JP3338257B2 - Manufacturing method of high magnetic flux density unidirectional electrical steel sheet - Google Patents

Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Info

Publication number
JP3338257B2
JP3338257B2 JP30176095A JP30176095A JP3338257B2 JP 3338257 B2 JP3338257 B2 JP 3338257B2 JP 30176095 A JP30176095 A JP 30176095A JP 30176095 A JP30176095 A JP 30176095A JP 3338257 B2 JP3338257 B2 JP 3338257B2
Authority
JP
Japan
Prior art keywords
hot
rolled
rolling
annealing
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30176095A
Other languages
Japanese (ja)
Other versions
JPH09143561A (en
Inventor
洋介 黒崎
高英 島津
和隆 東根
健一 西脇
康弘 真弓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30176095A priority Critical patent/JP3338257B2/en
Publication of JPH09143561A publication Critical patent/JPH09143561A/en
Application granted granted Critical
Publication of JP3338257B2 publication Critical patent/JP3338257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は変圧器等の鉄心に使
用される高磁束密度一方向性電磁鋼板の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high magnetic flux density unidirectional magnetic steel sheet used for an iron core such as a transformer.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は主に変圧器や発電機
の鉄心材料に使用されるが、省エネルギー化が要求され
ている昨今、更に磁束密度が高く、鉄損の少ない鋼板が
市場から要求されている。磁束密度の高い一方向性電磁
鋼板を得るには、{110}<001>方位いわゆるゴ
ス方位に高度に集積した2次再結晶組織を得ることが必
要である。2次再結晶には、インヒビターと1次再結晶
集合組織が大きく影響することが知られている。インヒ
ビターについては、仕上焼鈍を行うまでに鋼中に100
〜1000Å程度の析出分散相を均一微細に存在させる
ことが必要で、AlN,MnS,MnSeなどが一般的
に知られている。これらは、連続鋳造において粗大に析
出してしまうので、スラブを1250℃以上の高温に加
熱し、十分溶体化させた後、熱延でMnS,MnSeを
均一微細に析出させ、熱延板焼鈍、析出焼鈍でAlNを
均一微細に析出させ、更には、熱延から脱炭・1次再結
晶焼鈍までに結晶粒界に粒界偏析元素のSb,Sn,C
u,Mo,Ge,B,Te,As,Biなどを偏析させ
ることが有効である。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used for core materials of transformers and generators. Recently, steel sheets with higher magnetic flux density and less iron loss have been required from the market for energy saving. Has been requested. In order to obtain a unidirectional magnetic steel sheet having a high magnetic flux density, it is necessary to obtain a secondary recrystallized structure highly integrated in the {110} <001> direction, that is, the so-called Goss direction. It is known that the inhibitor and the primary recrystallization texture have a great influence on the secondary recrystallization. As for the inhibitor, 100% in steel before finish annealing is performed.
It is necessary to make the precipitated dispersed phase of about 1000 ° exist uniformly and finely, and AlN, MnS, MnSe and the like are generally known. Since these are coarsely precipitated in continuous casting, the slab is heated to a high temperature of 1250 ° C. or more to sufficiently form a solution, and then MnS and MnSe are uniformly and finely precipitated by hot rolling. AlN is uniformly and finely precipitated by precipitation annealing, and furthermore, Sb, Sn, C of grain boundary segregation elements are formed at grain boundaries from hot rolling to decarburization and primary recrystallization annealing.
It is effective to segregate u, Mo, Ge, B, Te, As, Bi and the like.

【0003】従来、スラブ加熱はガス加熱炉で行われる
のが一般的であった。しかし、この方法では長時間のス
ラブ加熱が必要なため、スラブ結晶粒の異常粒成長に起
因する線混と呼ばれる磁気特性不良を起こす場合があっ
た。これを解決するため、特公昭56−18654号公
報に記載されているようにスラブを誘導加熱を利用し急
速加熱する方法が提案されている。しかし、誘導加熱に
よりスラブ加熱を行った場合には、特開平3−3142
2号公報に開示されているようにスラブの端部(熱延で
最初に圧延される端部を熱延頭部、熱延で最後に圧延さ
れるもう一方の端部を熱延尾部とする。また、後述する
最終強冷延前の焼鈍の熱延頭部、熱延中央部、熱延尾部
とは、熱延において熱延頭部、熱延中央部、熱延尾部と
して圧延されたコイルの部位を指す)が熱放散によって
所定の温度まで上昇せず、端部に磁性不良を起こす場合
があった。特開平3−31422号公報には、スラブ端
部の近傍に導電性の発熱保温板を設置し、端部の磁性不
良を改善する方法が提案されているが、発熱保温板が高
温にさらされるため耐久性に問題があり、頻繁に発熱保
温板を交換しなければならないという問題があり、コス
トの上昇、設備管理の負担が大きく、また、発熱保温板
が劣化消耗した場合に磁性不良を起こしていた。
Conventionally, slab heating has generally been performed in a gas heating furnace. However, this method requires a long slab heating, so that a magnetic characteristic defect called line mixing caused by abnormal grain growth of slab crystal grains may occur. In order to solve this problem, a method has been proposed in which a slab is rapidly heated using induction heating as described in Japanese Patent Publication No. 56-18654. However, when slab heating is performed by induction heating, Japanese Unexamined Patent Publication No. Hei.
As disclosed in Japanese Unexamined Patent Publication No. 2, the end of a slab (the end rolled first by hot rolling is the hot rolled head, and the other end rolled last by hot rolling is the hot rolled tail) In addition, the hot rolled head, hot rolled central portion, and hot rolled tail portion of the annealing before final strong cold rolling described below are coils rolled as hot rolled head, hot rolled central portion, and hot rolled tail portion in hot rolling. In some cases) did not rise to a predetermined temperature due to heat dissipation, resulting in poor magnetic properties at the ends. Japanese Patent Application Laid-Open No. 3-31422 proposes a method of improving the magnetic defect at the end by installing a conductive heat insulating plate near the end of the slab. However, the heat insulating plate is exposed to high temperatures. Therefore, there is a problem in durability, and there is a problem that the heat-insulating plate must be replaced frequently, which leads to an increase in costs and a heavy burden on facility management, and also causes poor magnetism when the heat-insulating plate deteriorates and wears out. I was

【0004】ところで、最終強冷延前の焼鈍における冷
却はAlNの析出に大きな影響を及ぼし、2次再結晶、
磁気特性に大きく影響することが知られている。特公昭
46−23820号公報には、750〜1200℃の温
度で焼鈍した後750〜950℃の温度領域から400
℃までを2秒〜200秒間で急冷する方法が提案されて
いる。特公昭62−56923号公報には、900〜1
200℃に保持した後、大気放冷より速く、30℃水中
冷却より遅い冷却速度で室温まで冷却する方法が提案さ
れている。特開平2−138419号公報には、800
〜1200℃で一次均熱後、一次冷却をし、850〜9
50℃で二次均熱するに際し、一次均熱における100
0℃以上の保持時間を20〜120秒とし、かつ二次冷
却時850〜950℃の温度から500℃までの冷却速
度を20〜100℃/秒とする方法が提案されている。
また、特公昭62−1458号公報には、ガス加熱でス
ラブ高温加熱した際におこる熱延頭部で圧延された部位
の線混による磁性不良、熱延尾部で圧延された部位の細
粒による磁性不良を最終強冷延前の焼鈍の冷却を熱延中
央部に対し熱延頭部は急冷、熱延尾部は緩冷することに
より改善する方法が提案されている。
[0004] Incidentally, cooling during annealing before final strong cold rolling has a great effect on the precipitation of AlN, and secondary recrystallization,
It is known that it greatly affects magnetic properties. Japanese Patent Publication No. 46-23820 discloses that after annealing at a temperature of 750 to 1200 ° C.,
A method of rapidly cooling to 2 ° C. in 2 seconds to 200 seconds has been proposed. JP-B-62-56923 discloses that 900 to 1
A method has been proposed in which the temperature is kept at 200 ° C. and then cooled to room temperature at a cooling rate higher than that of air cooling and lower than that of 30 ° C. water cooling. JP-A-2-138419 discloses 800
After primary soaking at ~ 1200 ° C, primary cooling is performed, and 850-9
In secondary soaking at 50 ° C., 100% in primary soaking
A method has been proposed in which the holding time at 0 ° C. or more is set to 20 to 120 seconds, and the cooling rate from the temperature of 850 to 950 ° C. during secondary cooling to 500 ° C. is set to 20 to 100 ° C./second.
Japanese Patent Publication No. Sho 62-1458 discloses that when a slab is heated to a high temperature by gas heating, a magnetic defect due to wire mixing of a portion rolled at a hot rolled head and fine grains at a portion rolled at a hot rolled tail are caused. A method has been proposed to improve the magnetic defect by cooling the annealing before the final strong cold rolling by rapidly cooling the hot rolling head and slowly cooling the hot rolling tail portion with respect to the central portion of the hot rolling.

【0005】[0005]

【発明が解決しようとする課題】前記従来技術の方法で
得られる製品の磁気特性、コイル長手方向の磁気特性の
安定性、コストという点では満足できるものではない。
本発明は、スラブ加熱を誘導加熱炉を用いて加熱した際
に特有に起こる熱延頭部、尾部で圧延された部位の磁性
不良を最終強冷延前の焼鈍における冷却を熱延中央部と
熱延頭部、熱延尾部で異ならせることにより解決し、磁
気特性に優れ、工業的にコイル長手方向に安定した製品
を安価に得られる方法を提案するものである。
The magnetic properties of the product obtained by the above-mentioned prior art method, the stability of the magnetic properties in the longitudinal direction of the coil, and the cost are not satisfactory.
The present invention is a hot-rolling head, which occurs specifically when the slab is heated using an induction heating furnace, the magnetic defect of the portion rolled at the tail portion, and the cooling in the annealing before the final strong cold rolling is performed at the hot-rolling central portion. The present invention proposes a method for solving the problem by making the hot-rolled head and the hot-rolled tail different from each other, and is capable of inexpensively obtaining a product having excellent magnetic properties and being stable in the longitudinal direction of the coil.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は以下の
構成を要旨とする。 (1)重量%で、C:0.015〜0.100%、
Si:2.0〜4.0%、Mn:0.03〜0.12
%、 Sol.Al:0.010〜0.065%、N:
0.0040〜0.0100%、SおよびSeのうちか
ら選んだ1種または2種合計:0.005〜0.050
%、残部は実質的にFeの組成になる連続鋳造スラブ
を、1320〜1490℃にスラブ加熱したのち熱延
し、熱延板焼鈍し最終強冷延する工程、または予備冷
延、析出焼鈍し最終強冷延する工程、または熱延板焼
鈍、予備冷延、析出焼鈍し最終強冷延する工程の何れか
の工程の後、最終板厚とし、脱炭・1次再結晶焼鈍、最
終仕上焼鈍によって高磁束密度一方向性電磁鋼板を製造
する方法において、1200℃以上の高温域のスラブ加
熱を誘導加熱炉を用い、5℃/min以上の昇温速度で行
い、最終強冷延前の焼鈍を800〜1200℃で保持し
た後、800〜1200℃の温度から400℃までの冷
却を、熱延中央部で圧延されたコイルの部位は冷却速度
20〜120℃/sで行い、熱延頭部、熱延尾部で圧延
されたコイルの部位は冷却を10℃/s以上でかつ熱延
中央部よりも遅い冷却速度で行うことを特徴とするコイ
ル長手方向の磁気特性のばらつきの少ない高磁束密度一
方向性電磁鋼板の製造方法。および(2)連続鋳造スラ
ブがSb,Sn,Cu,Mo,Ge,B,Te,As、
およびBiから選ばれる1種または2種以上を各々の元
素量で0.003〜0.3%を含有することを特徴とす
る前項(1)に記載のコイル長手方向の磁気特性のばら
つきの少ない高磁束密度一方向性電磁鋼板の製造方法。
また、(3)1200℃以上の高温域のスラブ加熱の前
に、50%以下の圧下率で熱間変形を加えることを特徴
とする前項(1)または(2)に記載したコイル長手方
向の磁気特性のばらつきの少ない高磁束密度一方向性電
磁鋼板の製造方法である。
Namely, the gist of the present invention is as follows. (1) By weight%, C: 0.015 to 0.100%,
Si: 2.0-4.0%, Mn: 0.03-0.12
%, Sol. Al: 0.010-0.065%, N:
0.0040 to 0.0100%, one or two selected from S and Se: 0.005 to 0.050
%, With the remainder being a slab heated to 1320 to 1490 ° C., followed by hot rolling, annealing the hot rolled sheet and final strong cold rolling, or preliminary cold rolling and precipitation annealing. After any of the following steps: final strong cold rolling, or hot rolled sheet annealing, preliminary cold rolling, precipitation annealing and final strong cold rolling, the final sheet thickness is determined, decarburization / primary recrystallization annealing, and final finishing In the method of manufacturing a high magnetic flux density unidirectional magnetic steel sheet by annealing, slab heating in a high temperature region of 1200 ° C. or more is performed using an induction heating furnace at a heating rate of 5 ° C./min or more, and before the final strong cold rolling. After holding the annealing at 800 to 1200 ° C., cooling from a temperature of 800 to 1200 ° C. to 400 ° C. is performed at a cooling rate of 20 to 120 ° C./s in the portion of the coil rolled at the center of the hot rolling. Cooling is applied to the part of the coil rolled at the head and hot rolled tail. A method for producing a high magnetic flux density unidirectional magnetic steel sheet having little variation in magnetic properties in a longitudinal direction of a coil, which is performed at a cooling rate of 0 ° C./s or more and a cooling rate lower than that of a central portion of a hot rolled sheet. And (2) the continuous cast slab is made of Sb, Sn, Cu, Mo, Ge, B, Te, As,
And one or two or more selected from Bi and 0.003 to 0.3% in each element amount, and the variation in the magnetic characteristics in the longitudinal direction of the coil described in (1) above is small. A method for manufacturing high magnetic flux density unidirectional magnetic steel sheets.
(3) A hot deformation is applied at a rolling reduction of 50% or less before slab heating in a high temperature range of 1200 ° C. or more, wherein the coil is deformed in the longitudinal direction of the coil as described in (1) or (2) above. This is a method for producing a high magnetic flux density unidirectional magnetic steel sheet with less variation in magnetic properties.

【0007】本発明者は、スラブを誘導加熱炉を用いて
加熱した際に、発熱保温板なしにスラブ端部の磁気特性
不良を解消し、磁気特性に優れ、コイル長手方向に安定
した製品を安価に得られる方法を鋭意検討したところ、
最終強冷延前の焼鈍における冷却の速度を熱延中央部よ
り熱延頭部、熱延尾部を遅くすることが非常に有効であ
ることを見出した。
The inventor of the present invention has solved a problem that when a slab is heated by using an induction heating furnace, the slab ends can be free from poor magnetic characteristics without a heat-insulating plate, and have excellent magnetic characteristics and are stable in the longitudinal direction of the coil. After earnestly studying a method that can be obtained at low cost,
It has been found that it is very effective to make the cooling speed in the hot rolling head and the tail of the hot rolling slower than the central portion of the hot rolling in the annealing before the final strong cold rolling.

【0008】図1、図2は、本発明者が行なった実験結
果の一例である。本発明に従った成分範囲にある[C]
0.070%、[Si]3.22%、[Mn]0.07
1%、[S]0.021%、[Sol.Al]0.030
%、[N]0.0071%を含有する鋳片を250mm厚
に連続鋳造し、ガス燃焼炉で1100℃×3h加熱した
後、スラブ長手方向中央部で温度制御し12℃/hで昇
温し、1380〜1385℃×30分のスラブ加熱した
後熱延し、板厚2.40mmの熱延板を作成した。そし
て、熱延頭部、中央部、尾部よりサンプルを採取して実
験を行った。熱延板焼鈍は1000℃×2分均熱し、そ
の後1000℃から400℃までの冷却速度を種々変更
した。その後、0.30mmに冷間圧延し、脱炭・1次再
結晶焼鈍を行い、最終仕上焼鈍そして絶縁コーティング
を施した。
FIGS. 1 and 2 show examples of the results of experiments conducted by the present inventors. [C] in the component range according to the invention
0.070%, [Si] 3.22%, [Mn] 0.07
1%, [S] 0.021%, [Sol.Al] 0.030
%, [N] is continuously cast to a thickness of 250 mm to a thickness of 250 mm, heated in a gas-fired furnace at 1100 ° C. × 3 h, then temperature-controlled at the center in the longitudinal direction of the slab, and heated at 12 ° C./h. Then, the slab was heated at 1380 to 1385 ° C. for 30 minutes and then hot-rolled to prepare a hot-rolled sheet having a thickness of 2.40 mm. Then, an experiment was performed by collecting samples from the hot rolled head, the center, and the tail. The hot-rolled sheet annealing was soaked at 1000 ° C. for 2 minutes, and thereafter, the cooling rate from 1000 ° C. to 400 ° C. was variously changed. Thereafter, the steel sheet was cold-rolled to 0.30 mm, decarburized and subjected to primary recrystallization annealing, and then subjected to final finish annealing and insulating coating.

【0009】この時の熱延板焼鈍の熱延頭部、中央部、
尾部の冷却速度とB8 1.88T以上の発生率の関係を
図1に、また、熱延板焼鈍の熱延頭部、中央部、尾部の
冷却速度とB8 が1.88T以上発現した試料の平均の
鉄損W17/50 の関係を図2に示す。熱延頭部、尾部は冷
却速度を中央部よりも遅くするとB8 1.88T以上の
発生率が高くなることが分かる。また、熱延中央部は2
0℃/s、熱延頭部、尾部は10℃/sよりも冷却速度
が遅いと鉄損W17/50 が悪化することが分かる。なお、
熱延板焼鈍の熱延頭部、熱延中央部、熱延尾部とは、熱
延で熱延頭部、熱延中央部、熱延尾部で圧延されたコイ
ルの部位を指す。また、予備冷延有りの場合でも同様の
結果を得られることを確認した。
At this time, the hot rolled head, central portion,
The relationship between the tail cooling rate and B 8 1.88T or more incidence of Figure 1, and hot rolling head of hot-rolled sheet annealing, the central portion, the cooling rate and B 8 tail has been expressed above 1.88T FIG. 2 shows the relationship between the average iron loss W 17/50 of the sample. Hot rolling the head, the tail is seen that when the cooling rate is slower than the central portion B 8 1.88T or more occurrence rate increases. The central part of the hot rolling is 2
It can be seen that when the cooling rate of the hot rolled head and tail at 0 ° C./s is lower than 10 ° C./s , the iron loss W 17/50 deteriorates. In addition,
The hot-rolled head, hot-rolled central portion, and hot-rolled tail portion of the hot-rolled sheet annealing refer to portions of the coil rolled at the hot-rolled head, hot-rolled central portion, and hot-rolled tail portion in hot rolling. Also, it was confirmed that similar results were obtained even in the presence of preliminary cold rolling.

【0010】次に本発明の諸条件および限定する理由を
説明する。Cは、下限0.015%未満であれば2次再
結晶が不安定となり、上限の0.100%は、これより
Cが多くなると脱炭所要時間が長くなり経済的に不利と
なるために限定した。Siは、下限2%未満では良好な
鉄損が得られず、上限4%を越えると冷延性が著しく劣
化する。
Next, various conditions of the present invention and reasons for limiting the conditions will be described. If the lower limit of C is less than 0.015%, the secondary recrystallization becomes unstable, and the upper limit of 0.100% is that if C is more than this, the time required for decarburization becomes longer, which is economically disadvantageous. Limited. If the lower limit of Si is less than 2%, good iron loss cannot be obtained, and if the upper limit of 4% is exceeded, the cold rolling property is significantly deteriorated.

【0011】Mnは、下限0.03%未満であれば熱間
脆化を起こし、上限0.12%を越えるとかえって磁気
特性を劣化させる。S,Seは、MnS,MnSeを形
成するために必要な元素で、これらの1種または2種の
合計が下限0.005%未満ではMnS,MnSeの絶
対量が不足し、上限0.050%を越えると熱間割れを
生じ、また、最終仕上焼鈍での純化が困難となる。
Mn causes hot embrittlement when the lower limit is less than 0.03%, and degrades magnetic properties when the upper limit exceeds 0.12%. S and Se are elements necessary for forming MnS and MnSe. If the total of one or two of them is less than the lower limit of 0.005%, the absolute amounts of MnS and MnSe are insufficient, and the upper limit is 0.050%. If the temperature exceeds the limit, hot cracking will occur, and it will be difficult to purify the final finish annealing.

【0012】Sol.Alは、AlNを形成するために必要
な元素で、下限0.010%未満ではAlNの絶対量が
不足し、上限0.065%を越えるとAlNの適当な分
散状態が得られない。Nは、AlNを形成するために必
要な元素で、下限0.0040%未満ではAlNの絶対
量が不足し、上限0.0100%を越えるとAlNの適
当な分散状態が得られない。
Sol. Al is an element necessary for forming AlN. When the lower limit is less than 0.010%, the absolute amount of AlN is insufficient, and when the upper limit is more than 0.065%, an appropriate dispersion state of AlN is obtained. I can't. N is an element necessary for forming AlN. If the lower limit is less than 0.0040%, the absolute amount of AlN is insufficient, and if the upper limit is more than 0.0100%, an appropriate dispersion state of AlN cannot be obtained.

【0013】Sb,Sn,Cu,Mo,Ge,B,T
e,As、およびBiは粒界に偏析させ、2次再結晶を
安定化させるが、各々の元素量が下限0.003%未満
では偏析量が不足し、上限0.3%は経済的理由と脱炭
性の悪化によるものである。添加する元素は1種でもよ
いし、2種以上添加してもよい。
Sb, Sn, Cu, Mo, Ge, B, T
e, As, and Bi segregate at the grain boundaries to stabilize the secondary recrystallization, but if the amount of each element is less than the lower limit of 0.003%, the amount of segregation will be insufficient, and the upper limit of 0.3% will be economical. This is due to the deterioration of decarburization. One type of element may be added, or two or more types may be added.

【0014】1200℃以上の高温域のスラブ加熱は誘
導加熱炉を用い、5℃/min以上の昇温速度で行う。5℃
/minよりも昇温速度が遅いとスラブの異常粒成長による
線混と呼ばれる磁性不良が発生する。スラブ加熱は13
20℃〜1490℃で行う。1320℃より温度が低い
とMnS,AlNなどのインヒビターの固溶の不十分に
よる磁性不良を起こし、1490℃より高いとスラブが
溶融する。
The slab is heated in a high temperature range of 1200 ° C. or more by using an induction heating furnace at a rate of 5 ° C./min or more. 5 ℃
If the rate of temperature rise is lower than / min, a magnetic defect called linear mixing due to abnormal grain growth of the slab will occur. Slab heating is 13
Perform at 20 ° C to 1490 ° C. If the temperature is lower than 1320 ° C., poor magnetic properties occur due to insufficient solid solution of inhibitors such as MnS and AlN, and if it is higher than 1490 ° C., the slab melts.

【0015】1200℃以上の高温域のスラブ加熱の前
に、50%以下の圧下率で熱間変形を加えてもよく、こ
のことは、スラブの柱状晶を破壊し、鉄損の改善効果を
有する。圧下率の上限を50%としたのは、効果が飽和
するためである。
Before the slab is heated in a high temperature range of 1200 ° C. or more, hot deformation may be applied at a rolling reduction of 50% or less, which breaks columnar crystals of the slab and improves the effect of improving iron loss. Have. The reason why the upper limit of the rolling reduction is set to 50% is that the effect is saturated.

【0016】最終強冷延前の焼鈍は800〜1200℃
で保持する。これにより、AlNの一部を析出させ、析
出量、サイズ、分布密度を調整する。800℃より低い
場合や1200℃より高い場合には良好な磁気特性が得
られない。この保持における温度サイクルは、特開昭5
7−198214号公報に提案されているように、前半
と後半の温度を異ならせる温度サイクルも勿論採用でき
る。
The annealing before the final strong cold rolling is 800 to 1200 ° C.
Hold with. Thereby, a part of AlN is precipitated, and the amount of deposition, size, and distribution density are adjusted. If the temperature is lower than 800 ° C. or higher than 1200 ° C., good magnetic properties cannot be obtained. The temperature cycle in this holding is described in
As proposed in Japanese Patent Application Laid-Open No. 7-198214, a temperature cycle in which the first half temperature and the second half temperature are different can be employed.

【0017】800〜1200℃の温度から400℃ま
での最終強冷延前の焼鈍の熱延中央部で圧延されたコイ
ルの部位の冷却速度は20〜120℃/sとする。この
冷却中にAlNの一部を析出させ、析出量、サイズ、分
布密度を調整する。図1に示すように冷却速度が120
℃/sより速い場合にはB8 1.88T以上の発生率が
低くなり、図2に示すように冷却速度が20℃/sより
遅い場合には良好な磁気特性を得られない。なお、最終
強冷延前の焼鈍の熱延頭部、熱延中央部、熱延尾部と
は、熱延で熱延頭部、熱延中央部、熱延尾部で圧延され
たコイルの部位を指す。
[0017] The cooling rate of the portion of the coil rolled at the center of the hot-rolled part of the annealing before the final strong cold rolling from a temperature of 800 to 1200 ° C to 400 ° C is 20 to 120 ° C / s. During this cooling, a part of AlN is precipitated, and the amount, size and distribution density of the deposited AlN are adjusted. As shown in FIG.
° C. / If faster than s will lower B 8 1.88T or more incidence can not be obtained excellent magnetic characteristics when the cooling rate as shown in FIG. 2 is slower than 20 ° C. / s. The hot-rolled head, hot-rolled central portion, and hot-rolled tail of the annealing before the final strong cold rolling are the portions of the coil rolled at the hot-rolled head, hot-rolled central portion, and hot-rolled tail in hot rolling. Point.

【0018】800〜1200℃の温度から400℃ま
での最終強冷延前の焼鈍の熱延頭部、熱延尾部で圧延さ
れたコイルの部位の冷却速度は10℃/s以上でかつ熱
延中央部よりも遅くする。熱延頭部、尾部とはコイルの
最頭部、最尾部から長手方向にa2 /b(a:誘導加熱
時のスラブ厚、b:最終強冷延前焼鈍時の板厚)の範囲
の部分である。図1に示すように、熱延頭部、尾部の冷
却速度を熱延中央部よりも遅くするとB8 1.88T以
上の発生率が高くなり、製品の歩留が向上する。好まし
くは、10℃/s以上遅くする。図2に示すように10
℃/sより遅いと良好な磁気特性を得られない。熱延頭
部、尾部の冷却速度を熱延中央部よりも遅くする方法と
しては、冷却媒体の流量を鋼板長手方向で制御する手段
が採用できる。
[0018] The cooling rate of the portion of the coil rolled at the hot rolling head and the tail of the hot rolling before the final strong cold rolling from a temperature of 800 to 1200 ° C to 400 ° C is 10 ° C / s or more and the hot rolling is performed. Slower than the center. The hot-rolled head and tail are in the range of a 2 / b (a: slab thickness at the time of induction heating, b: plate thickness at the time of annealing before final strong cold rolling) in the longitudinal direction from the head and the tail of the coil. Part. As shown in FIG. 1, the hot rolling head, when the cooling rate of the tail slower than hot rolled center portion B 8 1.88T or more incidence increases, improved yield of product. Preferably, it is slowed down by 10 ° C./s or more. As shown in FIG.
If the temperature is lower than ° C / s, good magnetic properties cannot be obtained. As a method of making the cooling speed of the hot rolled head and tail lower than that of the hot rolled central portion, means for controlling the flow rate of the cooling medium in the longitudinal direction of the steel sheet can be adopted.

【0019】[0019]

【実施例】【Example】

[実施例1][C]0.070〜0.074%、[S
i]3.35〜3.38%、[Mn]0.064〜0.
066%、[S]0.022〜0.024%、[Sol.A
l]0.033〜0.034%、[N]0.0072〜
0.0079%、[Sn]0.12%、[Cu]0.0
6%を含有する鋳片を250mm厚に連続鋳造し、105
0℃×3hガス加熱炉でスラブ加熱し、その後、誘導加
熱炉でスラブ長手方向センター部で温度制御し、10℃
/minの速度で昇温し、1380℃で40分スラブ加熱
し、2.40mm厚に熱延した。そして、1.65mmに予
備冷延し、析出焼鈍は1100℃×10秒保持し、その
後950℃で120秒保持し冷却した。この時、400
℃までの熱延中央部で圧延されたコイルの部位の冷却速
度は100℃/sとし、熱延頭部、尾部で圧延されたコ
イルの部位は冷却水の流量を変更し種々冷却速度を変更
した。その後0.22mmに最終強冷延とし製品板厚と
し、脱炭・1次再結晶焼鈍を行ない、次いで焼鈍分離剤
を塗布した後、最終仕上焼鈍を行ない、コーティング液
を塗布した。
[Example 1] [C] 0.070 to 0.074%, [S
i] 3.35-3.38%, [Mn] 0.064-0.
066%, [S] 0.022-0.024%, [Sol.
l] 0.033-0.034%, [N] 0.0072-
0.0079%, [Sn] 0.12%, [Cu] 0.0
A slab containing 6% is continuously cast to a thickness of 250 mm,
The slab was heated in a gas heating furnace at 0 ° C. × 3 h, and then the temperature was controlled at the center of the slab in the longitudinal direction with an induction heating furnace.
The temperature was raised at a rate of 1 / min, the slab was heated at 1380 ° C. for 40 minutes, and hot-rolled to a thickness of 2.40 mm. Then, it was pre-cold rolled to 1.65 mm, and the precipitation annealing was kept at 1100 ° C. × 10 seconds, and then kept at 950 ° C. for 120 seconds and cooled. At this time, 400
The cooling rate of the part of the coil rolled at the center of hot rolling to 100 ° C is 100 ° C / s, and the part of the coil rolled at the head and tail of the hot rolling changes the cooling water flow rate and changes various cooling rates. did. Thereafter, the product was subjected to final strong cold rolling to 0.22 mm to obtain a product plate thickness, decarburization and primary recrystallization annealing were performed, and then an annealing separator was applied, followed by final finish annealing and application of a coating liquid.

【0020】製品として合格するのは、B8 が1.88
T以上発現したものをいう。熱延頭部、尾部で圧延され
た部位とはコイルの最頭部、最尾部から37.8mの範
囲の部分である。熱延中央部の製品の歩留は100%で
あり、平均の鉄損W17/50 は0.782W/kgである。
この時の析出焼鈍の熱延頭部、尾部の冷却速度、製品歩
留とB8 が1.88T以上発現した試料の平均の鉄損W
17/50 を表1に示す。これより、熱延頭部、尾部は熱延
中央部よりも冷却速度を遅くすると製品の歩留が高くな
り、10℃/sより冷却速度が遅い場合は鉄損が悪化す
ることが分かる。
[0020] pass as a product, B 8 is 1.88
It means those expressed T or more. The portions rolled at the hot-rolled head and tail are the portions at the top of the coil and 37.8 m from the tail. The yield of the product in the central part of the hot rolling is 100%, and the average iron loss W 17/50 is 0.782 W / kg.
Hot rolling head of precipitation annealing at this time, the cooling rate of the tail, the iron loss W of the average of the sample product yield and B 8 is expressed above 1.88T
17/50 is shown in Table 1. From this, it can be seen that when the cooling speed of the hot-rolled head and tail is lower than that of the central portion of the hot-rolling, the yield of the product increases, and when the cooling speed is lower than 10 ° C./s, the iron loss worsens.

【0021】[0021]

【表1】 [Table 1]

【0022】[実施例2][C]0.079〜0.08
2%、[Si]3.39〜3.42%、[Mn]0.0
70〜0.071%、[S]0.010%、[Se]
0.018〜0.019%、[Sol.Al]0.022〜
0.023%、[N]0.0090〜0.0095%、
[Sb]0.017%、[Mo]0.012%を含有す
る鋳片を250mm厚に連続鋳造し、1150℃×3hガ
ス加熱炉でスラブ加熱し、その後一部の鋳片は12%の
圧下率で220mm厚に熱間圧延し、誘導加熱炉でスラブ
長手方向センター部で温度制御し、種々の速度で昇温
し、1380℃で40分スラブ加熱し、2.60mm厚に
熱延した。そして、1130℃×2分の均熱後急冷する
という熱延板焼鈍をし、1.35mmに予備冷延し、析出
焼鈍は1090℃×90秒保持し、冷却した。この時、
400℃までの冷却速度は熱延中央部、熱延頭部、熱延
尾部で圧延されたコイルの部位で冷却水の流量を変更し
種々冷却速度を変更した。この後、0.17mmに最終強
冷延し、脱炭・1次再結晶焼鈍を行ない、次いで焼鈍分
離剤を塗布した後、最終仕上焼鈍を行ない、コーティン
グ液を塗布した。
[Example 2] [C] 0.079 to 0.08
2%, [Si] 3.39 to 3.42%, [Mn] 0.0
70 to 0.071%, [S] 0.010%, [Se]
0.018 to 0.019%, [Sol. Al] 0.022 to
0.023%, [N] 0.0090-0.0095%,
A slab containing 0.017% of [Sb] and 0.012% of [Mo] is continuously cast to a thickness of 250 mm, and is slab-heated in a gas heating furnace at 1150 ° C. for 3 hours. It was hot-rolled to a thickness of 220 mm at a reduction ratio, temperature-controlled at the center in the longitudinal direction of the slab in an induction heating furnace, heated at various speeds, heated at 1380 ° C. for 40 minutes, and hot-rolled to a thickness of 2.60 mm. . Then, the hot-rolled sheet was annealed by soaking at 1130 ° C. × 2 minutes and then quenched, pre-rolled to 1.35 mm, and kept at 1090 ° C. × 90 seconds for precipitation annealing and cooled. At this time,
The cooling rate up to 400 ° C. was varied by changing the flow rate of the cooling water at the portion of the coil rolled at the hot rolled center, hot rolled head, and hot rolled tail. Thereafter, the steel sheet was subjected to final strong cold rolling to 0.17 mm, subjected to decarburization / primary recrystallization annealing, and then applied with an annealing separator, followed by final finish annealing and application of a coating liquid.

【0023】製品として合格するのは、B8 が1.88
T以上発現したものをいう。熱延頭部、尾部とは誘導加
熱前の熱間圧延なしの場合はコイルの最頭部、最尾部か
ら42.3mの範囲の部分であり、誘導加熱前に12%
の熱間圧延で220mm厚としたものはコイルの最頭部、
最尾部から35.9mの範囲の部分である。この時のス
ラブの誘導加熱炉の昇温速度、熱延中央部、熱延頭部、
熱延尾部の析出焼鈍の冷却速度、製品歩留、B8 が1.
88T以上発現したもの平均の鉄損W17/50 を表2に示
す。これより、スラブ加熱の昇温速度が5℃/s以上の
場合に良好な鉄損を得られ、熱延中央部よりも熱延頭
部、尾部の析出焼鈍の冷却速度を遅くすると、熱延頭
部、尾部の製品歩留が高くなることが分かる。また、誘
導加熱前に50%以下の熱間変形を加えると鉄損が改善
されることが分かる。
[0023] pass as a product, B 8 is 1.88
It means those expressed T or more. The hot-rolled head and tail are portions of the top of the coil and a range of 42.3 m from the tail when no hot rolling is performed before induction heating, and 12% before induction heating.
The one with a thickness of 220 mm by hot rolling is the top of the coil,
It is a part in the range of 35.9 m from the tail. At this time, the heating rate of the induction heating furnace of the slab, the central part of the hot rolling, the head of the hot rolling,
The cooling rate of the precipitation annealing of the hot-rolled tail, the product yield, and B 8 are 1.
Table 2 shows the average iron loss W 17/50 of those expressed at 88T or more. As a result, good iron loss can be obtained when the heating rate of slab heating is 5 ° C./s or more, and when the cooling rate of precipitation annealing at the head and tail of the hot rolling is made slower than that at the center of the hot rolling, It can be seen that the product yield of the head and tail is high. In addition, it can be seen that iron loss is improved by applying hot deformation of 50% or less before induction heating.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】以上ごとく本発明によれば、工業的にコ
イル長手方向に安定して磁束密度の高い製品を製造で
き、その工業的効果は非常に大きい。
As described above, according to the present invention, a product having a high magnetic flux density can be manufactured industrially stably in the longitudinal direction of the coil, and the industrial effect is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱延中央部、熱延頭部、熱延尾部の最終強冷延
前の焼鈍の冷却速度とB8 1.88T以上の発生率の関
係図である。
[1] hot rolling the central portion, hot rolling head is a relationship diagram of the cooling rate and B 8 1.88T or more occurrences of the final strong cold rolling prior to annealing Netsunobeo portion.

【図2】熱延中央部、熱延頭部、熱延尾部の最終強冷延
前の焼鈍の冷却速度とB8 が1.88T以上の発生した
試料の平均のW17/50 の関係図である。
FIG. 2 is a graph showing the relationship between the cooling rate of the central hot rolling, the hot rolling head, and the hot rolling tail before the final strong cold rolling and the average W 17/50 of the sample in which B 8 is 1.88 T or more. It is.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西脇 健一 兵庫県姫路市広畑区富士町1番地 新日 本製鐵株式会社 広畑製鐵所内 (72)発明者 真弓 康弘 兵庫県姫路市広畑区富士町1番地 新日 本製鐵株式会社 広畑製鐵所内 (56)参考文献 特開 昭58−164725(JP,A) 特開 平1−230720(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C22C 38/00 303 C22C 38/06 C22C 38/60 H01F 1/16 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kenichi Nishiwaki 1 Fujimachi, Hirohata-ku, Himeji-shi, Hyogo Nippon Steel Corporation Hirohata Works (72) Inventor Yasuhiro Mayumi Fujimachi, Hirohata-ku, Himeji-shi, Hyogo No. 1 Nippon Steel Corporation Hirohata Works (56) References JP-A-58-164725 (JP, A) JP-A-1-230720 (JP, A) (58) Fields investigated (Int. . 7, DB name) C21D 8/12 C22C 38/00 303 C22C 38/06 C22C 38/60 H01F 1/16

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.015〜0.100%、 Si:2.0〜4.0%、 Mn:0.03〜0.12%、 Sol.Al:0.010〜0.065%、 N :0.0040〜0.0100%、 SおよびSeのうちから選んだ1種または2種合計:
0.005〜0.050%、残部は実質的にFeの組成
になる連続鋳造スラブを、1320〜1490℃にスラ
ブ加熱したのち熱延し、この熱延板を焼鈍し最終強冷延
する工程、または熱延板を予備冷延し、析出焼鈍し最終
強冷延する工程、または熱延板を焼鈍し、予備冷延し、
析出焼鈍し最終強冷延する工程の何れかの工程の後、最
終板厚とし、脱炭・1次再結晶焼鈍、最終仕上焼鈍によ
って高磁束密度一方向性電磁鋼板を製造する方法におい
て、1200℃以上の高温域のスラブ加熱を誘導加熱炉
を用いて、5℃/min以上の昇温速度で行い、最終強冷延
前の焼鈍を800〜1200℃で保持した後、800〜
1200℃の温度から400℃までの冷却を、熱延中央
部で圧延されたコイルの部位は冷却速度20〜120℃
/sで行い、熱延頭部、熱延尾部で圧延されたコイルの
部位は冷却を10℃/s以上でかつ熱延中央部よりも遅
い冷却速度で行うことを特徴とするコイル長手方向の磁
気特性のばらつきの少ない高磁束密度一方向性電磁鋼板
の製造方法。
C .: 0.015 to 0.100%, Si: 2.0 to 4.0%, Mn: 0.03 to 0.12%, Sol.Al: 0.010% by weight. 0.065%, N: 0.0040 to 0.0100%, one or two selected from S and Se:
A step of continuously rolling a continuously cast slab having a composition of 0.005 to 0.050%, with the balance being substantially Fe, after slab heating to 1320 to 1490 ° C., hot rolling, annealing this hot rolled sheet and final strong cold rolling. , Or pre-cold hot-rolled sheet, precipitation annealing and final strong cold-rolling, or annealed hot-rolled sheet, pre-cold rolled,
After any of the steps of precipitation annealing and final strong cold rolling, the final sheet thickness is determined, and a method for producing a high magnetic flux density unidirectional magnetic steel sheet by decarburization / primary recrystallization annealing and final finish annealing is used. Slab heating in a high temperature range of at least 5 ° C. using an induction heating furnace at a rate of 5 ° C./min or more, and holding the annealing before final strong cold rolling at 800 to 1200 ° C .;
Cooling from a temperature of 1200 ° C to 400 ° C, the part of the coil rolled at the center of the hot rolling is cooled at a cooling rate of 20 to 120 ° C.
/ S, and the portion of the coil rolled at the hot rolled head and the hot rolled tail is cooled at 10 ° C./s or more and at a slower cooling rate than the central portion of the hot rolled roll. A method for producing a high magnetic flux density unidirectional electrical steel sheet with less variation in magnetic properties.
【請求項2】 連続鋳造スラブがSb,Sn,Cu,M
o,Ge,B,Te,As、およびBiから選ばれる1
種または2種以上を各々の元素量で0.003〜0.3
%を含有することを特徴とする請求項1に記載のコイル
長手方向の磁気特性のばらつきの少ない高磁束密度一方
向性電磁鋼板の製造方法。
2. The continuous cast slab is made of Sb, Sn, Cu, M
1 selected from o, Ge, B, Te, As, and Bi
Species or two or more kinds of each element amount 0.003 to 0.3
The method for producing a high magnetic flux density unidirectional magnetic steel sheet according to claim 1, wherein the magnetic properties in the longitudinal direction of the coil are small.
【請求項3】 1200℃以上の高温域のスラブ加熱の
前に、50%以下の圧下率で熱間変形を加えることを特
徴とする請求項1または2に記載したコイル長手方向の
磁気特性のばらつきの少ない高磁束密度一方向性電磁鋼
板の製造方法。
3. The coil according to claim 1, wherein a hot deformation is applied at a rolling reduction of 50% or less before heating the slab in a high temperature region of 1200 ° C. or more. A method for producing high-flux-density unidirectional electrical steel sheets with little variation.
JP30176095A 1995-11-20 1995-11-20 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet Expired - Lifetime JP3338257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30176095A JP3338257B2 (en) 1995-11-20 1995-11-20 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30176095A JP3338257B2 (en) 1995-11-20 1995-11-20 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH09143561A JPH09143561A (en) 1997-06-03
JP3338257B2 true JP3338257B2 (en) 2002-10-28

Family

ID=17900846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30176095A Expired - Lifetime JP3338257B2 (en) 1995-11-20 1995-11-20 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3338257B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113832322B (en) * 2021-09-26 2023-04-28 武汉钢铁有限公司 High-efficiency decarburization annealing process for high-magnetic induction oriented silicon steel

Also Published As

Publication number Publication date
JPH09143561A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
JP3644130B2 (en) Method for producing grain-oriented electrical steel sheet
JPH10121213A (en) Grain oriented silicon steel sheet excellent in iron loss characteristic in low magnetic field as compared with high magnetic field, and its production
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3531996B2 (en) Method of manufacturing unidirectional electromagnetic steel strip
US5667598A (en) Production method for grain oriented silicion steel sheet having excellent magnetic characteristics
JP3338257B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3338263B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP2680519B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP3179986B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3369408B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3369407B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
WO2023063426A1 (en) Aging treatment method and oriented electromagnetic steel sheet manufacturing method
JP3451652B2 (en) Method for producing unidirectional silicon steel sheet
CN118056024A (en) Aging treatment method and method for producing grain-oriented electromagnetic steel sheet
JPH02133525A (en) Production of thin-gaged grain oriented electrical steel sheet having excellent magnetic characteristics

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term