冷延を施したのち熱延板焼鈍を 850〜
1000℃の温度で 0.5〜10分間行って磁束密度の高い無方
向性電磁鋼板を造る方法を開示している。この方法の熱
延板焼鈍は連続炉で行うが、焼鈍時間が実施例では2分
程度の比較的長時間を必要とし、その結果大きな設備を
必要とし経済的に問題点を残していた。
Further, in JP-A-1-306523, hot-rolled steel strip is annealed at 850-
It discloses a method for producing a non-oriented electrical steel sheet having a high magnetic flux density by performing the treatment at a temperature of 1000 ° C. for 0.5 to 10 minutes. Although the hot-rolled sheet annealing of this method is performed in a continuous furnace, the annealing time in the embodiment requires a relatively long time of about 2 minutes, and as a result, large equipment is required, which is economically problematic.

【0008】このようにいずれの場合も冷延前結晶粒径
の粗大化により、磁気特性向上を意図したものである
が、表面外観ならびに設備の経済性を考慮すると磁気特
性の向上には限界があった。また、セミプロセス電磁鋼
板の製造方法として、例えば、特開平1-139721 号公報
や特開平1-191741 号公報などで、最終工程で3〜15%
のスキンパスを付与し製品とする方法が開示されてい
る。しかしながら、セミプロセス材におけるスキンパス
圧延は製品の硬度調整を意図するものであり、また加工
後の焼鈍は、例えば 750℃×2hrといった長時間保定を
前提として、磁気特性を保証するものである。したがっ
て、こうしたセミプロセス材に連続焼鈍を前提とした短
時間焼鈍を施したとしても、安定して高い磁気特性を得
ることはできなかった。
As described above, in any of these cases, it is intended to improve the magnetic properties by coarsening the crystal grain size before cold rolling, but there is a limit to the improvement of the magnetic properties in consideration of the surface appearance and the economical efficiency of the equipment. there were. Further, as a method of manufacturing a semi-processed electromagnetic steel sheet, for example, JP-A-1-139721 or JP-A-1-191741 discloses that the final step is 3 to 15%.
The method of giving a skin pass and producing a product is disclosed. However, the skin pass rolling in the semi-processed material is intended to adjust the hardness of the product, and the annealing after processing guarantees the magnetic properties on the assumption of long-term holding such as 750 ° C. × 2 hr. Therefore, even if such a semi-processed material is annealed for a short time on the premise of continuous annealing, it is not possible to stably obtain high magnetic properties.

【0009】[0009]

【発明が解決しようとする課題】以上の問題点に鑑み
て、本発明は、軽冷延後の熱延鋼帯の結晶粒の適度な粗
大化を図るための焼鈍条件を工夫し、結晶粒径を制御す
ることにより、磁気特性とくに磁束密度が高く、しかも
表面外観の良好な無方向性電磁鋼板の製造方法を提案す
ることを目的とするものである。
In view of the above problems, the present invention has devised an annealing condition for achieving an appropriate coarsening of crystal grains of a hot-rolled steel strip after light cold rolling. It is an object of the present invention to propose a method for producing a non-oriented electrical steel sheet having a magnetic property, particularly a high magnetic flux density, and a good surface appearance by controlling the diameter.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明は、重
量%で、C:0.02%以下、SiもしくはSi+Al: 4.0%以
下、Mn: 1.0%以下、P: 0.2%以下を含み、さらに必
要に応じてSbおよびSnの何れか1種または2種の合計が
0.10%以下を含み、残部が実質的にFeからなるスラブを
熱間圧延により熱延鋼帯とし、さらに圧下率5〜15%の
冷間圧延を施したのち、3℃/sec 以上の加熱速度で所
定の温度に加熱し、該温度で5〜30秒保持する結晶粒径
が 100〜 200μmとなる短時間焼鈍を施し、さらに冷間
圧延により最終板厚とした後、最終焼鈍を施すことを特
徴とする磁気特性が優れかつ表面外観の良い無方向性電
磁鋼板の製造方法である。
[Means for Solving the Problems] That is, the present invention contains C: 0.02% or less, Si or Si + Al: 4.0% or less, Mn: 1.0% or less, P: 0.2% or less by weight%, and further Depending on the sum of one or two of Sb and Sn,
A slab containing 0.10% or less and the balance being substantially Fe is hot-rolled to form a hot-rolled steel strip, which is further cold-rolled at a rolling reduction of 5 to 15%, and then heated at a heating rate of 3 ° C / sec or more. At a predetermined temperature, hold at that temperature for 5 to 30 seconds, perform short-time annealing to obtain a crystal grain size of 100 to 200 μm, and further cold-roll to obtain the final plate thickness, and then perform final annealing. It is a method for producing a non-oriented electrical steel sheet having excellent magnetic properties and a good surface appearance.

【0011】またさらに本発明は、重量%で、C:0.02
%以下、SiもしくはSi+Al: 4.0%以下、Mn: 1.0%以
下、P: 0.2%以下を含み、さらに必要に応じSbおよび
Snの何れか1種または2種の合計が0.10%以下を含み、
残部が実質的にFeからなるスラブを熱間圧延により熱延
鋼帯とし、さらに圧下率5〜15%の冷間圧延を施したの
ち、結晶粒径が 100〜 200μm となる焼鈍を施し、さら
に冷間圧延後、結晶粒径を20μm 以下とする焼鈍を施
し、さらに1〜15%の冷間圧延を施して製品板厚とした
のち、最終焼鈍を施すことを特徴とする磁気特性が優れ
かつ表面外観の良い無方向性電磁鋼板の製造方法であ
り、そして、結晶粒径が 100〜 200μm となる焼鈍とし
て、3℃/sec 以上の加熱速度で所定の温度に加熱し、
該温度で5〜30秒保持する短時間焼鈍を採用することが
望ましい。なお、上記結晶粒径および後述する結晶粒径
は、鋼板の平均値としての結晶粒径を意味している。
Still further, the present invention provides C: 0.02% by weight.
% Or less, Si or Si + Al: 4.0% or less, Mn: 1.0% or less, P: 0.2% or less, and if necessary Sb and
The sum of any one or two of Sn contains 0.10% or less,
A slab whose balance consists essentially of Fe is hot-rolled to form a hot-rolled steel strip, which is further cold-rolled at a reduction rate of 5 to 15% and then annealed to a grain size of 100 to 200 μm. After cold rolling, annealing is performed with a crystal grain size of 20 μm or less, and further cold rolling of 1 to 15% is performed to obtain a product sheet thickness, and then final annealing is performed. It is a method for producing a non-oriented electrical steel sheet with a good surface appearance, and as annealing to obtain a crystal grain size of 100 to 200 μm, heating to a predetermined temperature at a heating rate of 3 ° C./sec or more,
It is desirable to employ short-time annealing in which the temperature is maintained for 5 to 30 seconds. The crystal grain size and the crystal grain size described below mean the crystal grain size as an average value of the steel sheet.

【0012】[0012]

【作 用】まず、実験結果に基づいて本発明に至った経
緯を説明する。重量%で、C: 0.010%,Si:0.15%,
Mn:0.25%,P:0.08%,Sb:0.045%,S: 0.004
%,Al:0.0008%,を含み残部実質的にFeよりなる溶鋼
から造ったスラブを1250℃に加熱し、通常の熱間圧延に
より 2.3mm厚の熱延鋼帯とした。引続き、該熱延鋼帯に
圧下率0〜20%の軽度の冷間圧延を施した後、 700〜10
00℃の温度で10秒間の短時間の熱延鋼帯焼鈍を連続炉で
行った。このときの加熱速度は5℃/sec であった。な
おこの素材のA3 変態点温度は 915℃であった。次いで
酸洗し通常の冷間圧延により、0.50mm厚に仕上げた後、
800℃,75秒の湿潤雰囲気で脱炭と再結晶を兼ねた連続
焼鈍を施して製品を造った。これらの製品の磁束密度と
熱延鋼帯に軽度冷間圧延を施したときの冷延率の関係を
図1に示す。この図から熱延鋼帯の軽冷延を圧下率5〜
15%にし、かつ熱延鋼帯焼鈍を 850〜915℃(A3 変態
点温度)で処理した製品の磁束密度B50がその他の条件
で処理したものより高いことが明らかである。そして、
この高い磁束密度B50が得られた条件即ち、熱延鋼帯の
圧下率5〜15%で 850〜 915℃、10秒間の熱延鋼帯焼鈍
を施したものの熱延鋼帯焼鈍後の結晶粒は粒径 100〜 2
00μm の範囲にあり、その製品の表面に畳じわは発生せ
ず表面外観は良かった。
[Operation] First, the background of the present invention will be described based on experimental results. % By weight, C: 0.010%, Si: 0.15%,
Mn: 0.25%, P: 0.08%, Sb: 0.045%, S: 0.004
%, Al: 0.0008%, and the balance made of molten steel consisting essentially of Fe was heated to 1250 ° C and hot rolled into a 2.3 mm thick hot-rolled steel strip by ordinary hot rolling. Subsequently, the hot-rolled steel strip was lightly cold-rolled with a rolling reduction of 0 to 20%,
Hot-rolled steel strip annealing for 10 seconds at a temperature of 00 ° C was performed in a continuous furnace. The heating rate at this time was 5 ° C./sec. The A 3 transformation point temperature of this material was 915 ° C. Then, after pickling and finishing to 0.50 mm thickness by ordinary cold rolling,
A product was manufactured by continuous annealing that combines decarburization and recrystallization in a humid atmosphere at 800 ° C for 75 seconds. Fig. 1 shows the relationship between the magnetic flux density of these products and the cold rolling ratio when the hot-rolled steel strip is subjected to light cold rolling. From this figure, light cold rolling of hot-rolled steel strip can be achieved by rolling reduction of 5
It is clear that the magnetic flux density B 50 of the product which was made 15% and which was subjected to the hot strip annealing at 850 to 915 ° C. (A 3 transformation temperature) was higher than the ones treated under other conditions. And
The conditions under which this high magnetic flux density B 50 was obtained, that is, the crystals after hot-rolled steel strip annealing at 850 to 915 ° C. for 10 seconds at a rolling reduction of the hot-rolled steel strip of 5 to 15%, were obtained. Grain size 100 to 2
It was in the range of 00 μm, and the product had a good surface appearance with no creases on the surface.

【0013】ちなみに磁束密度B50があまり向上しなか
ったものの熱延鋼帯焼鈍後の結晶粒は粒径 100μm 未満
であった。以上のように熱延鋼帯に5〜15%の軽冷延を
施し、引続く熱延鋼帯焼鈍で 850〜 915℃(A3 変態点
温度)、10秒という比較的高温でかつ短時間の処理にお
いて、磁束密度が向上するのは、熱延鋼帯焼鈍により結
晶粒が粗大粒に成長し、その結果、製品で集合組織の改
善が図れるためである。また、熱延鋼帯焼鈍で結晶粒が
粗大化するのは粗大化(異常成長)に必要な歪を軽冷延
により熱延鋼帯に付与していることによる。
By the way, although the magnetic flux density B 50 did not improve so much, the crystal grains after hot-rolled steel strip annealing had a grain size of less than 100 μm. Subjected to 5-15% of the light cold-rolled to a hot rolled strip, as described above, subsequent 850 to 915 ° C. In the hot rolled strip annealing (A 3 transformation temperature), relatively high temperatures and short time of 10 seconds The reason that the magnetic flux density is improved in the treatment of is that the crystal grains grow into coarse grains by the hot-rolled steel strip annealing, and as a result, the texture of the product can be improved. Further, the reason why the crystal grains become coarse during annealing of the hot rolled steel strip is that the strain necessary for coarsening (abnormal growth) is applied to the hot rolled steel strip by light cold rolling.

【0014】さらに、また別の実験結果を示す。重量%
で、C: 0.010%,Si:0.15%,Mn:0.25%,P:0.08
%,Sb:0.045%,S: 0.004%,Al:0.0008%を含み
残部実質的にFeよりなる溶鋼から造ったスラブを1250℃
に加熱し、通常の熱間圧延により 2.3mm厚の熱延鋼帯と
した。引続き、圧下率10%の軽度の冷間圧延を施した
後、915 ℃の温度で10秒間の短時間焼鈍を連続炉で行っ
た。このときの加熱速度を1〜5℃/sec の範囲で変化
させた。熱延鋼帯焼鈍後の結晶粒を観察し、粒径 200μ
m より粗大な粒の占める比率(面積率)と、加熱速度の
関係を図2に示す。粗大粒が多くなると、製品板に畳じ
わが発生しやすくなる。製品板における畳じわの発生状
況も示しているが、図より加熱速度を高くして、粗大粒
の占める割合を減らすことが、表面性状の改善に有利で
あることは明らかである。
Furthermore, another experimental result will be shown. weight%
, C: 0.010%, Si: 0.15%, Mn: 0.25%, P: 0.08
%, Sb: 0.045%, S: 0.004%, Al: 0.0008%, and the balance is a slab made of molten steel consisting essentially of Fe at 1250 ° C.
Then, the hot-rolled steel strip having a thickness of 2.3 mm was formed by ordinary hot rolling. Subsequently, after performing a light cold rolling with a reduction rate of 10%, short-time annealing was performed at a temperature of 915 ° C. for 10 seconds in a continuous furnace. The heating rate at this time was changed in the range of 1 to 5 ° C./sec. Crystal grain after hot-rolled steel strip annealing was observed and grain size was 200μ
FIG. 2 shows the relationship between the heating rate and the ratio (area ratio) of grains coarser than m. If the number of coarse particles is large, the product plate is likely to be wrinkled. Although the state of occurrence of folding wrinkles in the product plate is also shown, it is clear from the figure that increasing the heating rate to reduce the proportion of coarse particles is advantageous for improving the surface properties.

【0015】次に、熱延鋼板焼鈍に引続く冷延・焼鈍の
条件について述べる。前述の熱延鋼板と同一組成の熱延
鋼板を用い、軽冷延を10%施したのち、熱延鋼板焼鈍に
おいて、 900℃の温度で10秒間保持する。このときの結
晶粒径は 120μm であった。その焼鈍板に冷間圧延を施
し、0.50〜0.65mm厚とする。次いで600 〜750 ℃で焼鈍
して結晶粒径を10〜30μm とし、0〜20%の軽冷延を施
して0.50mm厚さに仕上げ、引き続き湿潤雰囲気で 800℃
60sの脱炭を兼ねた焼鈍を行い製品とした。
Next, the conditions of cold rolling / annealing subsequent to annealing of the hot rolled steel sheet will be described. A hot-rolled steel sheet having the same composition as the above-mentioned hot-rolled steel sheet is used, lightly cold-rolled by 10%, and then annealed at a temperature of 900 ° C. for 10 seconds during annealing of the hot-rolled steel sheet. The crystal grain size at this time was 120 μm. The annealed plate is cold rolled to a thickness of 0.50 to 0.65 mm. Then, it is annealed at 600 to 750 ℃ to make the crystal grain size 10 to 30 μm, lightly cold rolled to 0 to 20% to finish the thickness to 0.50 mm, and then 800 ℃ in a wet atmosphere.
The product was annealed also for decarburization for 60 seconds to obtain a product.

【0016】これらの製品の磁束密度と冷延焼鈍後の結
晶粒径と軽冷延の圧下率との関係を図3に示す。これか
らわかるように熱延鋼板焼鈍後の冷延・焼鈍時に、冷延
焼鈍後の結晶粒径が20μm 以下でかつ軽冷延での圧下率
が1〜15%の製品のB50が他の条件のものより高いこと
が明らかである。これらの磁束密度が高い製品表面は畳
じわもなく良好であった。
FIG. 3 shows the relationship between the magnetic flux density of these products, the crystal grain size after cold rolling annealing, and the reduction ratio of light cold rolling. As can be seen, during cold rolling / annealing after hot-rolled steel sheet annealing, B 50 of a product having a grain size of 20 μm or less after cold-rolling annealing and a reduction ratio of 1 to 15% in light cold rolling is another condition. It is clear that it is higher than that of The product surface with high magnetic flux density was good without unfolding.

【0017】以上のように、熱延鋼板焼鈍に引き続く冷
延焼鈍後の結晶粒径およびその後の冷延圧下率を制御す
ることにより、磁束密度が向上するのは結晶回転と粒成
長時の方位選択による集合組織改善の効果である。次に
本発明において熱延鋼板の軽冷延を圧下率5〜15%に限
定した理由を述べる。熱延鋼板の軽冷延に引き続く熱延
鋼板焼鈍が比較的高温で短時間保持処理の場合あるいは
低温で長時間処理の場合には、圧下率が5%未満では歪
が不足し、熱延鋼板焼鈍での結晶粒の粗大化が不十分な
ため、結晶粒の大きさが 100μm に達せず磁束密度の向
上が図れない。また圧下率が15%を超えると通常の冷延
と同じようになり熱延鋼板焼鈍後に結晶粒の大きさが 1
00μm にならないためである。
As described above, the magnetic flux density is improved by controlling the crystal grain size after the cold rolling annealing subsequent to the hot-rolled steel sheet annealing and the cold rolling reduction rate thereafter. This is the effect of improving the texture through selection. Next, the reason why the light cold rolling of the hot rolled steel sheet is limited to the rolling reduction of 5 to 15% in the present invention will be described. When the hot-rolled steel sheet annealing following the light cold-rolling of the hot-rolled steel sheet is performed at a relatively high temperature for a short time holding treatment or at a low temperature for a long time treatment, distortion is insufficient if the rolling reduction is less than 5%, and the hot rolled steel sheet The grain size does not reach 100 μm and the magnetic flux density cannot be improved due to insufficient grain coarsening during annealing. When the rolling reduction exceeds 15%, the same as in ordinary cold rolling, and the grain size becomes 1 after annealing of hot-rolled steel sheet.
This is because it will not be 00 μm.

【0018】また、本発明においては、熱延鋼帯焼鈍に
おいて、加熱速度を3℃/sec 以上にすることが好まし
い。加熱速度が3℃/sec 未満だと加熱中に一部粒成長
が起こり、比較的高温での短時間保持では均一かつ適度
な粒成長が起こらず混粒となりやすいからである。より
好ましい加熱速度は5℃/sec 以上である。次に、熱延
鋼帯に軽圧下の冷間圧延を施し、焼鈍した後の熱延鋼帯
の結晶粒径を 100〜 200μm に限定した理由を説明す
る。
Further, in the present invention, it is preferable that the heating rate is 3 ° C./sec or more in the hot strip annealing. This is because if the heating rate is less than 3 ° C./sec, some grain growth occurs during heating, and uniform and appropriate grain growth does not occur when held at a relatively high temperature for a short time, and mixed grains tend to form. A more preferable heating rate is 5 ° C./sec or more. Next, the reason for limiting the crystal grain size of the hot rolled steel strip to 100 to 200 μm after cold rolling under light reduction and annealing is explained.

【0019】粒径が 200μm を超えると、製品板の表面
外観を損なうのでこの場合粒径 200μm を上限とした。
また磁気特性の向上をはかるためには、下限を 100μm
とする必要がある。この場合の焼鈍条件としては、製造
コストや品質安定面で有利である連続焼鈍炉を用いる場
合、 850℃以上A3 変態点以下の比較的高温で、5〜30
秒の短時間処理が好ましい。この場合、 850℃未満では
粒成長不足となり磁束密度の向上が十分図れない。
If the particle size exceeds 200 μm, the surface appearance of the product sheet is impaired, so in this case the particle size was set to 200 μm as the upper limit.
In order to improve the magnetic properties, the lower limit is 100 μm.
It is necessary to The annealing conditions in this case are 5 to 30 at a relatively high temperature of 850 ° C. or higher and A 3 transformation point or less when using a continuous annealing furnace which is advantageous in terms of manufacturing cost and quality stability.
A short time treatment of seconds is preferred. In this case, if the temperature is lower than 850 ° C., grain growth becomes insufficient, and the magnetic flux density cannot be sufficiently improved.

【0020】また、前記の熱延鋼帯焼鈍温度が 850℃〜
3 変態点の場合、5秒未満では結晶粒の粗大化が不十
分で粒径が 100μm に達しないため磁束密度の向上が少
ない。また保持時間が30秒を超えると結晶粒が粗大化し
過ぎて、粒径が 200μm より大きくなり、その結果、磁
束密度は向上するものの製品表面に畳じわが発生し、表
面外観を損なう。この畳じわは占積率の低下を来たすと
いう問題がある。
Further, the annealing temperature of the hot-rolled steel strip is from 850 ° C to
In the case of the A 3 transformation point, if the time is less than 5 seconds, the coarsening of the crystal grains is insufficient and the grain size does not reach 100 μm, so the improvement in the magnetic flux density is small. Further, if the holding time exceeds 30 seconds, the crystal grains become too coarse and the grain size becomes larger than 200 μm. As a result, although the magnetic flux density is improved, creases are generated on the product surface and the surface appearance is impaired. There is a problem that this tatami wrinkle causes a decrease in space factor.

【0021】また、上記したように結晶粒径が 100〜 2
00μmとなる焼鈍を施したあとに、さらに、冷間圧延
後、結晶粒径を20μm以下とする焼鈍を施し、さらに1
〜15%の冷間圧延を施して製品板厚としたのち、最終焼
鈍を施すことも本発明の1つである。この場合、上記し
た結晶粒径が 100〜 200μmとなる焼鈍は、連続焼鈍炉
でもバッチ炉でも特に問題はなく、また、加熱温度 850
℃以下の条件でも、焼鈍時間を長くすることにより、結
晶粒が 100〜 200μmに粗大化できれば、特に問題はな
い。
Further, as described above, the crystal grain size is 100 to 2
After being annealed to 00 μm, it was further cold-rolled and then annealed to a grain size of 20 μm or less.
It is also one of the present inventions to carry out final annealing after cold rolling at -15% to give a product sheet thickness. In this case, there is no particular problem in the annealing in which the crystal grain size becomes 100 to 200 μm in either the continuous annealing furnace or the batch furnace, and the heating temperature is 850
There is no particular problem even if the crystal grain can be coarsened to 100 to 200 μm by prolonging the annealing time even under the condition of not more than ° C.

【0022】また粒径調整のための焼鈍後に施す、軽圧
下冷延は、上述の集合組織改善のため1%以上の圧下率
が必要である。ただし、15%を超えると通常の冷延と同
じく再結晶が多く起こるようになるので、磁気特性向上
に結びつくような集合組織改善は望めない。次に本発明
における素材成分の限定理由を述べる。
Further, the light reduction cold rolling performed after the annealing for adjusting the grain size requires a reduction rate of 1% or more in order to improve the texture described above. However, if it exceeds 15%, recrystallization often occurs as in the case of normal cold rolling, so improvement in texture that leads to improvement in magnetic properties cannot be expected. Next, the reasons for limiting the raw material components in the present invention will be described.

【0023】Cは、0.02%を超えると磁性に有害である
ばかりでなく、最終焼鈍時に脱炭不良となり、非時効化
に対して不利となるので、Cは0.02%以下とした。Siも
しくはSi+Alは高い固有抵抗を有し、増量すると鉄損は
少なくなり、飽和磁束密度は低下する。従って、鉄損・
磁束密度の要求に応じて、この量を調節する。しかし、
Si+Al量が、 4.0%を超えると、著しく冷延性を損なう
ので、4%を上限とする。
If C exceeds 0.02%, not only is it harmful to magnetism, but also decarburization is unsatisfactory during final annealing, which is disadvantageous for non-aging, so C was made 0.02% or less. Si or Si + Al has a high specific resistance, and if the amount is increased, the iron loss decreases and the saturation magnetic flux density decreases. Therefore, iron loss
This amount is adjusted according to the magnetic flux density requirement. But,
If the amount of Si + Al exceeds 4.0%, the cold rolling property is significantly impaired, so the upper limit is 4%.

【0024】SbおよびSnは集合組織改善により磁束密度
が向上するので、特に高い磁束密度を得るためには必要
に応じて添加することが望ましい。その場合SbおよびSn
の1種または2種の合計が0.10%を超えるとかえって磁
気特性を劣化させるのでいずれか単独かまたは併用する
場合でも含有量は0.10%以下に限定した。Mnは脱酸剤と
して、あるいはSによる熱間脆性を制御するために添加
されるが1.0%を超えるとコスト上昇を招くのでMnは 1.
0%以下とする。
Since the magnetic flux density of Sb and Sn is improved by improving the texture, it is desirable to add Sb and Sn as needed in order to obtain a particularly high magnetic flux density. Then Sb and Sn
If the content of one or two of the above exceeds 0.10%, the magnetic properties are rather deteriorated. Therefore, the content is limited to 0.10% or less even when either one alone or in combination. Mn is added as a deoxidizer or for controlling the hot embrittlement due to S, but if it exceeds 1.0%, the cost increases, so Mn is 1.
0% or less.

【0025】Pは硬度を高め打抜性を向上させるために
添加されることがあるが、0.20%より多いと脆くなるの
で0.20%以下にする必要がある。次に、本発明の実施例
について説明する。なお、実施例1〜5は請求項1の発
明に対応するものであり、実施例6〜9は請求項2の発
明に夫々対応するものである。
P may be added in order to increase hardness and punchability, but if it exceeds 0.20%, it becomes brittle, so it must be 0.20% or less. Next, examples of the present invention will be described. Note that Examples 1 to 5 correspond to the invention of claim 1, and Examples 6 to 9 correspond to the invention of claim 2, respectively.

【0026】[0026]

【実施例】実施例1 転炉で溶製し、真空脱ガス処理した溶鋼を連続鋳造し、
1〜9までのスラブを造った。それらの化学成分はC:
0.006%、Si:0.35%、Mn:0.25%、P:0.08%、Al:
0.0009%を含み残部実質的にFeであった。それらのスラ
ブを通常の熱間圧延で、 2.3mm厚の熱延鋼帯とした。な
お熱延鋼帯のA3 変態点は 955℃であった。
EXAMPLES Example 1 Molten steel melted in a converter and vacuum degassed is continuously cast,
Made slabs from 1 to 9. Their chemical composition is C:
0.006%, Si: 0.35%, Mn: 0.25%, P: 0.08%, Al:
The balance was 0.0009% and the balance was substantially Fe. The slabs were hot rolled into ordinary hot rolled steel strips with a thickness of 2.3 mm. The A 3 transformation point of the hot rolled steel strip was 955 ° C.

【0027】引続き、熱延鋼帯に軽冷延を施したのち熱
延鋼帯焼鈍を行った。冷延率および焼鈍条件を表1に示
す。次いで、1回の冷間圧延で0.50mm厚に仕上げ、引続
いて850℃, 75秒の脱炭兼再結晶焼鈍を施して製品にし
た。それらの製品および 750℃,2Hrの歪取焼鈍後の磁
性をエプスタイン試片で測定した結果を表2に示した。
これらから、本発明の適合例のように熱延鋼帯の軽冷延
の圧下率および熱延鋼帯焼鈍条件を適正範囲にとれば、
熱延鋼帯焼鈍後の結晶粒が適度に粗大化し、その結果、
製品の集合組織改善が図れ、とくに磁束密度B50が高
く、かつ表面外観の良いものが得られることが明らかで
ある。
Subsequently, the hot-rolled steel strip was lightly and cold-rolled, and then hot-rolled steel strip was annealed. Table 1 shows the cold rolling ratio and the annealing conditions. Then, the product was finished by one cold rolling to a thickness of 0.50 mm, and subsequently subjected to decarburization / recrystallization annealing at 850 ° C. for 75 seconds. Table 2 shows the results of measuring the magnetism of these products and the stress after strain relief annealing at 750 ° C for 2 hours with an Epstein test piece.
From these, if the reduction ratio of the light and cold rolling of the hot rolled steel strip and the annealing conditions of the hot rolled steel strip are set in an appropriate range as in the conformity example of the present invention,
The crystal grains after the hot-rolled steel strip annealing are appropriately coarsened, and as a result,
It is clear that the texture of the product can be improved and that the magnetic flux density B 50 is particularly high and the surface appearance is good.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】実施例2 実施例1と同様に、C: 0.007%、Si:1.0 %、Mn:0.
30%、P: 0.018%、Al:0.30%を含み、残部実質的に
Feであるスラブを10〜15まで造った。次いで、通常の熱
間圧延で2.0mm 厚の熱延鋼帯とした。これらの熱延鋼帯
のA3 変態点は1050℃であった。
Example 2 As in Example 1, C: 0.007%, Si: 1.0%, Mn: 0.
30%, P: 0.018%, Al: 0.30%, the balance is substantially
I made a slab of Fe from 10 to 15. Then, a hot-rolled steel strip having a thickness of 2.0 mm was formed by ordinary hot rolling. The A 3 transformation point of these hot-rolled steel strips was 1050 ° C.

【0031】引続き、熱延鋼帯に軽冷延を施したのち熱
延鋼帯焼鈍を行った。それらの条件を表3に示す。つぎ
に、1回の冷間圧延で0.50mm厚に仕上げてから、 830
℃,75秒の脱炭兼再結晶焼鈍を施して製品とした。それ
らの製品および 750℃,2Hrの歪取焼鈍後の磁性をエプ
スタイン試片で測定した結果を表4に示した。これらか
ら、本発明の適合例が比較例に比し、とくに磁束密度が
優れ、かつ表面外観の良いことが明らかである。
Subsequently, the hot-rolled steel strip was lightly and cold-rolled, and then hot-rolled steel strip was annealed. Table 3 shows those conditions. Next, after one cold rolling to finish the thickness to 0.50mm,
The product was decarburized and recrystallized at 75 ° C for 75 seconds. Table 4 shows the results of measuring the magnetism of these products and the stress after strain relief annealing at 750 ° C for 2 hours with an Epstein test piece. From these, it is apparent that the conforming example of the present invention has an especially excellent magnetic flux density and a good surface appearance as compared with the comparative example.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】実施例3 転炉で溶製し、真空脱ガス処理した溶鋼を連続鋳造し、
16〜22のスラブを造った。それらの化学成分はC: 0.0
05%、Si:0.33%、Mn:0.25%、P:0.07%、Al:0.00
08%、Sb:0.050 %を含み残部実質的にFeであった。そ
れらのスラブを通常の熱間圧延で、 2.3mm厚の熱延鋼帯
とした。なお、熱延鋼帯のA3 変態点温度は 950℃であ
った。
Example 3 Molten steel melted in a converter and subjected to vacuum degassing was continuously cast,
Made 16 to 22 slabs. Their chemical composition is C: 0.0
05%, Si: 0.33%, Mn: 0.25%, P: 0.07%, Al: 0.00
The balance was 08% and Sb: 0.050%, and the balance was essentially Fe. The slabs were hot rolled into ordinary hot rolled steel strips with a thickness of 2.3 mm. The A 3 transformation point temperature of the hot rolled steel strip was 950 ° C.

【0035】引続き、熱延鋼帯に軽冷延を施したのち、
熱延鋼帯焼鈍を連続炉で行った。冷延率および焼鈍条件
を表5に示す。次いで1回の冷間圧延で0.50mm厚に仕上
げ、その後 810℃,60秒の脱炭兼再結晶焼鈍を施して製
品にした。それらの製品および 750℃,2Hrの歪取焼鈍
後の磁性をエブスタイン試片で測定した結果を表6に示
した。これらから、本発明の適合例のように熱延鋼帯の
圧下率とそれに引き続く熱延鋼帯焼鈍条件を適正範囲に
とれば、とくに磁束密度が高く、かつ表面外観の良い電
磁鋼板が得られることが明らかである。
Subsequently, after lightly and cold rolling the hot-rolled steel strip,
Hot-rolled steel strip annealing was performed in a continuous furnace. Table 5 shows the cold rolling rate and the annealing conditions. Next, it was finished by cold rolling once to a thickness of 0.50 mm and then subjected to decarburization and recrystallization annealing at 810 ° C for 60 seconds to obtain a product. Table 6 shows the results obtained by measuring the magnetism of these products and the stress after annealing for 2 hours at 750 ° C with an Ebstein sample. From these, if the reduction ratio of the hot-rolled steel strip and the subsequent hot-rolled steel strip annealing conditions are set in an appropriate range as in the conformity example of the present invention, magnetic flux density is particularly high, and a magnetic steel sheet having a good surface appearance can be obtained. It is clear.

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【表6】 [Table 6]

【0038】実施例4 実施例3と同様に、C: 0.008%、Si:1.1 %、Mn:0.
28%、P:0.018 %、Al:0.31%、Sn:0.055 %を含み
残部実質的にFeよりなる溶鋼から23〜28のスラブを、ま
たC:0.007 %、Si: 1.1%、Mn:0.30%、P:0.019
%、Al:0.30%、Sb:0.03%、Sn:0.03%を含み残部実
質的にFeよりなる溶鋼から29〜31のスラブを造り、通常
の熱間圧延で2.0mm 厚さの熱延鋼帯とした。23〜28の熱
延鋼帯のA3 変態点は1045℃で29〜31の熱延鋼帯のA3
変態点は1055℃であった。
Example 4 As in Example 3, C: 0.008%, Si: 1.1%, Mn: 0.
28%, P: 0.018%, Al: 0.31%, Sn: 0.055%, the balance is 23 to 28 slabs from molten steel consisting essentially of Fe, C: 0.007%, Si: 1.1%, Mn: 0.30% , P: 0.019
%, Al: 0.30%, Sb: 0.03%, Sn: 0.03%, and the balance is made of molten steel consisting of substantially 29% to 31% slab. And The A 3 transformation point of the hot rolled steel strips of 23 to 28 is 1045 ° C and the A 3 transformation point of the hot rolled steel strips of 29 to 31 is A 3
The transformation point was 1055 ° C.

【0039】引続き、熱延鋼帯に軽冷延を施したのち熱
延鋼帯焼鈍を連続炉で行った。これらの軽冷延と熱延鋼
帯焼鈍条件を表7に示す。つぎに、1回の冷間圧延で0.
50mm厚さに仕上げてから、830 ℃,75sの脱炭兼再結晶
焼鈍を施して製品とした。それらの製品および 750℃,
2Hrの歪取焼鈍後の磁性をエプスタイン試片で測定した
結果を表8に示した。
Subsequently, the hot-rolled steel strip was lightly and cold-rolled, and then hot-rolled steel strip was annealed in a continuous furnace. Table 7 shows these light cold rolling and hot strip annealing conditions. Next, in one cold rolling, 0.
After finishing to a thickness of 50 mm, the product was decarburized and recrystallized at 830 ° C for 75 s to obtain a product. Those products and 750 ℃,
Table 8 shows the results of measuring the magnetism after stress relief annealing of 2 Hr with an Epstein test piece.

【0040】これらから、本発明の適合例が比較例に比
し、とくに磁束密度が優れ、かつ表面外観の良いことが
明らかである。
From these, it is apparent that the conforming example of the present invention has a particularly excellent magnetic flux density and a good surface appearance as compared with the comparative example.

【0041】[0041]

【表7】 [Table 7]

【0042】[0042]

【表8】 [Table 8]

【0043】実施例5 C: 0.002%、Si:3.26%、Mn:0.14%、P:0.02%、
Al:0.61%を含み残部実質的にFeよりなる溶鋼から32〜
37のスラブを、またC:0.003 %、Si:3.31%、Mn:0.
15%、P:0.02%、Al:0.59%、Sb:0.06%を含み残部
実質的にFeよりなる溶鋼から38〜41のスラブを、また
C:0.002 %、Si:3.33%、Mn:0.16%、P:0.02%、
Al:0.62%、Sb:0.03%、Sn;0.04%を含み残部実質的
にFeよりなる溶鋼から、42〜45のスラブを造り、通常の
熱間圧延で2.0mm 厚の熱延鋼帯とした。これら32〜45の
熱延鋼帯は、未変態鋼であった。
Example 5 C: 0.002%, Si: 3.26%, Mn: 0.14%, P: 0.02%,
Al: A molten steel containing 0.61% and the balance consisting essentially of Fe 32 to 32
37 slabs, C: 0.003%, Si: 3.31%, Mn: 0.
A slab of 38-41 from molten steel consisting of 15%, P: 0.02%, Al: 0.59%, Sb: 0.06% and the balance consisting essentially of Fe, C: 0.002%, Si: 3.33%, Mn: 0.16% , P: 0.02%,
A slab of 42 to 45 was made from molten steel consisting of Al: 0.62%, Sb: 0.03%, Sn: 0.04% and the balance consisting essentially of Fe, and a hot rolled steel strip with a thickness of 2.0 mm was formed by normal hot rolling. . These 32-45 hot-rolled steel strips were untransformed steels.

【0044】引続き、熱延鋼帯に軽冷延を施したのち熱
延鋼帯焼鈍を連続炉で行った。これらの軽冷延と熱延鋼
帯焼鈍条件を表9に示す。つぎに、1回の冷間圧延で0.
50mm厚さに仕上げてから、1000℃,30秒の再結晶焼鈍を
施して製品とした。それらの製品および 750℃×2hrの
歪取焼鈍後の磁性をエプスタイン試片で測定した結果を
表10に示した。これらから、本発明の適合例が比較例に
比し、磁束密度の向上に伴い、鉄損が低くなり、かつ表
面外観が良いことが明らかである。
Subsequently, the hot-rolled steel strip was lightly and cold-rolled and then hot-rolled steel strip was annealed in a continuous furnace. Table 9 shows these light cold rolling and hot strip annealing conditions. Next, in one cold rolling, 0.
After finishing to a thickness of 50 mm, recrystallization annealing was performed at 1000 ° C for 30 seconds to obtain a product. Table 10 shows the results of measuring the magnetism of these products and the stress after strain relief annealing at 750 ° C x 2 hr using Epstein test pieces. From these, it is apparent that the conforming example of the present invention has a lower iron loss and a better surface appearance as the magnetic flux density improves, as compared with the comparative example.

【0045】[0045]

【表9】 [Table 9]

【0046】[0046]

【表10】 [Table 10]

【0047】実施例6 転炉で溶製し、真空脱ガス処理した溶鋼を連続鋳造し、
スラブとする。このC:0.007 %、Si:0.15%、Mn:0.
25%、P:0.03%、Al:0.0008%を含み残部が実質的に
Feであるスラブを通常の熱間圧延で、2.0mm の熱延鋼板
とした。この鋼板のA3 変態点は 920℃であった。
Example 6 Molten steel produced in a converter and vacuum degassed is continuously cast,
Slavic. This C: 0.007%, Si: 0.15%, Mn: 0.
25%, P: 0.03%, Al: 0.0008% including the balance
The slab of Fe was hot rolled into a hot rolled steel sheet of 2.0 mm. A 3 transformation point of the steel plate was 920 ° C..

【0048】この熱延板を表11に示すような冷延焼鈍条
件で処理し、表11に示すような結晶粒径を持つ組織を得
る。この焼鈍に際しての加熱速度はバッチ炉加熱が0.02
℃/sec 、それ以外は5℃/sec である。さらに、これ
を0.50〜0.60mm厚に大圧下冷延後、600 〜800 ℃で焼鈍
した。そのときの結晶粒径も表11に示す。さらに、表11
に示したような冷延圧下率で、0.50mm厚の製品厚さに仕
上げ、 800℃75sの脱炭焼鈍を施して製品とした。
This hot-rolled sheet is treated under the cold-rolling annealing conditions shown in Table 11 to obtain a structure having a crystal grain size shown in Table 11. The heating rate for this annealing was 0.02 for batch furnace heating.
° C / sec, otherwise 5 ° C / sec. Further, this was cold rolled under a large pressure to a thickness of 0.50 to 0.60 mm and then annealed at 600 to 800 ° C. Table 11 also shows the crystal grain size at that time. In addition, Table 11
Finished to a product thickness of 0.50 mm at the cold rolling reduction as shown in, and subjected to decarburization annealing at 800 ° C for 75 s to obtain a product.

【0049】これらの製品をエプスタイン試片で測定し
た結果および表面性状も表11に併記した。なお比較例と
して、2回目の冷延後焼鈍して製品とした場合も含んで
いる。本発明の実施例が、比較例に対して、とくに磁束
密度、表面性状ともに優れていることは明らかである。
Table 11 also shows the results and surface properties of these products measured with Epstein test pieces. In addition, as a comparative example, a case where a product is obtained by annealing after the second cold rolling is also included. It is apparent that the examples of the present invention are superior to the comparative examples in both the magnetic flux density and the surface properties.

【0050】[0050]

【表11】 [Table 11]

【0051】実施例7 転炉で溶製し、真空脱ガス処理した溶鋼を連続鋳造し、
スラブとする。このC:0.006 %、Si:0.18%、Mn:0.
25%、P:0.003 %、Al:0.0011%、Sb:0.06%を含
み、残部が実質的にFeであるスラブを通常の熱間圧延
で、2.0mm の熱延鋼板とした。この鋼板のA3 変態点は
925℃であった。
Example 7 Molten steel produced in a converter and vacuum degassed is continuously cast,
Slavic. This C: 0.006%, Si: 0.18%, Mn: 0.
A slab containing 25%, P: 0.003%, Al: 0.0011%, and Sb: 0.06%, and the balance being substantially Fe was formed into a hot rolled steel sheet of 2.0 mm by ordinary hot rolling. The A 3 transformation point of this steel sheet is
It was 925 ° C.

【0052】この熱延板を表12に示すような冷延焼鈍条
件で処理し、表12に示すような結晶粒径を持つ組織を得
る。この焼鈍に際しての加熱速度は7℃/sec である。
さらに、これを0.50〜0.60mm厚に冷延後、600 〜 800℃
で焼鈍した。そのときの結晶粒径も表12に示す。さら
に、表12に示したような冷延圧下率で、0.50mm厚の製品
厚さに仕上げ、800 ℃75sの脱炭焼鈍を施して製品とし
た。
This hot-rolled sheet is treated under the cold-rolling annealing conditions shown in Table 12 to obtain a structure having a crystal grain size shown in Table 12. The heating rate during this annealing is 7 ° C / sec.
Furthermore, after cold rolling this to a thickness of 0.50 to 0.60 mm, 600 to 800 ° C
Annealed. Table 12 also shows the crystal grain size at that time. Further, at a cold rolling reduction ratio as shown in Table 12, a product thickness of 0.50 mm was finished and decarburization annealing was performed at 800 ° C for 75 s to obtain a product.

【0053】これらの製品をエプスタイン試片で測定し
た結果および表面性状を表12に併記した。なお比較例と
して、2回目の冷延後焼鈍して製品とした場合も含んで
いる。本発明の実施例が、比較例に対して、とくに磁束
密度、表面性状ともに優れていることは明らかである。
Table 12 shows the results and surface properties of these products measured with Epstein test pieces. In addition, as a comparative example, a case where a product is obtained by annealing after the second cold rolling is also included. It is apparent that the examples of the present invention are superior to the comparative examples in both the magnetic flux density and the surface properties.

【0054】[0054]

【表12】 [Table 12]

【0055】実施例8 溶炉で溶製し、真空脱ガス処理した溶鋼を連続鋳造し、
スラブとする。このC:0.008 %、Si:0.35%、Mn:0.
35%、P:0.05%、Al:0.0012%、Sb:0.05%、Sn:0.
03%を含み、残部が実質的にFeであるスラブを通常の熱
間圧延で、2.0mm の熱延鋼板とした。この鋼板のA3
態点は 940℃であった。
Example 8 Molten steel melted in a melting furnace and vacuum degassed is continuously cast,
Slavic. This C: 0.008%, Si: 0.35%, Mn: 0.
35%, P: 0.05%, Al: 0.0012%, Sb: 0.05%, Sn: 0.
A slab containing 03% and the balance being essentially Fe was subjected to ordinary hot rolling to obtain a 2.0 mm hot rolled steel sheet. A 3 transformation point of the steel plate was 940 ° C..

【0056】この熱延板を表13に示すような冷延焼鈍条
件で処理し、表13に示すような結晶粒径を持つ組織を得
る。この焼鈍に際しての加熱速度はバッチ炉加熱が0.02
℃/sec 、それ以外は5℃/sec である。さらに、これ
を0.50〜0.60mm厚に冷延後、600〜800 ℃で焼鈍した。
そのときの結晶粒径も表13に示す。さらに、表13に示し
たような冷延圧下率で、0.50mm厚の製品厚さに仕上げ、
800℃75sの脱炭焼鈍を施して製品とした。
This hot-rolled sheet is treated under the cold-rolling annealing conditions shown in Table 13 to obtain a structure having a crystal grain size shown in Table 13. The heating rate for this annealing was 0.02 for batch furnace heating.
° C / sec, otherwise 5 ° C / sec. Further, this was cold rolled to a thickness of 0.50 to 0.60 mm and then annealed at 600 to 800 ° C.
The crystal grain size at that time is also shown in Table 13. Furthermore, at the cold rolling reduction rate as shown in Table 13, finish to a product thickness of 0.50 mm,
The product was decarburized and annealed at 800 ° C for 75s to obtain a product.

【0057】これらの製品をエブスタイン試片で測定し
た結果および表面性状も表13に併記した。なお比較例と
して、2回目の冷延後焼鈍して製品とした場合も含んで
いる。本発明の実施例が、比較例に対して、とくに磁束
密度、表面性状ともにすぐれていることは明らかであ
る。
Table 13 also shows the results and surface properties of these products measured with Ebstein test pieces. In addition, as a comparative example, a case where a product is obtained by annealing after the second cold rolling is also included. It is apparent that the examples of the present invention are superior to the comparative examples in the magnetic flux density and surface properties.

【0058】[0058]

【表13】 [Table 13]

【0059】実施例9 転炉で溶製し、真空脱ガス処理した溶鋼を連続鋳造し、
スラブとする。97〜101 のスラブは、C:0.002 %、S
i:3.31%、Mn:0.16%、P:0.02%、Al:0.64%、を
含み残部実質的にFeよりなる。102 〜106 のスラブは、
C:0.003 %、Si:3.25%、Mn:0.15%、P:0.02%、
Al:0.62%、Sb:0.05%を含み残部実質的にFeよりな
る。
Example 9 Molten steel produced in a converter and vacuum degassed is continuously cast,
Slavic. Slabs 97-101 have C: 0.002%, S
i: 3.31%, Mn: 0.16%, P: 0.02%, Al: 0.64%, and the balance consists essentially of Fe. The slabs of 102-106 are
C: 0.003%, Si: 3.25%, Mn: 0.15%, P: 0.02%,
Al: 0.62%, Sb: 0.05%, and the balance substantially Fe.

【0060】107 〜111 のスラブはC:0.002 %、Si:
3.28%、Mn:0.17%、P:0.02%、Al:0.58%、Sb:0.
03%、Sn:0.04%を含み残部実質的にFeよりなる。以上
のスラブを通常の熱間圧延で、2.0mm の熱延鋼板とし
た。これらの鋼板は未変態である。この熱延板を表14に
示すような冷延焼鈍条件で処理し、表14に示すような結
晶粒径を持つ組織を得る。この焼鈍に際しての加熱速度
は7℃/secである。さらに、これを0.50〜0.60mmに冷
延後 600〜800 ℃で焼鈍した。そのときの結晶粒径も表
14に示す。さらに、表14に示したような冷延圧下率で0.
50mm厚の製品厚さに仕上げ、1000℃×30sの再結晶焼鈍
を施して製品とした。これら製品をエプスタイン試片で
測定した結果および表面性状も表14に併記した。
The slabs of 107 to 111 have C: 0.002% and Si:
3.28%, Mn: 0.17%, P: 0.02%, Al: 0.58%, Sb: 0.
It contains 03% and Sn: 0.04%, and the balance consists essentially of Fe. The above slab was hot rolled into a hot rolled steel sheet of 2.0 mm. These steel sheets have not been transformed. The hot-rolled sheet is treated under the cold-rolling annealing conditions shown in Table 14 to obtain a structure having a crystal grain size shown in Table 14. The heating rate during this annealing is 7 ° C./sec. Further, this was cold rolled to 0.50 to 0.60 mm and annealed at 600 to 800 ° C. The crystal grain size at that time is also shown
Shown in 14. Furthermore, the cold rolling reduction ratio as shown in Table 14 is 0.
Finished to a product thickness of 50 mm and subjected to recrystallization annealing at 1000 ° C for 30 s to obtain a product. Table 14 also shows the results and surface properties of these products measured by Epstein test pieces.

【0061】[0061]

【表14】 [Table 14]

【0062】[0062]

【発明の効果】以上の如く、熱延鋼帯に適度な軽冷延を
行い、熱延鋼帯焼鈍を施すことにより適正な結晶粒と
し、あるいはさらに、冷延後の焼鈍と軽圧下を組合せる
ことにより、とくに磁束密度が高く、かつ表面外観の良
い無方向性電磁鋼板を低コストでしかも安定して製造す
ることができる。
As described above, the light-rolled steel strip is appropriately lightly cold-rolled, and the hot-rolled steel strip is annealed to obtain proper crystal grains, or further, annealing after cold-rolling is combined with light reduction. As a result, a non-oriented electrical steel sheet having a particularly high magnetic flux density and a good surface appearance can be manufactured stably at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁束密度B50と熱延鋼帯の冷延率の関係を示す
グラフである。
FIG. 1 is a graph showing a relationship between a magnetic flux density B 50 and a cold rolling rate of a hot rolled steel strip.

【図2】熱延板焼鈍後の粗大粒の占める比率と加熱速度
の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a heating rate and a ratio of coarse grains after hot-rolled sheet annealing.

【図3】最終焼鈍前の冷延率とその前の結晶粒径と製品
の磁束密度の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the cold rolling rate before final annealing, the crystal grain size before that, and the magnetic flux density of the product.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小原 隆史 千葉県千葉市川崎町1番地 川崎製鉄株 式会社 技術研究本部内 (72)発明者 小林 秀夫 千葉県千葉市川崎町1番地 川崎製鉄株 式会社 技術研究本部内 (72)発明者 森田 和巳 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社 水島製鉄所内 (72)発明者 飯田 嘉明 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社 水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Obara 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Hideo Kobayashi 1 Kawasaki-cho, Chiba-shi Kawasaki Steel Co., Ltd. Corporate Technology Research Headquarters (72) Inventor Kazumi Morita 1-chome Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture (no address) Kawasaki Steel Co., Ltd. Mizushima Works (72) Inventor Yoshiaki Iida 1-chome Mizushima-kawasaki-dori, Kurashiki-shi Okayama ( No address) Kawasaki Steel Works Mizushima Works

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.02%以下、Siもしくは
Si+Al: 4.0%以下、Mn: 1.0%以下、P: 0.2%以下
を含み、残部が実質的にFeからなるスラブを熱間圧延に
より熱延鋼帯とし、さらに圧下率5〜15%の冷間圧延を
施したのち、3℃/sec 以上の加熱速度で所定の温度に
加熱し、該温度で5〜30秒保持する結晶粒径が 100〜 2
00μmとなる短時間焼鈍を施し、さらに冷間圧延により
最終板厚とした後、最終焼鈍を施すことを特徴とする磁
気特性が優れかつ表面外観の良い無方向性電磁鋼板の製
造方法。
1. By weight%, C: 0.02% or less, Si or
A slab containing Si + Al: 4.0% or less, Mn: 1.0% or less, P: 0.2% or less, and the balance being substantially Fe, is hot-rolled into a hot-rolled steel strip, which is cold-rolled at a reduction rate of 5 to 15%. After rolling, it is heated to a predetermined temperature at a heating rate of 3 ° C / sec or more and kept at that temperature for 5 to 30 seconds.
A method for producing a non-oriented electrical steel sheet having excellent magnetic properties and a good surface appearance, which comprises performing a short-term annealing of 00 μm, further cold rolling to a final thickness, and then performing a final annealing.
【請求項2】 重量%で、C:0.02%以下、Siもしくは
Si+Al: 4.0%以下、Mn: 1.0%以下、P: 0.2%以下
を含み、残部が実質的にFeからなるスラブを熱間圧延に
より熱延鋼帯とし、さらに圧下率5〜15%の冷間圧延を
施したのち、結晶粒径が 100〜 200μm となる焼鈍を施
し、さらに冷間圧延後、結晶粒径を20μm 以下とする焼
鈍を施し、さらに1〜15%の冷間圧延を施して製品板厚
としたのち、最終焼鈍を施すことを特徴とする磁気特性
が優れかつ表面外観の良い無方向性電磁鋼板の製造方
法。
2. C: 0.02% or less by weight%, Si or
A slab containing Si + Al: 4.0% or less, Mn: 1.0% or less, P: 0.2% or less, and the balance being substantially Fe, is hot-rolled into a hot-rolled steel strip, which is cold-rolled at a reduction rate of 5 to 15%. After rolling, annealing is performed so that the crystal grain size is 100 to 200 μm, further cold rolling is performed, then annealing is performed to reduce the crystal grain size to 20 μm or less, and further cold rolling of 1 to 15% is performed. A method for producing a non-oriented electrical steel sheet having excellent magnetic properties and a good surface appearance, which is characterized by subjecting a sheet thickness to final annealing.
【請求項3】 結晶粒径が 100〜 200μm となる焼鈍
が、3℃/sec 以上の加熱速度で所定の温度に加熱し、
該温度で5〜30秒保持する短時間焼鈍であることを特徴
とする請求項2記載の磁気特性が優れかつ表面外観の良
い無方向性電磁鋼板の製造方法。
3. Annealing with a crystal grain size of 100 to 200 μm is performed by heating to a predetermined temperature at a heating rate of 3 ° C./sec or more,
The method for producing a non-oriented electrical steel sheet having excellent magnetic properties and good surface appearance according to claim 2, characterized in that the annealing is performed for a short period of time at which the temperature is maintained for 5 to 30 seconds.
【請求項4】 スラブ組成が、重量%で、C:0.02%以
下、SiもしくはSi+Al: 4.0%以下、Mn: 1.0%以下、
P: 0.2%以下、SbおよびSnの何れか1種または2種の
合計が0.10%以下を含み、残部が実質的にFeとからなる
ことを特徴とする請求項1、2又は3記載の磁気特性が
優れかつ表面外観の良い無方向性電磁鋼板の製造方法。
4. The slab composition, in% by weight, C: 0.02% or less, Si or Si + Al: 4.0% or less, Mn: 1.0% or less,
P: 0.2% or less, the sum of any one or two of Sb and Sn is 0.10% or less, and the balance consists essentially of Fe, The magnetic material according to claim 1, 2 or 3. A method for producing a non-oriented electrical steel sheet with excellent characteristics and good surface appearance.
JP3326163A 1990-12-10 1991-12-10 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance Expired - Fee Related JP2500033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3326163A JP2500033B2 (en) 1990-12-10 1991-12-10 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2-401048 1990-12-10
JP40104890 1990-12-10
JP3-275138 1991-10-23
JP27513891 1991-10-23
JP3326163A JP2500033B2 (en) 1990-12-10 1991-12-10 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance

Publications (2)

Publication Number Publication Date
JPH05171280A JPH05171280A (en) 1993-07-09
JP2500033B2 true JP2500033B2 (en) 1996-05-29

Family

ID=27336231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3326163A Expired - Fee Related JP2500033B2 (en) 1990-12-10 1991-12-10 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance

Country Status (1)

Country Link
JP (1) JP2500033B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027452A1 (en) 2012-08-17 2014-02-20 Jfeスチール株式会社 Method for manufacturing non-oriented electromagnetic steel sheet
WO2015025759A1 (en) 2013-08-20 2015-02-26 Jfeスチール株式会社 Non-oriented magnetic steel sheet having high magnetic flux density, and motor
WO2015025758A1 (en) 2013-08-20 2015-02-26 Jfeスチール株式会社 Non-oriented magnetic steel sheet and hot-rolled steel sheet thereof
KR20170092666A (en) 2015-01-07 2017-08-11 제이에프이 스틸 가부시키가이샤 Non-oriented electromagnetic steel sheet and method for producing same
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties
KR101977510B1 (en) 2017-12-26 2019-08-28 주식회사 포스코 Non-oriented electrical steel sheet having exelleant magnetic properties low deviation of thickness and method of manufacturing the same
US10941458B2 (en) 2015-02-18 2021-03-09 Jfe Steel Corporation Non-oriented electrical steel sheet, production method therefor, and motor core

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102373366A (en) * 2010-08-26 2012-03-14 宝山钢铁股份有限公司 Method for improving coarse grains on surface of non-oriented silicon steel
JP5854182B2 (en) * 2010-08-30 2016-02-09 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
KR101671692B1 (en) * 2014-12-19 2016-11-02 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method for the same
KR101650406B1 (en) * 2014-12-24 2016-08-23 주식회사 포스코 Non-oriented electrical steel sheets and method for manufacturing the same
EP3404124B1 (en) 2016-01-15 2021-08-04 JFE Steel Corporation Non-oriented electrical steel sheet and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306523A (en) * 1988-06-04 1989-12-11 Kobe Steel Ltd Production of non-oriented electrical sheet having high magnetic flux density
JPH02263952A (en) * 1989-04-03 1990-10-26 Nippon Steel Corp Nonoriented silicon steel sheet having high magnetic flux density and low core loss and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306523A (en) * 1988-06-04 1989-12-11 Kobe Steel Ltd Production of non-oriented electrical sheet having high magnetic flux density
JPH02263952A (en) * 1989-04-03 1990-10-26 Nippon Steel Corp Nonoriented silicon steel sheet having high magnetic flux density and low core loss and its manufacture

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170012571A (en) 2012-08-17 2017-02-02 제이에프이 스틸 가부시키가이샤 Method for manufacturing non-oriented electromagnetic steel sheet
US9748027B2 (en) 2012-08-17 2017-08-29 Jfe Steel Corporation Method for manufacturing non-oriented electromagnetic steel sheet
WO2014027452A1 (en) 2012-08-17 2014-02-20 Jfeスチール株式会社 Method for manufacturing non-oriented electromagnetic steel sheet
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties
KR20160018875A (en) 2013-08-20 2016-02-17 제이에프이 스틸 가부시키가이샤 Non-oriented magnetic steel sheet and hot-rolled steel sheet thereof
WO2015025758A1 (en) 2013-08-20 2015-02-26 Jfeスチール株式会社 Non-oriented magnetic steel sheet and hot-rolled steel sheet thereof
US10006109B2 (en) 2013-08-20 2018-06-26 Jfe Steel Corporation Non-oriented electrical steel sheet and hot rolled steel sheet thereof
WO2015025759A1 (en) 2013-08-20 2015-02-26 Jfeスチール株式会社 Non-oriented magnetic steel sheet having high magnetic flux density, and motor
US10597759B2 (en) 2013-08-20 2020-03-24 Jfe Steel Corporation Non-oriented electrical steel sheet having high magnetic flux density and motor
KR20170092666A (en) 2015-01-07 2017-08-11 제이에프이 스틸 가부시키가이샤 Non-oriented electromagnetic steel sheet and method for producing same
US10822678B2 (en) 2015-01-07 2020-11-03 Jfe Steel Corporation Non-oriented electrical steel sheet and method for producing the same
US10941458B2 (en) 2015-02-18 2021-03-09 Jfe Steel Corporation Non-oriented electrical steel sheet, production method therefor, and motor core
KR101977510B1 (en) 2017-12-26 2019-08-28 주식회사 포스코 Non-oriented electrical steel sheet having exelleant magnetic properties low deviation of thickness and method of manufacturing the same

Also Published As

Publication number Publication date
JPH05171280A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
JP2500033B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance
US4773948A (en) Method of producing silicon iron sheet having excellent soft magnetic properties
EP0490617B1 (en) Method for producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
JPH03219020A (en) Production of nonoriented silicon steel sheet
JPS6056403B2 (en) Method for manufacturing semi-processed non-oriented electrical steel sheet with extremely excellent magnetic properties
JPS6261644B2 (en)
JP3290446B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP4013262B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JPH0784615B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic flux density
JPH0696743B2 (en) Method for producing unidirectional silicon steel sheet having excellent magnetic properties
JPH10317060A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP2680519B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH10251752A (en) Production of hot rolled silicon steel plate excellent in magnetic property
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP2716987B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPS5855209B2 (en) Method for manufacturing non-oriented silicon steel sheet with little aging deterioration and good surface quality
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method
JP3845887B2 (en) Manufacturing method of hot rolled electrical steel sheet with excellent magnetic properties
JP3020810B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JP2758915B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0892644A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees