JP3368409B2 - Manufacturing method of low iron loss unidirectional electrical steel sheet - Google Patents
Manufacturing method of low iron loss unidirectional electrical steel sheetInfo
- Publication number
- JP3368409B2 JP3368409B2 JP23452295A JP23452295A JP3368409B2 JP 3368409 B2 JP3368409 B2 JP 3368409B2 JP 23452295 A JP23452295 A JP 23452295A JP 23452295 A JP23452295 A JP 23452295A JP 3368409 B2 JP3368409 B2 JP 3368409B2
- Authority
- JP
- Japan
- Prior art keywords
- slab
- iron loss
- electrical steel
- steel sheet
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は変圧器等の鉄心に使
用される低鉄損一方向性電磁鋼板を工業的に安定して製
造する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for industrially stably producing a low iron loss grain-oriented electrical steel sheet used for an iron core of a transformer or the like.
【0002】[0002]
【従来の技術】一方向性電磁鋼板は主に変圧器や発電機
の鉄心材料に使用されるが、省エネルギー化が要求され
ている昨今、更に磁束密度が高く、鉄損の少ない鋼板が
市場から要求されている。一般的に、低鉄損を達成する
ためには、鋼板のSi含有量を極力高め素材の固有抵抗
を上げて渦電流損を下げる方法と、製品板厚を極力薄く
し渦電流損を下げる方法が知られている。更に、低鉄損
を図るにはインヒビター、鋼板の組織、集合組織を高度
に制御する必要がある。この中の1つであるインヒビタ
ー分散形態のコントロールは、熱間圧延に先立つスラブ
高温加熱中にインヒビターを一旦溶体化させ、その後適
当な冷却パターンの熱間圧延を施すことが必要である。2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and generators, but with the recent demand for energy saving, steel sheets with higher magnetic flux density and less iron loss are available from the market. Is required. Generally, in order to achieve a low iron loss, a method of reducing the eddy current loss by increasing the Si content of the steel sheet as much as possible to increase the specific resistance of the material, and a method of reducing the eddy current loss by reducing the product sheet thickness as much as possible It has been known. Furthermore, in order to achieve low iron loss, it is necessary to highly control the inhibitor, the structure of the steel sheet, and the texture. Control of the inhibitor dispersion morphology, which is one of them, requires that the inhibitor be once solution-treated during high temperature heating of the slab prior to hot rolling, and then hot rolling with an appropriate cooling pattern.
【0003】インヒビター溶体化のためのスラブ高温加
熱をガス燃焼型加熱炉で行うと、スラブ表面から熱せら
れるのでスラブ表層で温度が高く、スラブ中心部で温度
が低い状態になる。よって、スラブ中心部まで目的の温
度に達するためには、スラブ表層温度は、スラブ中心部
よりもかなり高い温度となり、またガス燃焼型加熱炉で
は昇温速度も1200℃以上で約1℃/分と遅いために
1200℃以上の高温域に滞留する時間がかなり長くな
り、スラブ高温加熱後の結晶粒径は粗大化してしまい、
線状細粒と呼ばれる2次再結晶不良を製品にもたらす原
因となっていた。この対策として、特公昭56−186
54号公報に提案されているようなスラブ急速加熱方式
を用いると、スラブ加熱の短時間化が可能となった。When high temperature heating of the slab for solution treatment of the inhibitor is carried out in a gas combustion type heating furnace, the slab surface is heated, so that the temperature is high at the surface layer of the slab and low at the center of the slab. Therefore, in order to reach the target temperature to the center of the slab, the surface temperature of the slab is considerably higher than that of the center of the slab, and in the gas combustion type heating furnace, the heating rate is 1200 ° C or more and about 1 ° C / minute. Since it is slow, the time to stay in the high temperature region of 1200 ° C. or higher becomes considerably long, and the crystal grain size after heating the slab at high temperature becomes coarse,
This has been a cause of causing secondary recrystallization defects called linear fine grains in the product. As a countermeasure against this, Japanese Patent Publication No.
By using the slab rapid heating method as proposed in Japanese Patent Publication No. 54, it is possible to shorten the slab heating time.
【0004】一方、熱延板焼鈍を施した後、一段の強冷
延を行い一方向性電磁鋼板を製造する方法において、強
圧下冷間圧延時に時効処理を施すことにより磁気特性が
向上することが報告されている(特公昭54−1384
6号公報参照)。また、2回以上の冷間圧延を行い一方
向性電磁鋼板を製造する方法において、最終冷間圧延時
に時効処理を施すこと、ならびにこの時効処理に関連し
て最終冷間圧延前の工程である中間焼鈍の冷却速度をコ
ントロールすることによって磁気特性が向上することが
報告されている(特公昭56−3892号公報参照)。
しかし、これら2つの技術では、低鉄損という点で満足
できるものではなかった。On the other hand, in a method for producing a grain-oriented electrical steel sheet by carrying out one-stage strong cold rolling after annealing a hot rolled sheet, magnetic properties are improved by performing an aging treatment during cold rolling under strong reduction. Has been reported (Japanese Patent Publication No. 54-1384).
No. 6 publication). Further, in a method of manufacturing a grain-oriented electrical steel sheet by performing cold rolling two or more times, an aging treatment is performed at the time of final cold rolling, and a step before the final cold rolling is related to this aging treatment. It has been reported that the magnetic properties are improved by controlling the cooling rate of the intermediate annealing (see Japanese Patent Publication No. 56-3892).
However, these two techniques have not been satisfactory in terms of low iron loss.
【0005】そこで、本発明者らは、2回冷延法で一方
向性電磁鋼板を製造する方法において、スラブ高温加熱
で、1200℃以上の高温域の加熱を5℃/分以上と
し、かつ、最終冷間圧延工程で、150℃〜350℃の
温度範囲でパス間時効を施した場合にのみ、著しく鉄損
特性が向上することを新たに見いだし提案した(特願平
6−110092号)。また、1回冷延法では、スラブ
高温加熱で1200℃以上の高温域の加熱を5℃/分以
上とし、かつ、冷間圧延工程で、180℃〜350℃の
温度範囲でパス間時効を施した場合にのみ、著しく鉄損
特性が向上することを新たに見いだし提案した(特願平
6−324453号)。Therefore, the inventors of the present invention, in the method of manufacturing the grain-oriented electrical steel sheet by the double cold rolling method, heat the slab at a high temperature of 1200 ° C. or higher to 5 ° C./min or higher, and In the final cold rolling step, it was newly found and proposed that the iron loss characteristics are remarkably improved only when the interpass aging is performed in the temperature range of 150 ° C to 350 ° C (Japanese Patent Application No. 6-110092). . Further, in the single cold rolling method, heating in a high temperature range of 1200 ° C. or higher by slab high temperature heating is 5 ° C./min or higher, and in the cold rolling step, interpass aging is performed in a temperature range of 180 ° C. to 350 ° C. It was newly found and proposed that the iron loss characteristics were significantly improved only when the coating was applied (Japanese Patent Application No. 6-324453).
【0006】[0006]
【発明が解決しようとする課題】前記提案法で得られる
製品は、板厚の薄い製品を製造した場合に安定性という
点では充分に満足できるものではなく、鉄損値が高い製
品が発生する場合もあった。本発明は、スラブ加熱時の
結晶粒の成長を抑制し、かつ、最終冷延前焼鈍での冷却
速度を規制し、かつ、冷間圧延時のパス間時効温度およ
びパス間時効時間をある範囲に制御することにより、工
業的に安定して鉄損の低い製品を得られる方法を提供す
ることを目的とする。The product obtained by the above-mentioned method is not sufficiently satisfactory in terms of stability when a product having a thin plate is manufactured, and a product having a high iron loss value is generated. In some cases. The present invention suppresses the growth of crystal grains during slab heating, and regulates the cooling rate in final pre-rolling annealing, and the pass aging temperature and pass aging time during cold rolling are within a certain range. It is an object of the present invention to provide a method capable of obtaining a product that is industrially stable and has a low iron loss by controlling the above.
【0007】[0007]
【課題を解決するための手段】すなわち本発明は、
(1)重量%で、C :0.015〜0.100%、S
i:2.0〜4.0%、Mn:0.03〜0.12%、
Sol.Al:0.010〜0.065%、N :0.
0040〜0.0100%、SおよびSeのうちから選
んだ1種または2種合計:0.005〜0.050%、
さらにSb,Sn,Cu,Mo,Ge,B,Te,A
s、およびBiから選ばれる1種または2種以上を各々
の元素量で、0.003〜0.3%を含有し、残部は実
質的にFeの組成になる連続鋳造スラブを、1320℃
〜1450℃に加熱均熱したのち熱延し、予備冷延し、
中間焼鈍し、複数パスよりなる最終冷延を施し0.25
mm以下の最終板厚とし、脱炭・1次再結晶焼鈍、最終仕
上げ焼鈍によって一方向性電磁鋼板を製造する方法にお
いて、上記スラブの1200℃以上の高温域の加熱を5
℃/分以上の昇温速度で行うと共に、前記中間焼鈍の冷
却過程において700℃〜150℃の間を8℃/秒以上
で冷却し、かつ最終冷延工程の少なくとも1回のパス間
で鋼板を200℃〜350℃の温度範囲で1分以上の時
間保持することを特徴とする低鉄損一方向性電磁鋼板の
製造方法であり、
(2)熱延板に熱延板焼鈍を施すことを特徴とする前項
(1)に記載した低鉄損一方向性電磁鋼板の製造方法、
また
(3)重量%で、C :0.015〜0.100%、S
i:2.0〜4.0%、Mn:0.03〜0.12%、
Sol.Al:0.010〜0.065%、N :0.
0040〜0.0100%、SおよびSeのうちから選
んだ1種または2種合計:0.005〜0.050%、
さらにSb,Sn,Cu,Mo,Ge,B,Te,A
s、およびBiから選ばれる1種または2種以上を各々
の元素量で、0.003〜0.3%を含有し、残部は実
質的にFeの組成になる連続鋳造スラブを、1320℃
〜1450℃に加熱均熱したのち熱延し、熱延板焼鈍
し、複数パスよりなる冷間圧延を施し0.25mm以下の
最終板厚とし、脱炭・1次再結晶焼鈍、最終仕上げ焼鈍
によって一方向性電磁鋼板を製造する方法において、上
記スラブの1200℃以上の高温域の加熱を5℃/分以
上の昇温速度で行うと共に、前記熱延板焼鈍の冷却過程
において700℃〜150℃の間を8℃/秒以上で冷却
し、かつ冷延工程の少なくとも1回のパス間で鋼板を2
00℃〜350℃の温度範囲で1分以上の時間保持する
ことを特徴とする低鉄損一方向性電磁鋼板の製造方法で
あり、
(4)スラブの1200℃以上の高温域の加熱の前に、
50%以下の圧下率で熱間変形を加えることを特徴とす
る前項(1),(2)または(3)の何れかに記載した
低鉄損一方向性電磁鋼板の製造方法である。Means for Solving the Problems That is, the present invention is as follows: (1) in% by weight, C: 0.015 to 0.100%, S
i: 2.0 to 4.0%, Mn: 0.03 to 0.12%,
Sol.Al: 0.010 to 0.065%, N: 0.
0040 to 0.0100%, one or two kinds selected from S and Se total: 0.005 to 0.050%,
Furthermore, Sb, Sn, Cu, Mo, Ge, B, Te, A
A continuous casting slab containing 0.003 to 0.3% of each element amount of one or more selected from s and Bi at 1320 ° C.
~ 1450 ℃ soaked and then hot rolled, pre-cold rolled,
0.25 after intermediate annealing and final cold rolling with multiple passes
In a method for producing a grain-oriented electrical steel sheet by decarburization / primary recrystallization annealing and final finishing annealing with a final thickness of 5 mm or less, heating the slab in a high temperature range of 1200 ° C. or higher to 5
° C. / min performs the above heating rate, at least one of said between 700 ° C. to 150 DEG ° C. and cooled at 8 ° C. / sec or more in the cold <br/> retirement process of intermediate annealing and a final cold rolling step Is a method for producing a low iron loss unidirectional electrical steel sheet characterized by holding the steel sheet in a temperature range of 200 ° C. to 350 ° C. for 1 minute or more between the passes of (2) hot rolling A method for producing a low iron loss unidirectional electrical steel sheet according to the above item (1), characterized by performing sheet annealing.
Further, (3) wt%, C: 0.015 to 0.100%, S
i: 2.0 to 4.0%, Mn: 0.03 to 0.12%,
Sol.Al: 0.010 to 0.065%, N: 0.
0040 to 0.0100%, one or two kinds selected from S and Se total: 0.005 to 0.050%,
Furthermore, Sb, Sn, Cu, Mo, Ge, B, Te, A
A continuous casting slab containing 0.003 to 0.3% of each element content of one or more selected from s and Bi at 1320 ° C.
Heat soaked to -1450 ° C, then hot rolled, hot rolled sheet annealed, cold rolled with multiple passes to a final sheet thickness of 0.25 mm or less, decarburization / primary recrystallization annealing, final finishing annealing 700 ° C. a method for producing a grain-oriented electrical steel sheets, performs heating of 1200 ° C. or more high temperature zone of the slab at 5 ° C. / min or more heating rate, in the course of cooling said hot rolled sheet annealing by 150 Between 8 ° C / sec and at least 1 pass between the cold rolling steps.
A method for producing a low iron loss unidirectional electrical steel sheet, which is characterized by holding in a temperature range of 00 ° C to 350 ° C for 1 minute or more, (4) Before heating a slab in a high temperature range of 1200 ° C or more. To
The method for producing a low iron loss unidirectional electrical steel sheet according to any one of (1), (2) or (3) above, wherein hot deformation is applied at a rolling reduction of 50% or less.
【0008】本発明者らは、鉄損の低い一方向性電磁鋼
板を安定して製造する方法を検討したところ、スラブ加
熱時の高温域におけるスラブ加熱を5℃/分以上の昇温
速度で行いスラブ加熱時の結晶粒の成長を抑制し、か
つ、熱延板焼鈍の冷却過程において700℃〜150℃
の間を8℃/秒以上で冷却することにより、固溶C,N
を富化し、かつ、最終冷間圧延時のパス間時効温度およ
びパス間時効時間をある範囲に制御することが非常に有
効であることを見いだした。The inventors of the present invention investigated a method for stably producing a grain-oriented electrical steel sheet having a low iron loss, and found that slab heating in a high temperature range during slab heating was performed at a heating rate of 5 ° C./min or more. It suppresses the growth of crystal grains during slab heating, and 700 ° C to 150 ° C in the cooling process of hot-rolled sheet annealing.
The solid solution C, N
It has been found that it is very effective to enrich the steel and control the aging temperature between passes and the aging time between passes during the final cold rolling within a certain range.
【0009】図1は、中間焼鈍の平均冷却速度と製品特
性との関係を示した。すなわち、本発明に従った成分範
囲にあるC:0.070%、Si:3.19%、Mn:
0.071%、S:0.022%、Sol.Al:0.03
1%、N:0.0077%、Sn:0.11%を含有す
る鋳片を、短時間加熱が可能な通電加熱炉により到達温
度1390℃とし、1200℃から1390℃までを1
0℃/分の昇温速度で加熱したスラブを用いて板厚2.
00mmの熱延板を作製した。そして、1.65mmに予備
冷延した。1000℃×2分均熱後、Cの析出温度域と
考えられる700℃〜150℃を種々の冷却温度で冷却
するという中間焼鈍を施し、最終冷間圧延工程で途中板
厚1.00mmと0.50mmの段階で鋼板を300℃で1
0分間保持し、0.22mmの最終仕上げ厚とした。得ら
れた冷延板を公知の方法で脱炭焼鈍し、焼付分離材を塗
布した後、最終仕上げ焼鈍を行いコーティング液を塗布
し製品とした。FIG. 1 shows the relationship between the average cooling rate of intermediate annealing and product characteristics. That is, C: 0.070%, Si: 3.19%, Mn: in the composition range according to the present invention.
0.071%, S: 0.022%, Sol.Al: 0.03
A slab containing 1%, N: 0.0077%, and Sn: 0.11% is set at an ultimate temperature of 1390 ° C. by an electric heating furnace capable of short-time heating, and 1200 ° C. to 1390 ° C. is set to 1
Plate thickness using a slab heated at a heating rate of 0 ° C./min 2.
A hot rolled sheet of 00 mm was produced. Then, it was pre-cold rolled to 1.65 mm. After soaking at 1000 ° C for 2 minutes, an intermediate annealing of cooling 700 ° C to 150 ° C, which is considered to be a precipitation temperature range of C, at various cooling temperatures was performed, and in the final cold rolling step, the intermediate plate thickness was 1.00 mm and 0%. Steel plate 1 at 300 ° C at the step of 0.5mm
Hold for 0 minutes to give a final finished thickness of 0.22 mm. The obtained cold-rolled sheet was decarburized and annealed by a known method, and after applying a bake-separating material, final finishing annealing was performed and a coating liquid was applied to obtain a product.
【0010】かくして得られた製品n=5の磁束密度、
鉄損と中間焼鈍での700℃〜150℃の冷却速度との
関係について調べた結果を図1に示す。同図より明らか
なように中間焼鈍での700℃〜150℃の冷却速度を
8℃/秒以上とすることにより安定して良好な磁気特性
が得られることが分かる。The magnetic flux density of the product n = 5 thus obtained,
FIG. 1 shows the result of investigation on the relationship between the iron loss and the cooling rate of 700 ° C. to 150 ° C. in the intermediate annealing. As is clear from the figure, stable magnetic properties can be obtained by setting the cooling rate of 700 ° C. to 150 ° C. in the intermediate annealing to 8 ° C./sec or more.
【0011】図2は、以下に示す工程で製造した製品の
特性を調べて示した。すなわち、本発明に従った成分範
囲にあるC:0.075%、Si:3.12%、Mn:
0.080%、S:0.020%、Sol.Al:0.02
5%、N:0.0070%、Sn:0.10%を含有す
る鋳片を、短時間加熱が可能な誘導加熱炉により到達温
度1380℃とし、1200℃から1380℃までを1
0℃/分、または1℃/分の昇温速度で加熱したスラブ
を用いて板厚2.20mmの熱延板を作製した。そして、
1.70mmに予備冷延した。1000℃×2分均熱後、
Cの析出温度域と考えられる700℃〜150℃を平均
1℃/秒または8℃/秒または15℃/秒の冷却速度で
冷却するという中間焼鈍を施し、最終冷間圧延工程で途
中板厚1.10mmと0.55mmの段階で鋼板を種々の温
度で10分間保持し、0.22mmの最終仕上げ厚とし
た。得られた冷延板を公知の方法で脱炭焼鈍し、焼付分
離材を塗布した後、最終仕上げ焼鈍を行いコーティング
液を塗布して製品とした。FIG. 2 shows characteristics of a product manufactured by the following steps. That is, C: 0.075%, Si: 3.12%, Mn: in the composition range according to the present invention.
0.080%, S: 0.020%, Sol.Al: 0.02
A slab containing 5%, N: 0.0070%, and Sn: 0.10% is set to a reaching temperature of 1380 ° C by an induction heating furnace capable of heating for a short time, and the temperature from 1200 ° C to 1380 ° C is set to 1
A hot rolled sheet having a sheet thickness of 2.20 mm was produced using a slab heated at a temperature rising rate of 0 ° C./minute or 1 ° C./minute. And
Pre-cold rolled to 1.70 mm. After soaking at 1000 ℃ for 2 minutes,
Intermediate annealing of cooling 700 ° C. to 150 ° C., which is considered to be the precipitation temperature range of C, at an average cooling rate of 1 ° C./second, 8 ° C./second, or 15 ° C./second is performed, and the final cold rolling step involves intermediate plate thickness. The steel sheets were held at various temperatures for 10 minutes at 1.10 mm and 0.55 mm steps to give a final finished thickness of 0.22 mm. The obtained cold-rolled sheet was decarburized and annealed by a known method, and after applying a baking separating material, final finishing annealing was performed and a coating solution was applied to obtain a product.
【0012】かくして得られた製品板の磁束密度、鉄損
と中間焼鈍での700℃〜150℃での冷却速度および
パス間時効温度との関係について調べた結果を図2に示
す。同図より明らかなように中間焼鈍での700℃〜1
50℃の冷却速度を8℃/秒以上とし、最終冷延工程で
200℃〜350℃の温度でパス間時効を施すことによ
り安定して良好な磁気特性が得られることが分かる。The relationship between the magnetic flux density, the iron loss, the cooling rate at 700 ° C. to 150 ° C. in the intermediate annealing, and the interpass aging temperature of the product sheet thus obtained is examined and the results are shown in FIG. As is clear from the figure, 700 ° C to 1 in the intermediate annealing
It can be seen that stable magnetic properties can be obtained by setting the cooling rate at 50 ° C. to 8 ° C./sec or more and performing the interpass aging at the temperature of 200 ° C. to 350 ° C. in the final cold rolling step.
【0013】このようにこの発明は、高温スラブ加熱を
スラブの昇温速度を5℃/分以上とし、かつ、中間焼鈍
の冷却過程において700℃〜150℃の間を8℃/秒
以上で冷却し、かつ、最終冷延工程で200℃〜350
℃の温度で1分以上のパス間時効を施すことにより安定
して良好な磁気特性が得られるという全く新しい知見に
基づいて完成されたものである。As described above, according to the present invention, in the high temperature slab heating, the temperature rising rate of the slab is 5 ° C./min or more, and in the cooling process of the intermediate annealing, the temperature between 700 ° C. and 150 ° C. is cooled at 8 ° C./sec or more. And in the final cold rolling step, 200 ° C to 350 ° C
It was completed based on a completely new finding that stable and good magnetic properties can be obtained by performing aging for 1 minute or more at a temperature of ° C.
【0014】ここにこの発明によって磁気特性が向上す
る理由については、必ずしも明確に解明されたわけでは
ないが、次の通りと考えられる。スラブ昇温速度を速め
ることによりスラブ加熱中の結晶粒の成長を抑制し、熱
間圧延後、熱延板の組織および析出物の均一化が図られ
ると共に熱延板での結晶粒径が小さくなる。集合組織も
{100}方位粒が減少し、{111}方位粒が増加す
る。冷延前の結晶粒径が小さくなると、1次再結晶後、
粒内から核発生する{110}方位粒は減少し、粒界近
傍から核発生する{111}方位粒が増加する。{11
1}方位粒が増加し、{100}方位粒が減少すること
は、2次再結晶の安定をもたらすが、一方、{110}
方位粒が減少するために、安定して低鉄損を得られな
い。The reason why the magnetic characteristics are improved by the present invention is not necessarily clarified, but it is considered as follows. By suppressing the growth of crystal grains during slab heating by increasing the slab heating rate, the structure and precipitates of the hot-rolled sheet can be made uniform after hot rolling, and the grain size of the hot-rolled sheet can be reduced. Become. The texture also has {100} oriented grains decreased and {111} oriented grains increased. When the crystal grain size before cold rolling becomes small, after primary recrystallization,
The number of {110} oriented grains that nucleate from inside the grain decreases, and the number of {111} oriented grains that nucleate near the grain boundary increases. {11
The increase of 1} oriented grains and the decrease of {100} oriented grains bring about stability of secondary recrystallization, while {110}
A low iron loss cannot be stably obtained because the number of oriented grains decreases.
【0015】そこで、最終冷延前焼鈍の冷却過程で、固
溶C,Nを富化し、パス間時効温度を従来よりも狭い範
囲に限定することで、固溶C,Nが冷間圧延によって形
成された転位等欠陥部に固着する作用によって変形機構
に影響を大きく与え、{110}〈001〉方位粒を増
加させてやると、{110}方位粒、{111}方位粒
が増加し、{100}方位粒が減少し、従来よりも安定
して鉄損の低い一方向性電磁鋼板が得られる。Therefore, in the cooling process of the final pre-rolling annealing, solid solution C and N are enriched and the aging temperature between passes is limited to a narrower range than before, so that the solid solution C and N are subjected to cold rolling. When the deformation mechanism is greatly affected by the action of adhering to the formed defect such as dislocation and the {110} <001> oriented grains are increased, the {110} oriented grains and the {111} oriented grains increase, Grains of {100} orientation are reduced, and a grain-oriented electrical steel sheet having a lower iron loss and more stable than conventional ones can be obtained.
【0016】[0016]
【発明の実施の形態】次に本発明の成分および処理条件
を限定した理由について説明する。Siは、下限2.0
%未満では良好な鉄損が得られず、上限4.0%を超え
ると冷延性が著しく劣化する。Cは、下限0.015%
未満であれば2次再結晶が不安定となり、上限の0.1
00%はこれよりCが多くなると脱炭所要時間が長くな
り経済的に不利となるために限定した。BEST MODE FOR CARRYING OUT THE INVENTION Next, the reasons for limiting the components and processing conditions of the present invention will be described. Si has a lower limit of 2.0
If it is less than%, good iron loss cannot be obtained, and if it exceeds the upper limit of 4.0%, the cold rolling property deteriorates significantly. C is the lower limit 0.015%
If it is less than 2, the secondary recrystallization becomes unstable, and the upper limit is 0.1.
The content of 00% is limited because if C is larger than this, the time required for decarburization becomes long and it is economically disadvantageous.
【0017】Mnは、下限0.03%未満であれば熱間
脆化を起こし、上限0.12%を超えるとかえって磁気
特性を劣化させる。S,Seは、MnS,MnSeを形
成するために必要な元素で、これらの1種または2種の
合計が下限0.005%未満ではMnS,MnSeの絶
対量が不足し、上限0.050%を超えると熱間割れを
生じ、また、最終仕上げ焼鈍での純化が困難となる。If the lower limit of Mn is less than 0.03%, hot embrittlement occurs, and if it exceeds the upper limit of 0.12%, the magnetic properties are deteriorated. S and Se are elements necessary for forming MnS and MnSe. If the total of one or two of these is less than the lower limit of 0.005%, the absolute amount of MnS and MnSe is insufficient, and the upper limit is 0.050%. If it exceeds, hot cracking occurs, and purification in final finish annealing becomes difficult.
【0018】Sol.Alは、AlNを形成するために必要
な元素で、下限0.010%未満ではAlNの絶対量が
不足し、上限0.065%を超えるとAlNの適当な分
散状態が得られない。Nは、AlNを形成するために必
要な元素で、下限0.0040%未満ではAlNの絶対
量が不足し、上限0.0100%を超えるとAlNの適
当な分散状態が得られない。Sb,Sn,Cu,Mo,
Ge,B,Te,As、およびBiは粒界に偏析させ、
2次再結晶を安定化させるが、各々の元素量で、下限
0.003%未満では偏析量が不足し、上限0.3%は
経済的理由と脱炭性の悪化によるものである。Sol.Al is an element necessary for forming AlN. If the lower limit is less than 0.010%, the absolute amount of AlN is insufficient, and if the upper limit is more than 0.065%, a suitable dispersed state of AlN is obtained. I can't. N is an element necessary for forming AlN. If the lower limit is less than 0.0040%, the absolute amount of AlN is insufficient, and if it exceeds the upper limit of 0.0100%, a proper dispersed state of AlN cannot be obtained. Sb, Sn, Cu, Mo,
Ge, B, Te, As, and Bi segregate at grain boundaries,
Stabilizes the secondary recrystallization, but the lower limit of each element amount
If it is less than 0.003 %, the segregation amount is insufficient, and the upper limit of 0.3% is due to economic reasons and deterioration of decarburization.
【0019】スラブ加熱温度は、1320℃〜1450
℃とするが、1320℃未満であると製品の鉄損のバラ
ツキが大きい。1450℃を超えるとスラブが溶融す
る。高温域におけるスラブ加熱に関しては、加熱時の結
晶粒径の粗大化の抑制および組織、集合組織の改善のた
めに、1200℃以上の昇温速度を5℃/分以上とする
が、1200℃未満では粒成長への影響が少ないために
昇温速度を規定する必要はない。昇温速度5℃/分未満
では、磁気特性の改善効果が少ないためである。The slab heating temperature is 1320 ° C. to 1450.
However, if the temperature is lower than 1320 ° C, the variation in iron loss of the product is large. When it exceeds 1450 ° C, the slab melts. Regarding slab heating in a high temperature range, the temperature rising rate of 1200 ° C or higher is set to 5 ° C / min or higher, but less than 1200 ° C, in order to suppress coarsening of the crystal grain size during heating and to improve the texture and texture. In this case, since the influence on grain growth is small, it is not necessary to specify the heating rate. This is because if the heating rate is less than 5 ° C./minute, the effect of improving the magnetic properties is small.
【0020】前記中間焼鈍での700℃〜150℃の冷
却速度は、図1に示すように8℃/秒未満だと磁気特性
の改善効果が少ない。700℃〜150℃としたのは、
その温度域が、Cの析出温度域と考えられるためであ
る。The cooling rate of 700 ° C. to 150 DEG ° C. in the intermediate annealing, improvement of the magnetic properties is small as less than 8 ° C. / sec, as shown in FIG. The temperature of 700 ° C to 150 ° C is
This is because that temperature range is considered to be the C precipitation temperature range.
【0021】最終冷間圧延時のパス間時効温度は、図2
に示すように、200℃より低温だと磁気特性の改善効
果に乏しく、また350℃を超えても磁気特性の改善効
果が少ない。時効処理は1回でも効果があるが、圧延と
時効処理を交互に繰り返すと製品の磁気特性が一層向上
する。パス間時効時間は、1分未満だと磁気特性の改善
効果が少ない。The aging temperature between passes during the final cold rolling is shown in FIG.
As shown in (1), when the temperature is lower than 200 ° C., the effect of improving the magnetic properties is poor, and when the temperature exceeds 350 ° C., the effect of improving the magnetic properties is small. Although the aging treatment is effective even once, the rolling and aging treatment are alternately repeated to further improve the magnetic properties of the product. If the aging time between passes is less than 1 minute, the effect of improving the magnetic properties is small.
【0022】1200℃以上の高温域のスラブ加熱前に
50%以下の圧下で熱間変形を加えることは、柱状晶を
破壊し、熱延板の組織の均一化に有効で製品の磁気特性
のバラツキを少なくする。圧下率の上限を50%とした
のは、これ以上圧下率を高くしても、磁気特性の値に変
化がないからである。Applying hot deformation under a pressure of 50% or less before heating the slab in a high temperature range of 1200 ° C. or higher destroys the columnar crystals and is effective in homogenizing the structure of the hot-rolled sheet. Reduce variations. The upper limit of the rolling reduction is set to 50% because the magnetic characteristic value does not change even if the rolling reduction is further increased.
【0023】製品板厚を0.25mm以下と限定したの
は、最近の需要ニーズに対応して低鉄損な製品を得るた
めである。2回冷延法では、熱延板焼鈍は必要に応じて
実施する。熱延板の組織や析出物の均一化に有効で、製
品の磁気特性のバラツキを少なくする。The reason for limiting the product plate thickness to 0.25 mm or less is to obtain a product with low iron loss in response to the recent demand needs. In the two-time cold rolling method, hot rolled sheet annealing is carried out as necessary. It is effective in homogenizing the structure and precipitates of the hot-rolled sheet and reduces the variations in the magnetic properties of the product.
【0024】[0024]
〔実施例1〕〔C〕0.072%、〔Si〕3.21
%、〔Mn〕0.088%、〔S〕0.025%、〔So
l.Al〕0.022%、〔N〕0.0089%、〔S
n〕0.10%、〔Cu〕0.06%を含有する鋳片の
予備加熱をガス燃焼型加熱炉で鋳片中心部の温度が12
00℃の温度域に達するまで加熱し、その後、試料番号
7,8については25%の圧下率で熱間変形を加え、そ
れ以外の試料については、熱間変形を加えることなく、
誘導加熱炉に導き、その後1380℃まで昇温速度1℃
/分または、10℃/分の条件でスラブ高温加熱を行っ
た鋳片を熱間圧延し、1.8mm厚の熱延板とした。そし
て、1100℃×2分の均熱後、700℃〜150℃の
温度域を種々の冷却速度で冷却する熱延板焼鈍を施し、
冷間圧延工程の途中板厚1.2mmと0.6mmの段階で、
250℃×3分間のパス間時効を施して0.22mmの最
終仕上げ厚とした。得られた冷延板を公知の方法で脱炭
焼鈍し焼付分離材を塗布した後最終仕上げ焼鈍を行いコ
ーティング液を塗布し製品とした。[Example 1] [C] 0.072%, [Si] 3.21
%, [Mn] 0.088%, [S] 0.025%, [So
l.Al] 0.022%, [N] 0.0089%, [S
n] 0.10%, [Cu] 0.06% containing slab preheating is performed in a gas combustion type heating furnace at a temperature of the slab center of 12
The sample was heated until it reached the temperature range of 00 ° C., and thereafter, the sample Nos. 7 and 8 were subjected to hot deformation at a reduction rate of 25%, and the other samples were not subjected to hot deformation.
Guided to induction heating furnace, and then heated up to 1380 ℃ 1 ℃
/ Min or 10 ° C / min, the slab heated to a high temperature was hot-rolled to obtain a hot-rolled sheet having a thickness of 1.8 mm. Then, after soaking at 1100 ° C for 2 minutes, hot-rolled sheet annealing for cooling the temperature range of 700 ° C to 150 ° C at various cooling rates is performed,
During the cold rolling process, at the stages of 1.2 mm and 0.6 mm in thickness,
Aging was performed at 250 ° C. for 3 minutes between passes to give a final finished thickness of 0.22 mm. The obtained cold-rolled sheet was decarburized and annealed by a known method, coated with a bake-separating material, and then finally finished annealed to apply a coating solution to obtain a product.
【0025】この時の鋳片昇温速度、熱延板焼鈍での7
00℃〜150℃での冷却速度、鋳片高温加熱前の鋳片
圧下の有無および得られた製品n=10の平均の磁束密
度B8 、鉄損W17/50 、鉄損のバラツキを表1に示す。
これより、本発明例は比較例と比べ安定して低鉄損材料
が得られることが分かる。The slab temperature rising rate at this time, 7
Shows the cooling rate at 00 ° C to 150 ° C, the presence or absence of slab reduction before high temperature heating of slab, and the average magnetic flux density B 8 , iron loss W 17/50 , and variation of iron loss of the obtained product n = 10. Shown in 1.
From this, it is understood that the inventive example can stably obtain the low iron loss material as compared with the comparative example.
【0026】[0026]
【表1】 [Table 1]
【0027】〔実施例2〕〔C〕0.073%、〔S
i〕3.22%、〔Mn〕0.070%、〔Se〕0.
014%、〔S〕0.014%、〔Sol.Al〕0.02
4%、〔N〕0.0077%、〔Sb〕0.025%、
〔Mo〕0.03%を含有する鋳片を誘導加熱炉で到達
温度を1370℃とし、1200℃〜1370℃まで1
2℃/秒の昇温速度にて高温加熱を行った鋳片を熱間圧
延し、2.3mm厚の熱延板とした。試料番号1,2につ
いては、100℃×2分の熱延板焼鈍を施し、試料番号
3,4については、熱延板焼鈍を施すことさえなかっ
た。続く予備冷延で、板厚を1.6mmとした後、中間焼
鈍で、1000℃×2分均熱後、700℃〜150℃の
冷却速度を0.2℃/秒と30℃/秒の2水準で冷却し
た。最終冷間圧延工程の途中板厚1.1mmと0.6mmの
段階で300℃×10分のパス間時効を施し、0.17
mmの最終仕上げ板厚とした。得られた冷延板を公知の方
法で脱炭焼鈍し焼付分離材を塗布した後、最終仕上げ焼
鈍を行いコーティング液を塗布し製品とした。得られた
製品n=10の平均の磁束密度B8 、鉄損W17/50 、鉄
損のバラツキを表2に示す。これより、本発明例は比較
例と比べ安定して低鉄損材料が得られることが分かる。[Example 2] [C] 0.073%, [S]
i] 3.22%, [Mn] 0.070%, [Se] 0.
014%, [S] 0.014%, [Sol.Al] 0.02
4%, [N] 0.0077%, [Sb] 0.025%,
A slab containing 0.03% of [Mo] is heated to an induction temperature of 1370 ° C. in an induction heating furnace, and the temperature is 1200 ° C. to 1370 ° C.
The slab that was heated at a high temperature of 2 ° C./sec was hot-rolled to obtain a hot-rolled sheet having a thickness of 2.3 mm. Sample Nos. 1 and 2 were annealed at 100 ° C. for 2 minutes, and Sample Nos. 3 and 4 were not even annealed. In the subsequent pre-cold rolling, the plate thickness was set to 1.6 mm, and then intermediate annealing was carried out at 1000 ° C. for 2 minutes soaking, and then the cooling rate of 700 ° C. to 150 ° C. was 0.2 ° C./sec and 30 ° C./sec. Cooled at 2 levels. During the final cold rolling process, aging was performed at a temperature of 1.1 mm and 0.6 mm at a temperature of 300 ° C for 10 minutes at a stage of 0.17.
The final finished thickness was mm. The obtained cold rolled sheet was decarburized and annealed by a known method to apply a bake separating material, and then final finish annealing was performed to apply a coating solution to obtain a product. Table 2 shows the average magnetic flux density B 8 , iron loss W 17/50 , and variation of iron loss of the obtained product n = 10. From this, it is understood that the inventive example can stably obtain the low iron loss material as compared with the comparative example.
【0028】[0028]
【表2】 [Table 2]
【0029】[0029]
【発明の効果】以上のごとく本発明によれば、鉄損の低
い一方向性電磁鋼板を工業的に安定して製造でき、その
工業的効果は非常に大きい。As described above, according to the present invention, a grain-oriented electrical steel sheet having a low iron loss can be manufactured industrially stably, and its industrial effect is very large.
【図1】中間焼鈍での700℃〜150℃の平均冷却速
度と製品の磁束密度B8 、鉄損W17/50 の関係図であ
る。FIG. 1 is a relationship diagram of an average cooling rate of 700 ° C. to 150 ° C. in intermediate annealing, magnetic flux density B 8 of a product, and iron loss W 17/50 .
【図2】スラブ高温加熱時のスラブ昇温速度と最終冷間
圧延時のパス間時効時間および中間焼鈍での700℃〜
150℃の冷却速度と製品の磁束密度B8 、鉄損W17/5
0 の関係図である。FIG. 2 Slab temperature rising rate during high temperature heating of slab, aging time between passes during final cold rolling, and 700 ° C. during intermediate annealing
150 ° C cooling rate, product magnetic flux density B 8 , iron loss W 17/5
It is a relationship diagram of 0 .
フロントページの続き (56)参考文献 特開 平1−201425(JP,A) 特開 昭63−259024(JP,A) 特開 平3−115529(JP,A) 特公 昭56−3892(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C22C 38/00 303 C22C 38/06 C22C 38/60 H01F 1/16 Continuation of front page (56) Reference JP-A-1-201425 (JP, A) JP-A-63-259024 (JP, A) JP-A-3-115529 (JP, A) JP-B-56-3892 (JP , B1) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 8/12 C22C 38/00 303 C22C 38/06 C22C 38/60 H01F 1/16
Claims (4)
0.005〜0.050%、 さらにSb,Sn,Cu,Mo,Ge,B,Te,A
s、およびBiから選ばれる1種または2種以上を各々
の元素量で、0.003〜0.3%を含有し、残部は実
質的にFeの組成になる連続鋳造スラブを、1320℃
〜1450℃に加熱均熱したのち熱延し、予備冷延し、
中間焼鈍し、複数パスよりなる最終冷延を施し0.25
mm以下の最終板厚とし、脱炭・1次再結晶焼鈍、最終仕
上げ焼鈍によって一方向性電磁鋼板を製造する方法にお
いて、上記スラブの1200℃以上の高温域の加熱を5
℃/分以上の昇温速度で行うと共に、前記中間焼鈍の冷
却過程において700℃〜150℃の間を8℃/秒以上
で冷却し、かつ最終冷延工程の少なくとも1回のパス間
で鋼板を200℃〜350℃の温度範囲で1分以上の時
間保持することを特徴とする低鉄損一方向性電磁鋼板の
製造方法。1. By weight%, C: 0.015 to 0.100%, Si: 2.0 to 4.0%, Mn: 0.03 to 0.12%, Sol.Al: 0.010 to 0.065%, N: 0.0040 to 0.0100%, one or two kinds selected from S and Se in total:
0.005 to 0.050%, and further Sb, Sn, Cu, Mo, Ge, B, Te, A
A continuous casting slab containing 0.003 to 0.3% of each element amount of one or more selected from s and Bi at 1320 ° C.
~ 1450 ℃ soaked and then hot rolled, pre-cold rolled,
0.25 after intermediate annealing and final cold rolling with multiple passes
In a method for producing a grain-oriented electrical steel sheet by decarburization / primary recrystallization annealing and final finishing annealing with a final thickness of 5 mm or less, heating the slab in a high temperature range of 1200 ° C. or higher to 5
° C. / min performs the above heating rate, at least one of said between 700 ° C. to 150 DEG ° C. and cooled at 8 ° C. / sec or more in the cold <br/> retirement process of intermediate annealing and a final cold rolling step The steel sheet is held in a temperature range of 200 ° C. to 350 ° C. for 1 minute or more between the passes of 1.
する請求項1に記載した低鉄損一方向性電磁鋼板の製造
方法。2. The method for producing a low iron loss unidirectional electrical steel sheet according to claim 1, wherein the hot rolled sheet is annealed.
0.005〜0.050%、 さらにSb,Sn,Cu,Mo,Ge,B,Te,A
s、およびBiから選ばれる1種または2種以上を各々
の元素量で、0.003〜0.3%を含有し、残部は実
質的にFeの組成になる連続鋳造スラブを、1320℃
〜1450℃に加熱均熱したのち熱延し、熱延板焼鈍
し、複数パスよりなる冷間圧延を施し0.25mm以下の
最終板厚とし、脱炭・1次再結晶焼鈍、最終仕上げ焼鈍
によって一方向性電磁鋼板を製造する方法において、上
記スラブの1200℃以上の高温域の加熱を5℃/分以
上の昇温速度で行うと共に、前記熱延板焼鈍の冷却過程
において700℃〜150℃の間を8℃/秒以上で冷却
し、かつ冷延工程の少なくとも1回のパス間で鋼板を2
00℃〜350℃の温度範囲で1分以上の時間保持する
ことを特徴とする低鉄損一方向性電磁鋼板の製造方法。3. By weight%, C: 0.015 to 0.100%, Si: 2.0 to 4.0%, Mn: 0.03 to 0.12%, Sol.Al: 0.010 to 0.065%, N: 0.0040 to 0.0100%, one or two kinds selected from S and Se in total:
0.005 to 0.050%, and further Sb, Sn, Cu, Mo, Ge, B, Te, A
A continuous casting slab containing 0.003 to 0.3% of each element amount of one or more selected from s and Bi at 1320 ° C.
Heat soaked to -1450 ° C, then hot rolled, hot rolled sheet annealed, cold rolled with multiple passes to a final sheet thickness of 0.25 mm or less, decarburization, primary recrystallization annealing, final finishing annealing 700 ° C. a method for producing a grain-oriented electrical steel sheets, performs heating of 1200 ° C. or more high temperature zone of the slab at 5 ° C. / min or more heating rate, in the course of cooling said hot rolled sheet annealing by 150 Between 8 ° C / sec and at least 1 pass between the cold rolling steps.
A method for producing a low iron loss grain-oriented electrical steel sheet, which is characterized by holding in a temperature range of 00 ° C to 350 ° C for 1 minute or more.
の前に、50%以下の圧下率で熱間変形を加えることを
特徴とする請求項1,2または3の何れかに記載した低
鉄損一方向性電磁鋼板の製造方法。4. The low deformation according to claim 1, wherein hot deformation is applied at a reduction rate of 50% or less before heating the slab in a high temperature range of 1200 ° C. or higher. Method for manufacturing iron loss grain-oriented electrical steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23452295A JP3368409B2 (en) | 1995-09-12 | 1995-09-12 | Manufacturing method of low iron loss unidirectional electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23452295A JP3368409B2 (en) | 1995-09-12 | 1995-09-12 | Manufacturing method of low iron loss unidirectional electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0978132A JPH0978132A (en) | 1997-03-25 |
JP3368409B2 true JP3368409B2 (en) | 2003-01-20 |
Family
ID=16972351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23452295A Expired - Lifetime JP3368409B2 (en) | 1995-09-12 | 1995-09-12 | Manufacturing method of low iron loss unidirectional electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3368409B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990088437A (en) * | 1998-05-21 | 1999-12-27 | 에모또 간지 | Grain oriented electromagnetic steel sheet and manufacturing method thereof |
US7857915B2 (en) * | 2005-06-10 | 2010-12-28 | Nippon Steel Corporation | Grain-oriented electrical steel sheet extremely excellent in magnetic properties and method of production of same |
JP6191826B2 (en) * | 2014-10-31 | 2017-09-06 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet with excellent magnetic properties |
-
1995
- 1995-09-12 JP JP23452295A patent/JP3368409B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0978132A (en) | 1997-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006132095A1 (en) | Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same | |
JPH03219020A (en) | Production of nonoriented silicon steel sheet | |
JPH08253816A (en) | Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density | |
JP3368409B2 (en) | Manufacturing method of low iron loss unidirectional electrical steel sheet | |
JPH08100216A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JP3369443B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JP3743707B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP3338238B2 (en) | Manufacturing method of low iron loss unidirectional electrical steel sheet | |
JP2680519B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JPH04301035A (en) | Production of grain-oriented silicon steel sheet having magnetic property uniform in longitudinal direction | |
JP3338263B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JPH04346621A (en) | Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance | |
JPH07316657A (en) | Production of grain oriented silicon steel sheet reduced in iron loss | |
JPH0762437A (en) | Production of grain oriented silicon steel sheet having extremely low iron loss | |
JPH08176665A (en) | Production of grain oriented silicon steel sheet with low iron loss | |
JPS63109115A (en) | Production of grain oriented silicon steel sheet having good electromagnetic characteristic | |
JPH08157963A (en) | Production of grain oriented silicon steel sheet | |
JP3369371B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JPH1030125A (en) | Production of grain oriented silicon steel sheet | |
JP3561323B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP3338257B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JPS60197819A (en) | Production of thin grain-oriented electrical steel sheet having high magnetic flux density | |
JPH0798976B2 (en) | Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss | |
JPH06330174A (en) | Production of low iron loss grain oriented silicon steel sheet | |
JPH08253815A (en) | Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020917 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071115 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101115 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101115 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111115 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111115 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121115 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121115 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131115 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131115 Year of fee payment: 11 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131115 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |