JP3290446B2 - Method for producing non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance - Google Patents

Method for producing non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance

Info

Publication number
JP3290446B2
JP3290446B2 JP11590591A JP11590591A JP3290446B2 JP 3290446 B2 JP3290446 B2 JP 3290446B2 JP 11590591 A JP11590591 A JP 11590591A JP 11590591 A JP11590591 A JP 11590591A JP 3290446 B2 JP3290446 B2 JP 3290446B2
Authority
JP
Japan
Prior art keywords
hot
temperature
steel sheet
less
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11590591A
Other languages
Japanese (ja)
Other versions
JPH04346621A (en
Inventor
和己 森田
吉成 室
隆史 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP11590591A priority Critical patent/JP3290446B2/en
Publication of JPH04346621A publication Critical patent/JPH04346621A/en
Application granted granted Critical
Publication of JP3290446B2 publication Critical patent/JP3290446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は磁気特性の優れた無方
向性電磁鋼板の製造方法に係わり、とくに磁束密度が高
く、かつ表面外観の良い無方向性電磁鋼板を製造する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, and more particularly to a method for producing a non-oriented electrical steel sheet having a high magnetic flux density and a good surface appearance. .

【0002】[0002]

【従来の技術】無方向性電磁鋼板は各種のモーターなど
の回転機や変圧器、安定器などの静止器の鉄心材料に用
いられているが、これらの電気機器を小型化、高効率化
するためには使用する電磁鋼板の磁束密度の向上および
鉄損の低減が必要である。ところで、無方向性電磁鋼板
の磁性を向上させるには冷間圧延前の鋼帯の結晶粒を粗
大化すればよいことが知られている。
2. Description of the Related Art Non-oriented electrical steel sheets are used as core materials for rotating machines such as various types of motors and stationary devices such as transformers and stabilizers. Therefore, it is necessary to improve the magnetic flux density of the magnetic steel sheet used and to reduce the iron loss. Incidentally, it is known that the magnetism of a non-oriented electrical steel sheet can be improved by enlarging the crystal grains of a steel strip before cold rolling.

【0003】この冷間圧延前の鋼帯の結晶粒粗大化方法
として、発明者らは先に特公昭57-35628号公報において
電磁鋼素材を熱間圧延する際、熱間圧延終了温度を鋼の
化学成分により求めた Ar3変態点温度以上となし、次い
でこの熱延鋼帯を A3 変態点温度以下の温度で30秒以上
15分以下の時間、焼鈍する方法を提案した。さらに、特
開平2−182831号公報には熱間圧延終了温度を Ar3変態
点温度以上とし、次いでこの熱延鋼帯を A3 変態点温度
以下で30〜15秒保持したのちの冷却速度を制御する方法
を開示した。
[0003] As a method of coarsening the grain size of a steel strip before cold rolling, the inventors have previously disclosed in Japanese Patent Publication No. 57-35628, when hot rolling an electromagnetic steel material, the end temperature of hot rolling was determined by the steel. Above the Ar 3 transformation temperature determined by the chemical composition of the above, and then heat the hot-rolled steel strip at a temperature below the A 3 transformation temperature for 30 seconds or more.
A method of annealing for less than 15 minutes was proposed. Further, JP-A-2-1822831 discloses that the hot rolling end temperature is set to the Ar 3 transformation point temperature or higher, and then the cooling rate after maintaining the hot-rolled steel strip at the A 3 transformation point temperature or lower for 30 to 15 seconds. A method of controlling has been disclosed.

【0004】しかし、これらの方法は熱延鋼帯焼鈍時間
が短時間側では結晶粒の粗大化が起こり難い場合があ
り、その結果磁気特性がバラツクという欠陥があった。
また長時間側では結晶粒が過大になる場合があり、その
結果、製品に畳じわが発生し表面外観を損なうという難
点があった。一方、特開昭58−136718号公報には熱間圧
延を上述と同じく鋼中成分によって定まる Ar3変態点温
度より50℃を超えて高くはない範囲内のγ相領域で終了
し、その巻取温度を A3 変態点以下から 700℃以上に
し、熱延鋼帯のフェライト結晶粒度を No.4以下の粗大
粒にして磁性の向上を図る方法が開示されている。
[0004] However, in these methods, when the annealing time of the hot-rolled steel strip is short, the crystal grains are hardly coarsened in some cases, and as a result, there is a defect that the magnetic properties vary.
Further, on the long-time side, the crystal grains may be excessively large, and as a result, the product may be folded and the surface appearance may be impaired. On the other hand, Japanese Patent Application Laid-Open No. 58-136718 discloses that hot rolling is completed in the γ phase region within a range not exceeding 50 ° C. higher than the Ar 3 transformation point temperature determined by the same component in the steel as described above. the collected temperature was above 700 ° C. the following a 3 transformation point, a method to improve the magnetic discloses a ferrite grain size of the hot rolled strip in the No.4 following coarse grains.

【0005】また特開昭54-76422号公報には熱間圧延後
の巻取温度 750〜1000℃とし、コイルの保有熱による自
己焼鈍により結晶粒度 No.5〜6に再結晶させて磁性向
上を図る方法が提案されている。しかしこれらの熱延後
の巻取温度を 700℃以上にして冷間圧延前の結晶粒を大
きくして磁性を改善する方法は、熱延鋼帯焼鈍を省略で
きるが、巻取温度が高いためコイルの内、外巻部及びエ
ッジ部がコイル中心部より速く冷えるのでコイル内温度
差が大きくなり、最終的にはコイル全体に亘って均一な
磁性が得られないこと及び熱延鋼帯の酸洗による脱スケ
ール性が悪い等の欠陥がある。
Japanese Patent Application Laid-Open No. 54-76422 discloses that the coiling temperature after hot rolling is set at 750 to 1000 ° C., and the grain size is improved to 5 to 6 by self-annealing by the heat possessed by the coil to improve the magnetic properties. A method has been proposed. However, the method of improving the magnetism by setting the winding temperature after hot rolling to 700 ° C or higher and increasing the crystal grains before cold rolling can omit hot-rolled steel strip annealing, but the winding temperature is high. Since the outer winding and the edge of the coil cool faster than the center of the coil, the temperature difference in the coil increases, and eventually, uniform magnetism cannot be obtained over the entire coil and the acidity of the hot rolled steel strip. There are defects such as poor descaling properties due to washing.

【0006】また、特公昭45-22211号公報には熱延鋼帯
に圧下率0.5〜15%の冷間圧延を施したのち、再結晶温
度以上 A3 変態点以下の温度範囲で比較的長時間の焼鈍
を行って引続く冷間圧延前の鋼帯の結晶粒の粗大化を図
って鉄損を向上させる方法が開示されている。しかしこ
の方法の熱延鋼帯の軽冷延後の焼鈍は比較的低温度短時
間と言えども 800〜850 ℃,30分〜20時間(なお実施例
での焼鈍時間はいずれも10時間)のいわゆる箱焼鈍を前
提とした長時間焼鈍であるため製造コスト面で不利であ
るばかりでなく、結晶粒が粒度 No. 2.2と過大粒になる
場合があり、表面外観を損なう欠陥があった。
[0006] After subjected to rolling reduction from 0.5 to 15% cold rolling the hot rolled strip in JP-B-45-22211, relatively long at a temperature range of 3 transformation point recrystallization temperature or more A A method is disclosed in which annealing is performed for a long time to increase the crystal grain size of the steel strip before the subsequent cold rolling, thereby improving iron loss. However, the annealing of the hot-rolled steel strip after light cold rolling in this method can be said to be a relatively low temperature and a short period of time at 800 to 850 ° C for 30 minutes to 20 hours (the annealing time in Examples is 10 hours for each). This is a long-time annealing premised on so-called box annealing, which is not only disadvantageous in terms of manufacturing cost, but also has a crystal grain having a grain size of 2.2 and may be excessively large, and has a defect that impairs the surface appearance.

【0007】また特開平1−306523号公報では、熱延鋼
帯に5〜20%の軽冷延を施したのち熱延板焼鈍を 850〜
1000℃の温度で 0.5〜10分間行って磁束密度の高い無方
向性電磁鋼板を造る方法を開示している。この方法の熱
延板焼鈍は連続炉で行うが、焼鈍時間が実施例では2分
程度の比較的長時間を必要とし、その結果大きな設備を
必要とし経済的に問題点を残していた。
In Japanese Patent Application Laid-Open No. 1-306523, a hot-rolled steel strip is subjected to light-to-cold rolling of 5 to 20%, and then hot-rolled sheet annealing is performed for 850 to 850.
It discloses a method for producing a non-oriented electrical steel sheet having a high magnetic flux density by performing at a temperature of 1000 ° C. for 0.5 to 10 minutes. Although the hot-rolled sheet annealing in this method is performed in a continuous furnace, the annealing time requires a relatively long time of about 2 minutes in the embodiment, and as a result, large equipment is required, which leaves a problem economically.

【0008】[0008]

【発明が解決しようとする課題】以上の問題点に鑑み
て、本発明は、冷間圧延前の素材の結晶粒の適度な粗大
化を図るため、熱延鋼帯の軽冷延とそれに引き続く焼鈍
を工夫するとともに、併せて素材Cと上記焼鈍での冷却
速度を検討することにより、とくに磁束密度が高く、か
つ表面外観の良好な無方向性電磁鋼板の製造方法を提案
することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a method for lightly cold-rolling a hot-rolled steel strip and a method for subsequently cold-rolling the same in order to moderately coarsen the crystal grains of the raw material before cold rolling. The purpose of the present invention is to propose a method for producing a non-oriented electrical steel sheet having a particularly high magnetic flux density and a good surface appearance by examining the cooling rate of the material C and the annealing together with devising the annealing. Is what you do.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、低
炭素鋼スラブを熱間圧延し、次いで冷間圧延により製品
厚としたのち焼鈍を施す無方向性電磁鋼板の製造方法に
おいて、重量%で、C0.005〜0.020 %、SiもしくはSi
+Al 1.5%以下、Mn 1.0%以下、P 0.2%以下、さらに
必要に応じてSbおよびSnの何れか1種または2種の合計
が0.10%以下を含み残部実質的にFeからなるスラブを熱
間圧延により熱延鋼帯とし、さらに圧下率5〜15%の冷
間圧延を施したのち、3℃/秒以上の加熱速度で 850℃
〜 Ac3変態点温度未満の温度範囲に加熱し、該温度域で
5〜30秒間保持し、次いで Ar3から Ar1変態点温度間を
2〜10℃/秒の速度で冷却するか、もしくは Ar1変態点
温度以上でそれより50℃の範囲内に5〜30秒保持するか
して、次いで Ar1変態点温度から 100℃までを10℃/秒
以上の速度で冷却する磁気特性が優れかつ表面外観の良
い無方向性電磁鋼板の製造方法であり、また、低炭素鋼
スラブを熱間圧延し、次いで冷間圧延により製品厚とし
たのち焼鈍を施す無方向性電磁鋼板の製造方法におい
て、重量%で、C 0.005〜0.020 %、SiもしくはSi+Al
1.5%以下、Mn1.0%以下、P 0.2%以下、さらに必要
に応じてSbおよびSnの何れか1種または2種の合計が0.
10%以下を含み残部実質的にFeからなるスラブを熱間圧
延により熱延鋼帯とし、さらに圧下率5〜15%の冷間圧
延を施したのち、3℃/秒以上の加熱速度で 850℃〜 A
3 変態点温度未満の温度範囲に加熱し、該温度域で5〜
30秒間保持し、次いで Ar3から Ar1変態点温度間を2〜
10℃/秒の速度で冷却する間に Ar1変態点温度以上でそ
れより50℃の範囲内に5〜30秒保持したのち、 Ar1変態
点温度から100℃までを10℃/秒以上の速度で冷却する
磁気特性が優れかつ表面外観の良い無方向性電磁鋼板の
製造方法である。
That is, the present invention relates to a method for producing a non-oriented electrical steel sheet in which a low carbon steel slab is hot-rolled, then cold rolled to a product thickness and then annealed. With C 0.005 to 0.020%, Si or Si
+ Al 1.5% or less, Mn 1.0% or less, P 0.2% or less, and, if necessary, a slab consisting of Sb and Sn containing 0.10% or less in total of one or more of Sb and Sn and substantially consisting of Fe, and Rolled into a hot-rolled steel strip, cold-rolled at a reduction rate of 5 to 15%, and then heated at a heating rate of 3 ° C / sec or more to 850 ° C
Heating to a temperature range below the Ac 3 transformation temperature, holding at that temperature range for 5-30 seconds, and then cooling between the Ar 3 to Ar 1 transformation temperature at a rate of 2-10 ° C./sec, or Excellent magnetic properties of maintaining at or above the Ar 1 transformation temperature within a range of 50 ° C for 5 to 30 seconds and then cooling from the Ar 1 transformation temperature to 100 ° C at a rate of 10 ° C / sec or more And a method for producing a non-oriented electrical steel sheet having a good surface appearance, and a method for hot-rolling a low-carbon steel slab, then making the product thickness by cold rolling, and then performing annealing. 0.005 to 0.020% by weight, Si or Si + Al
1.5% or less, Mn 1.0% or less, P 0.2% or less, and if necessary, the sum of one or two of Sb and Sn is 0.1%.
A slab containing 10% or less and substantially consisting of Fe is formed into a hot-rolled steel strip by hot rolling, and further subjected to cold rolling at a rolling reduction of 5 to 15%. ° C to A
3 Heat to a temperature range lower than the transformation point temperature, and
Hold for 30 seconds and then between Ar 3 and Ar 1 transformation temperature
After holding 5-30 seconds to it from within the range of 50 ° C. by Ar 1 transformation temperature or higher during cooling at a rate of 10 ° C. / sec, from Ar 1 transformation temperature to 100 ° C. 10 ° C. / sec or more This is a method for producing a non-oriented electrical steel sheet having excellent magnetic properties and a good surface appearance when cooled at a high speed.

【0010】[0010]

【作 用】次に、本発明の作用ならびに本発明に至った
経緯を実験結果に基づいて説明する。重量%で、C 0.0
18%、Si 0.1%、 Mn0.26%、P 0.07 %、S 0.004
%、Al0.0009 %、 Sb 0.05%を含む溶鋼から造られた
スラブを1250℃に加熱し、 820℃の熱間圧延終了温度で
2.3mm厚さの熱延鋼帯を造った。次いで、該熱延鋼帯か
らサンプルを採取し、実験室的に0〜20%の軽度の冷間
圧延を施したのち、熱延鋼板焼鈍を加熱速度を5℃/秒
にして 800℃〜1000℃の温度で10秒間の短時間保持し、
その後の冷却を Ar3(878 ℃)から Ar1(793 ℃)変態
点温度間を5℃/秒の速度で冷却し、引き続き Ar1変態
点温度から 100℃までを50℃/秒の速度で冷却した。な
おこの素材の A3 変態点温度は 935℃であった。
Next, the operation of the present invention and the circumstances leading to the present invention will be described based on experimental results. In weight%, C 0.0
18%, Si 0.1%, Mn 0.26%, P 0.07%, S 0.004
Slab made from molten steel containing 0.1% Al, 0.0009% Al, and 0.05% Sb, heated to 1250 ° C, at a hot rolling end temperature of 820 ° C.
A 2.3 mm thick hot rolled steel strip was made. Next, a sample is taken from the hot-rolled steel strip, and subjected to a low-temperature cold rolling of 0 to 20% in a laboratory. Then, the hot-rolled steel sheet is annealed at a heating rate of 5 ° C./sec. Hold for 10 seconds at a temperature of ℃,
Subsequent cooling is performed at a rate of 5 ° C./sec from the Ar 3 (878 ° C.) to Ar 1 (793 ° C.) transformation point temperature, and then from the Ar 1 transformation point temperature to 100 ° C. at a rate of 50 ° C./sec. Cool. The A 3 transformation point temperature of this material was 935 ° C.

【0011】次いで該焼鈍板を冷間圧延により0.50mm厚
さに仕上げたのち、湿潤雰囲気で 800℃75秒の脱炭と再
結晶焼鈍を兼ねた焼鈍を施して製品を造った。これらの
製品の磁束密度と熱間圧延板の軽圧延における圧下率の
関係を図1に示す。この図から明らかなように、熱延板
の軽冷延を5〜15%にし、かつ軽冷延後の熱延鋼板焼鈍
を 850℃から 935℃( A3 変態点温度)10秒間で処理し
た製品の磁束密度B50がその他の条件で処理したものよ
り高いことが明らかである。そして、この高い磁束密度
が得られたものの熱延鋼板焼鈍後の結晶粒は粒度 No.4
〜3の範囲にあり、その製品の表面に畳じわは発生せず
表面外観は良かった。
Next, the annealed sheet was finished to a thickness of 0.50 mm by cold rolling, and then annealed in a humid atmosphere at 800 ° C. for 75 seconds for both decarburization and recrystallization annealing to produce a product. FIG. 1 shows the relationship between the magnetic flux density of these products and the rolling reduction in light rolling of a hot-rolled sheet. As it is apparent from this figure, a light cold rolling of hot rolled sheet to 5-15%, and 935 ° C. The hot-rolled steel sheet annealing after Keihiya extending from 850 ° C. (A 3 transformation temperature) was treated with 10 seconds the magnetic flux density B 50 of the product is apparent to be higher than those treated with other conditions. Although the high magnetic flux density was obtained, the crystal grains after annealing of the hot-rolled steel sheet had a grain size of No.4.
-3, and no folds occurred on the surface of the product, and the surface appearance was good.

【0012】ちなみに磁束密度がさほど向上しなかった
ものの熱延鋼板焼鈍後の結晶粒は粒度 No.4未満であっ
た。以上のように熱延鋼帯に5〜10%の軽冷延を施し、
引続く熱延鋼板焼鈍において 850℃〜 A3 変態点温度で
10秒の比較的高温短時間で、かつ冷却速度を制御するこ
とで磁束密度が向上するのは、熱延鋼板焼鈍により結晶
粒が粗大化したことと併せて後述する。熱延鋼板焼鈍で
の冷却制御により固溶C量が増加したことによる集合組
織の改善ができたためである。なお、熱延鋼板焼鈍にお
いて結晶粒の粗大化が起こるのは粗大化(異常粒成長)
に必要な歪を軽冷延により付与したことによる。
Incidentally, although the magnetic flux density did not improve so much, the crystal grains after annealing of the hot-rolled steel sheet had a grain size of less than No. 4. As described above, hot-rolled steel strip is lightly cold-rolled by 5 to 10%,
At 850 ℃ ~ A 3 transformation point temperature in a subsequent hot-rolled steel sheet annealing
The reason why the magnetic flux density is improved by controlling the cooling rate at a relatively high temperature for a short time of 10 seconds is described later together with the fact that the crystal grains are coarsened by annealing the hot-rolled steel sheet. This is because the texture was improved due to an increase in the amount of solute C by cooling control in hot-rolled steel sheet annealing. It is to be noted that coarsening of crystal grains during annealing of a hot-rolled steel sheet is coarsening (abnormal grain growth).
Required by light cold rolling.

【0013】次に熱延鋼板の軽冷延後に施す熱延鋼板焼
鈍における冷却速度について述べる。前述の熱延鋼板と
同一組成の熱延鋼板を用い、軽冷延を10%施したのち、
熱延鋼板焼鈍において加熱速度7℃/秒で昇温し、 900
℃の温度で10秒間保持したのちの冷却過程において Ar3
から Ar1変態点温度間を冷却速度2〜15℃/秒で冷却、
あるいは Ar1変態点温度+20℃、 Ar1+50℃、 Ar1+70
℃の各温度で15秒保持したのち、 Ar1変態点温度から 1
00℃までを2℃/秒〜水冷の範囲で冷却速度を変更した
処理を行った。
Next, the cooling rate in the hot-rolled steel sheet annealing performed after lightly cold-rolling the hot-rolled steel sheet will be described. After using a hot-rolled steel sheet of the same composition as the above-mentioned hot-rolled steel sheet and applying 10% light cold rolling,
The temperature is raised at a heating rate of 7 ° C / sec in the hot-rolled steel sheet annealing,
After holding at a temperature of 10 ° C for 10 seconds, Ar 3
From the Ar 1 transformation temperature to the cooling rate of 2 to 15 ° C / sec.
Or Ar 1 transformation point temperature + 20 ℃, Ar 1 + 50 ℃, Ar 1 +70
℃ After holding for 15 seconds at each temperature, 1 from Ar 1 transformation temperature
A process was performed in which the cooling rate was changed in the range from 2 ° C./sec to water cooling up to 00 ° C.

【0014】次いで冷間圧延により0.50mm厚さに仕上
げ、引き続き湿潤雰囲気で 800℃15秒の脱炭と再結晶を
兼ねた焼鈍を行って製品とした。これらの製品の磁束密
度と熱延鋼板焼鈍時の冷却条件の関係を図2に示す。こ
れからわかるように熱延鋼板焼鈍での冷却過程で Ar3
態点から Ar1変態点温度までの冷却速度を2〜10℃/秒
にするか、あるいは Ar1変態点+50℃の温度で保持し、
かつ Ar1変態点温度から100℃までを10℃/秒以上の冷
却速度で冷却した製品のB50がその他の条件で0理した
ものより高いことが明らかである。これらの磁束密度が
高い製品表面は畳じわもなく良好であった。
Next, the product was finished to a thickness of 0.50 mm by cold rolling, and subsequently subjected to annealing at 800 ° C. for 15 seconds in a humid atmosphere for both decarburization and recrystallization to obtain a product. FIG. 2 shows the relationship between the magnetic flux density of these products and the cooling conditions during hot-rolled steel sheet annealing. As can be seen, the cooling rate from the Ar 3 transformation point to the Ar 1 transformation point during the cooling process in hot-rolled steel sheet annealing is set to 2 to 10 ° C / sec or maintained at a temperature of the Ar 1 transformation point + 50 ° C. ,
In addition, it is clear that the product cooled from the Ar 1 transformation point temperature to 100 ° C. at a cooling rate of 10 ° C./sec or more has a B 50 higher than that obtained under other conditions. The product surfaces with these high magnetic flux densities were good without folding.

【0015】以上の如く、熱延鋼板焼鈍時の冷却速度を
制御することにより磁束密度が向上するのは、前述の如
く固溶C増量による集合組織改善によるものである。次
に本発明において熱延鋼板の軽冷延を圧下率5〜15%に
限定したのは、熱延鋼板の軽冷延に引き続く熱延鋼板焼
鈍が本発明のように比較的高温でかつ加熱速度が大で短
時間保持処理の場合には、圧下率が5%未満では歪が不
足し、熱延鋼板焼鈍での結晶粒の粗大化が不十分なた
め、結晶粒の大きさが粒度 No.4に達せず磁束密度の向
上が図れないことによる。また圧下率が15%を超えると
通常の冷延と同じようになり熱延鋼板焼鈍後に結晶粒の
大きさが粒度 No.4にならないためである。
As described above, the reason why the magnetic flux density is improved by controlling the cooling rate during annealing of a hot-rolled steel sheet is due to the improvement of the texture by increasing the amount of solid solution C as described above. Next, in the present invention, the cold rolling of the hot-rolled steel sheet is limited to the rolling reduction of 5 to 15% because the annealing of the hot-rolled steel sheet subsequent to the light cold rolling of the hot-rolled steel sheet is performed at a relatively high temperature and at a high temperature as in the present invention. In the case of high-speed and short-time holding treatment, if the rolling reduction is less than 5%, the strain is insufficient, and the coarsening of the crystal grains during annealing of a hot-rolled steel sheet is insufficient. .4 and the magnetic flux density cannot be improved. On the other hand, if the rolling reduction exceeds 15%, it becomes the same as ordinary cold rolling, and the size of crystal grains does not become grain size No. 4 after annealing of a hot-rolled steel sheet.

【0016】一方、熱延鋼板焼鈍において、加熱速度を
3℃/秒以上としたのは、加熱速度が3℃/秒未満だと
加熱中に一部粒成長が起こり、本発明のように850℃〜
A3変態点の比較的高温での短時間保持では均一かつ適度
な粒成長が起こらず混粒となるからであるが、好ましい
加熱速度は5℃/秒以上である。また熱延鋼板焼鈍の焼
鈍温度を 850℃〜 A3 変態点に限定したのは、本発明で
は製造コストや品質安定面で有利である連続焼鈍炉での
比較的高温で、5〜30秒の短時間処理を前提としている
ので、850 ℃未満では粒成長不足となり磁束密度の向上
が十分図れないためである。なお焼鈍温度が再結晶温度
〜 850℃未満でも焼鈍時間を長くすれば結晶粒の粗大化
は可能であるが、製造コスト面で不利であるので 850℃
未満は除外した。また、熱延鋼板焼鈍温度の上限を A3
変態点温度にしたのはこの温度を超えるとα相→γ相,
γ相→α相の変態が起こることにより結晶粒は細かくな
り、磁束密度の向上が図れないためである。
On the other hand, the reason why the heating rate is set to 3 ° C./sec or more in the annealing of hot-rolled steel sheet is that if the heating rate is less than 3 ° C./sec, partial grain growth occurs during heating, and as in the present invention, 850 ° C. ° C ~
Although a short time held at a relatively high temperature of A 3 transformation point because there is uniform and moderate grain growth becomes mixed grain does not occur, the preferred heating rate is 5 ° C. / sec or more. Also with limited annealing temperature of hot-rolled sheet annealing 850 ° C. ~ A 3 transformation point, at a relatively high temperature in a continuous annealing furnace which is advantageous in production cost and stable quality surface in the present invention, 5 to 30 seconds This is because short-time processing is premised, and if the temperature is lower than 850 ° C., the grain growth is insufficient, and the magnetic flux density cannot be sufficiently improved. Even if the annealing temperature is lower than the recrystallization temperature to 850 ° C, it is possible to make the crystal grains coarser by increasing the annealing time, but it is disadvantageous in terms of manufacturing cost, so 850 ° C
Less than was excluded. Further, the upper limit of the hot-rolled sheet annealing temperature A 3
The transformation point temperature was determined to be above this temperature when the α phase → γ phase,
This is because the transformation from the γ phase to the α phase causes the crystal grains to be fine, and the magnetic flux density cannot be improved.

【0017】また熱延鋼板焼鈍時間を従来この方法にお
いて実施されていない5〜30秒と限定した理由は、加熱
速度3℃/秒において、前記の熱延鋼帯焼鈍温度が 850
℃〜A3 変態点の場合、5秒未満では結晶粒の粗大化が
不十分で粒度 No.4に達しないため磁束密度の向上が少
ない。また保持時間が30秒を超えると結晶粒が粗大化し
過ぎて、粒度 No.2より大きくなり、その結果、磁束密
度は向上するものの、製品表面に畳じわが発生し、表面
外観を損なう。この畳じわは占積率の低下を来たすとい
う問題がある。従って、磁束密度の向上が図れ、かつ製
品の表面外観を損なわないような熱延鋼板焼鈍後の結晶
粒を粒度 No.4〜2の範囲に制御するため熱延鋼板焼鈍
の保持時間は5〜30秒に限定した。
The reason why the annealing time of the hot-rolled steel sheet is limited to 5 to 30 seconds, which has not been conventionally performed in this method, is that the annealing temperature of the hot-rolled steel strip is 850 at a heating rate of 3 ° C./sec.
℃ For to A 3 transformation point, a small increase in the magnetic flux density for not reaching the particle size No.4 insufficient grain coarsening is less than 5 seconds. On the other hand, if the holding time exceeds 30 seconds, the crystal grains become excessively coarse and become larger than the particle size No. 2. As a result, although the magnetic flux density is improved, folds occur on the product surface and the surface appearance is impaired. This tatami wrinkle has the problem of lowering the space factor. Therefore, the holding time of the hot-rolled steel sheet annealing is 5 to control the crystal grains after annealing of the hot-rolled steel sheet so that the magnetic flux density can be improved and the surface appearance of the product is not impaired. Limited to 30 seconds.

【0018】次に熱延鋼板焼鈍の冷却過程において、 A
r3変態点温度から Ar1変態点温度までを徐冷するか、ま
たは Ar1変態点温度以上で50℃の範囲内で5〜30秒間保
持するのは、Cの固溶量を増加し引き続く Ar1変態点温
度から 100℃までを10℃/秒以上で急冷することによっ
て最終的に固溶C量を増やして、固溶Cによる集合組織
改善を図るためである。
Next, in the cooling process of the hot-rolled steel sheet annealing, A
Slowly cooling from the r 3 transformation point temperature to the Ar 1 transformation point temperature or maintaining the temperature over the Ar 1 transformation point temperature within the range of 50 ° C. for 5 to 30 seconds increases the solid solution amount of C and continues This is because the amount of solid solution C is finally increased by rapidly cooling the temperature from the Ar 1 transformation point temperature to 100 ° C. at 10 ° C./sec or more to improve the texture by solid solution C.

【0019】次に、本発明における化学成分の限定理由
を述べる。本発明は冷間圧延前の結晶粒の粗大化に加え
て固溶Cを有効に活用する観点から、C量が 0.005%未
満だとその効果が少なくなり、またCが0.02%を超えて
も固溶Cは増えないことおよび最終焼鈍時に脱炭不良と
なり、非時効化に対して不利となることからCは 0.005
〜0.020 %とした。
Next, the reasons for limiting the chemical components in the present invention will be described. In the present invention, from the viewpoint of effectively utilizing solid solution C in addition to coarsening of crystal grains before cold rolling, the effect is reduced if the C content is less than 0.005%, and even if C exceeds 0.02%. Since the amount of solid solution C does not increase and the decarburization is poor during the final annealing, which is disadvantageous for non-aging, C is 0.005%.
To 0.020%.

【0020】SiもしくはSi+Alは高い固有抵抗を有し、
増量すると鉄損は少なくなるが、飽和磁束密度が低下す
るため高い磁束密度を得るのに困難となることから、Si
もしくはSi+Alは 1.5%以下とした。SbおよびSnは集合
組織改善により磁束密度が向上するので、特に高い磁束
密度を得るためには必要に応じて添加することが望まし
い。その場合SbおよびSnの1種または2種の合計が0.10
%を超えるとかえって磁気特性を劣化させるのでいずれ
か単独かまたは併用する場合でも含有量は0.10%以下に
限定した。
Si or Si + Al has a high specific resistance,
Increasing the amount reduces iron loss, but lowers the saturation magnetic flux density, making it difficult to obtain a high magnetic flux density.
Alternatively, the content of Si + Al is set to 1.5% or less. Since the magnetic flux density of Sb and Sn is improved by improving the texture, it is desirable to add Sb and Sn as needed to obtain a particularly high magnetic flux density. In that case, the total of one or two of Sb and Sn is 0.10
%, The magnetic properties are rather deteriorated, so that the content is limited to 0.10% or less even when used alone or in combination.

【0021】Mnは脱酸剤として、あるいはSによる熱間
脆性を制御するために添加されるが1.0%を超えるとコ
スト上昇を招くのでMnは 1.0%以下とする。Pは硬度を
高め打抜性を向上させるために添加されることがある
が、0.20%より多いと脆くなるので0.20%以下にする必
要がある。
Mn is added as a deoxidizing agent or for controlling hot brittleness due to S. However, if it exceeds 1.0%, the cost increases, so Mn is set to 1.0% or less. P may be added in order to increase the hardness and improve the punching property, but if it is more than 0.20%, it becomes brittle, so it needs to be 0.20% or less.

【0022】[0022]

【実施例】実施例1 転炉で溶製し、真空脱ガス処理した溶鋼を連続鋳造し、
スラブとした。C 0.007%、 Si 0.35%、 Mn 0.25%、
P 0.03 %、 Al 0.0008%を含み、残部実質的にFeであ
るスラブを、通常の熱間圧延で 2.0mmの熱延鋼板とし
た。これらの熱延鋼板の Ac3変態点は 950℃、 Ar3変態
点は 870℃、 Ar1変態点は 805℃であった。
EXAMPLE 1 Molten steel produced in a converter and vacuum degassed was continuously cast.
Slab. C 0.007%, Si 0.35%, Mn 0.25%,
A slab containing 0.03% of P and 0.0008% of Al and substantially the remainder of Fe was formed into a 2.0 mm hot-rolled steel sheet by ordinary hot rolling. The Ac 3 transformation point of these hot-rolled steel sheets was 950 ° C, the Ar 3 transformation point was 870 ° C, and the Ar 1 transformation point was 805 ° C.

【0023】ついで10%の軽圧延を施し、次のような熱
延鋼板焼鈍を施した。
Next, a 10% light rolling was performed, and the following hot rolled steel sheet was annealed.

【0024】[0024]

【表1】 [Table 1]

【0025】ついで1回の冷延で0.50mm厚さに仕上げた
のち、800℃、75秒間の脱炭・再結晶焼鈍を施して製品
とした。これらの製品のエプスタイン試片で測定した結
果、磁束密度、表面形状ともに良好であった。
Then, after a single cold rolling to finish to a thickness of 0.50 mm, the product was subjected to decarburization and recrystallization annealing at 800 ° C. for 75 seconds to obtain a product. As a result of measurement using Epstein test pieces of these products, both the magnetic flux density and the surface shape were good.

【0026】[0026]

【表2】 [Table 2]

【0027】実施例2 転炉で溶製し、真空脱ガス処理した溶鋼を連続鋳造し、
1〜9までのスラブを造った。それらの化学成分はC
0.015%、 Si 0.35%、Mn 0.25%、P 0.02 %、 Al 0.
0008%、 Sn 0.10%を含み、残部実質的にFeであった。
それらのスラブを通常の熱間圧延で 2.3mmの熱延鋼帯と
した。なおこの熱延鋼帯のA3 変態点温度は 947℃であ
った。また Ar3および Ar1変態点温度はそれぞれ 877
℃、 809℃であった。引続き熱延鋼帯に軽冷延を施し熱
延鋼帯焼鈍を施した。それらの条件を表3に示す。次い
で、1回の冷間圧延で0.50mm厚さに仕上げたのち、800
℃、75秒間の脱炭兼再結晶焼鈍を施して製品とした。そ
れらの製品および 750℃、2時間の歪取焼鈍後の磁性を
エプスタイン試片で測定した結果を表3に併記した。こ
れらから、本発明の適合例のように熱延鋼帯の軽冷延と
熱延鋼帯焼鈍条件を適正範囲にとれば熱延鋼帯焼鈍後の
結晶粒の粗大化とかつ固溶Cの有効活用により集合組織
の改善ができ、比較例に対して、とくに磁束密度B50
高く、かつ表面外観の良い物が得られることが明らかで
ある。
Example 2 Molten steel melted in a converter and vacuum degassed was continuously cast.
1 to 9 slabs were made. Their chemical components are C
0.015%, Si 0.35%, Mn 0.25%, P 0.02%, Al 0.
It contained 0008% and 0.10% of Sn, and the balance was substantially Fe.
The slabs were hot rolled into 2.3 mm hot rolled steel strips. Note A 3 transformation temperature of the hot rolled strip was 947 ° C.. The Ar 3 and Ar 1 transformation temperatures were 877, respectively.
° C and 809 ° C. Subsequently, the hot-rolled steel strip was lightly and cold-rolled and then annealed. Table 3 shows the conditions. Then, after finishing to 0.50mm thickness by one cold rolling, 800
The product was subjected to decarburization and recrystallization annealing at 75 ° C. for 75 seconds to obtain a product. Table 3 also shows the results of measuring the magnetism of the products and the strain after annealing at 750 ° C. for 2 hours using Epstein test pieces. From these, if the conditions of light cold rolling of a hot-rolled steel strip and annealing conditions of the hot-rolled steel strip are set to appropriate ranges as in the applicable example of the present invention, coarsening of crystal grains after annealing of the hot-rolled steel strip and formation of solid solution C effective use makes it improve the texture, the comparative example, particularly high magnetic flux density B 50, and it is evident that those good surface appearance is obtained.

【0028】[0028]

【表3】 [Table 3]

【0029】実施例3 実施例2と同様に、C 0.007%、Si 1.0%、 Mn 0.25
%、P 0.02 %、 Al 0.25%、 Sb 0.03%、 Sn 0.06%
を含み、残部実質的にFeであるスラブを通常の熱間圧延
により 2.0mm厚さの熱延鋼帯を造った。これらの熱延鋼
帯の A3 変態点、Ar3および Ar1変態点温度はそれぞれ1
010℃、 940℃、 880℃であった。これらの熱延鋼帯に
軽冷延を施したのち熱延鋼帯焼鈍を行った。これらの条
件を表4に示す。次いで、1回の冷間圧延で0.50mm厚さ
に仕上げ、引き続き 880℃、90秒間の脱炭兼再結晶焼鈍
を施して製品にした。この製品の磁性を表4に併記し
た。これらから、本発明の適合例が比較例に対して、と
くに磁束密度が高く、かつ製品表面の外観が良好である
ことが明らかである。
Example 3 As in Example 2, C 0.007%, Si 1.0%, Mn 0.25
%, P 0.02%, Al 0.25%, Sb 0.03%, Sn 0.06%
And a 2.0 mm thick hot-rolled steel strip was produced by ordinary hot rolling of a slab substantially containing Fe. The A 3 transformation point, Ar 3 and Ar 1 transformation temperature of these hot rolled steel strips are 1
010 ° C, 940 ° C and 880 ° C. After performing cold-rolling on these hot-rolled steel strips, hot-rolled steel strip annealing was performed. Table 4 shows these conditions. Then, it was finished to a thickness of 0.50 mm by one cold rolling, and subsequently decarburized and recrystallized at 880 ° C. for 90 seconds to obtain a product. Table 4 also shows the magnetism of this product. From these, it is clear that the conforming example of the present invention has a particularly high magnetic flux density and a good appearance of the product surface as compared with the comparative example.

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【発明の効果】以上の如く、熱延鋼帯に適度な軽冷延を
施した後、熱延鋼帯焼鈍において急速加熱で高温短時間
保持し、かつ冷却速度を制御することで熱延鋼帯の結晶
粒の粗大化と、かつ固溶Cの活用により集合組織改善が
でき、その結果とくに磁束密度が高く、かつ表面外観の
良好な無方向性電磁鋼板を製造することができる。
As described above, after an appropriate light and cold rolling is performed on a hot-rolled steel strip, the hot-rolled steel strip is kept at a high temperature for a short time by rapid heating in the hot-rolled steel strip annealing, and by controlling the cooling rate. The texture can be improved by making the crystal grains of the band coarser and utilizing solid solution C. As a result, a non-oriented electrical steel sheet having a particularly high magnetic flux density and a good surface appearance can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱延鋼帯の軽冷延率と製品の磁束密度B50の関
係を示す図である。
1 is a diagram showing the relationship between the light cold rolling rate of hot rolled strip and product magnetic flux density B 50.

【図2】熱延鋼帯焼鈍における冷却条件と製品の磁束密
度B50の関係を示す図である。
2 is a diagram showing a relationship between cooling conditions and product magnetic flux density B 50 in the hot rolled strip annealing.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−136718(JP,A) 特開 平2−182831(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C22C 38/00 303 C22C 38/06 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-136718 (JP, A) JP-A-2-1822831 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/12 C22C 38/00 303 C22C 38/06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 低炭素鋼スラブを熱間圧延し、次いで冷
間圧延により製品厚としたのち焼鈍を施す無方向性電磁
鋼板の製造方法において、重量%で、C 0.005〜0.020
%、SiもしくはSi+Al 1.5%以下、Mn 1.0%以下、P
0.2%以下を含み残部実質的にFeからなるスラブを熱間
圧延により熱延鋼帯とし、さらに圧下率5〜15%の冷間
圧延を施したのち、3℃/秒以上の加熱速度で 850℃〜
A3 変態点温度未満の温度範囲に加熱し、該温度域で5
〜30秒間保持し、次いで Ar3からAr1変態点温度間を2
〜10℃/秒の速度で冷却するか、もしくは Ar1変態点温
度以上でそれより50℃の範囲内に5〜30秒保持するかし
て、次いで Ar1変態点温度から 100℃までを10℃/秒以
上の速度で冷却することを特徴とする磁気特性が優れか
つ表面外観の良い無方向性電磁鋼板の製造方法。
1. A method for producing a non-oriented electrical steel sheet, in which a low-carbon steel slab is hot-rolled, then cold-rolled to a product thickness, and then annealed, wherein C is 0.005 to 0.020% by weight.
%, Si or Si + Al 1.5% or less, Mn 1.0% or less, P
A slab containing 0.2% or less and substantially consisting of Fe is formed into a hot-rolled steel strip by hot rolling, and further subjected to cold rolling at a reduction rate of 5 to 15%. ° C ~
A 3 Heat to a temperature range below the transformation point temperature,
Hold for ~ 30 seconds, then switch between the Ar 3 to Ar 1 transformation temperature
Cool at a rate of 1010 ° C./sec, or maintain the temperature above the Ar 1 transformation temperature and within a range of 50 ° C. for 5 to 30 seconds, and then reduce the temperature from the Ar 1 transformation temperature to 100 ° C. by 10 ° C. A method for producing a non-oriented electrical steel sheet having excellent magnetic properties and excellent surface appearance, characterized by cooling at a rate of at least ° C / sec.
【請求項2】 低炭素鋼スラブを熱間圧延し、次いで冷
間圧延により製品厚としたのち焼鈍を施す無方向性電磁
鋼板の製造方法において、重量%で、C 0.005〜0.020
%、SiもしくはSi+Al 1.5%以下、Mn 1.0%以下、P
0.2%以下を含み残部実質的にFeからなるスラブを熱間
圧延により熱延鋼帯とし、さらに圧下率5〜15%の冷間
圧延を施したのち、3℃/秒以上の加熱速度で 850℃〜
A3 変態点温度未満の温度範囲に加熱し、該温度域で5
〜30秒間保持し、次いで Ar3からAr1変態点温度間を2
〜10℃/秒の速度で冷却する間に Ar1変態点温度以上で
それより50℃の範囲内に5〜30秒保持したのち、 Ar1
態点温度から 100℃までを10℃/秒以上の速度で冷却す
ることを特徴とする磁気特性が優れかつ表面外観の良い
無方向性電磁鋼板の製造方法。
2. A method for producing a non-oriented electrical steel sheet in which a low-carbon steel slab is hot-rolled, then cold-rolled to a product thickness and then annealed, wherein C is 0.005 to 0.020% by weight.
%, Si or Si + Al 1.5% or less, Mn 1.0% or less, P
A slab containing 0.2% or less and substantially consisting of Fe is formed into a hot-rolled steel strip by hot rolling, and further subjected to cold rolling at a reduction rate of 5 to 15%. ° C ~
A 3 Heat to a temperature range below the transformation point temperature,
Hold for ~ 30 seconds, then switch between the Ar 3 to Ar 1 transformation temperature
While cooling at a rate of up to 10 ° C / sec, maintain the temperature above the Ar 1 transformation point within a range of 50 ° C for 5 to 30 seconds, and then increase the temperature from the Ar 1 transformation point temperature to 100 ° C by 10 ° C / sec or more. A method for producing a non-oriented electrical steel sheet having excellent magnetic properties and excellent surface appearance, characterized by cooling at a constant speed.
【請求項3】 低炭素鋼スラブの組成が重量%で、C
0.005〜0.020 %、SiもしくはAl 1.5%以下、Mn 1.0%
以下、P 0.2%以下、SbおよびSnの何れか1種または2
種の合計が0.10%以下を含み、残部実質的にFeからなる
ことを特徴とする請求項1又は2記載の磁気特性が優れ
かつ表面外観の良い無方向性電磁鋼板の製造方法。
3. The composition of a low-carbon steel slab in weight%,
0.005 to 0.020%, Si or Al 1.5% or less, Mn 1.0%
Below, P 0.2% or less, any one of Sb and Sn or 2
The method for producing a non-oriented electrical steel sheet having excellent magnetic properties and a good surface appearance according to claim 1 or 2, wherein the total of the seeds is 0.10% or less, and the balance is substantially composed of Fe.
JP11590591A 1991-05-21 1991-05-21 Method for producing non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance Expired - Fee Related JP3290446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11590591A JP3290446B2 (en) 1991-05-21 1991-05-21 Method for producing non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11590591A JP3290446B2 (en) 1991-05-21 1991-05-21 Method for producing non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance

Publications (2)

Publication Number Publication Date
JPH04346621A JPH04346621A (en) 1992-12-02
JP3290446B2 true JP3290446B2 (en) 2002-06-10

Family

ID=14674115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11590591A Expired - Fee Related JP3290446B2 (en) 1991-05-21 1991-05-21 Method for producing non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance

Country Status (1)

Country Link
JP (1) JP3290446B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101499371B1 (en) * 2010-08-30 2015-03-05 제이에프이 스틸 가부시키가이샤 Method for producing non-oriented magnetic steel sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3446385B2 (en) * 1995-04-21 2003-09-16 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent coating adhesion
US6248185B1 (en) 1997-08-15 2001-06-19 Kawasaki Steel Corporation Electromagnetic steel sheet having excellent magnetic properties and production method thereof
KR101671692B1 (en) * 2014-12-19 2016-11-02 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101499371B1 (en) * 2010-08-30 2015-03-05 제이에프이 스틸 가부시키가이샤 Method for producing non-oriented magnetic steel sheet

Also Published As

Publication number Publication date
JPH04346621A (en) 1992-12-02

Similar Documents

Publication Publication Date Title
JP5265835B2 (en) Method for producing non-oriented electrical steel sheet
JP2500033B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance
EP0490617B1 (en) Method for producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
JPH03219020A (en) Production of nonoriented silicon steel sheet
JP3290446B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance
JPS5835245B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH055126A (en) Production of nonoriented silicon steel sheet
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP4013262B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP2680519B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP2716987B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPS5855209B2 (en) Method for manufacturing non-oriented silicon steel sheet with little aging deterioration and good surface quality
JP3294367B2 (en) Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same
JP2717009B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP3338238B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JP2758915B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH046220A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH0686648B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JPH0717956B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JP2818290B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JPH0257125B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees