JPH09143561A - Production of grain oriented silicon steel sheet with high magnetic flux density - Google Patents

Production of grain oriented silicon steel sheet with high magnetic flux density

Info

Publication number
JPH09143561A
JPH09143561A JP7301760A JP30176095A JPH09143561A JP H09143561 A JPH09143561 A JP H09143561A JP 7301760 A JP7301760 A JP 7301760A JP 30176095 A JP30176095 A JP 30176095A JP H09143561 A JPH09143561 A JP H09143561A
Authority
JP
Japan
Prior art keywords
hot
annealing
rolled
slab
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7301760A
Other languages
Japanese (ja)
Other versions
JP3338257B2 (en
Inventor
Yosuke Kurosaki
洋介 黒崎
Takahide Shimazu
高英 島津
Kazutaka Tone
和隆 東根
Kenichi Nishiwaki
健一 西脇
Yasuhiro Mayumi
康弘 真弓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30176095A priority Critical patent/JP3338257B2/en
Publication of JPH09143561A publication Critical patent/JPH09143561A/en
Application granted granted Critical
Publication of JP3338257B2 publication Critical patent/JP3338257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively produce a grain oriented silicon steel sheet with high magnetic flux density, stable in a longitudinal direction, by subjecting a continuously cast slab, containing specific amounts of C, Si, Mn, Al, N, S, and Se, to specific slab heating and to specific annealing prior to final heavy cold rolling. SOLUTION: A continuously cast slab, which has a composition consisting of, by weight, 0.015-0.100% C, 2.0-4.0% Si, 0.03-0.12% Mn, 0.010-0.065% Sol.Al, 0.0040-0.0100% N, 0.005-0.050% S or Se, and the balance essentially Fe and further containing, if necessary, 0.003-0.3% of Sn, Cu, Mo, Ge, B, Te, As, and Bi, is subjected to slab heating to 1320-1490 deg.C and hot-rolled. At this time, after 1200 deg.C is reached, temp. is raised at a rate of >=5 deg.C/min in an induction heating furnace. The resultant hot rolled plate is annealed and then subjected to final heavy cold rolling. At the time of this annealing, the hot rolled plate is held at 800-1200 deg.C and cooled down to 400 deg.C. At this time, the central part of coil is cooled at a rate of 20 to 120 deg.C/s, and the head and the tail are cooled at a rate not lower than 10 deg.C/s and lower than that for the central part. After the resultant cold rolled sheet is formed to the final sheet thickness, decarburizing and primary recrystallization annealing and final annealing are performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は変圧器等の鉄心に使
用される高磁束密度一方向性電磁鋼板の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high magnetic flux density unidirectional magnetic steel sheet used for an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は主に変圧器や発電機
の鉄心材料に使用されるが、省エネルギー化が要求され
ている昨今、更に磁束密度が高く、鉄損の少ない鋼板が
市場から要求されている。磁束密度の高い一方向性電磁
鋼板を得るには、{110}<001>方位いわゆるゴ
ス方位に高度に集積した2次再結晶組織を得ることが必
要である。2次再結晶には、インヒビターと1次再結晶
集合組織が大きく影響することが知られている。インヒ
ビターについては、仕上焼鈍を行うまでに鋼中に100
〜1000Å程度の析出分散相を均一微細に存在させる
ことが必要で、AlN,MnS,MnSeなどが一般的
に知られている。これらは、連続鋳造において粗大に析
出してしまうので、スラブを1250℃以上の高温に加
熱し、十分溶体化させた後、熱延でMnS,MnSeを
均一微細に析出させ、熱延板焼鈍、析出焼鈍でAlNを
均一微細に析出させ、更には、熱延から脱炭・1次再結
晶焼鈍までに結晶粒界に粒界偏析元素のSb,Sn,C
u,Mo,Ge,B,Te,As,Biなどを偏析させ
ることが有効である。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and generators, but with the recent demand for energy saving, steel sheets with higher magnetic flux density and less iron loss are available from the market. Is required. In order to obtain a grain-oriented electrical steel sheet having a high magnetic flux density, it is necessary to obtain a secondary recrystallized structure highly integrated in the {110} <001> orientation, the so-called Goss orientation. It is known that the inhibitor and the primary recrystallization texture have a great influence on the secondary recrystallization. As for inhibitors, 100 is added to the steel before finish annealing.
It is necessary to make the precipitation-dispersed phase of about 1000 Å evenly and finely present, and AlN, MnS, MnSe, etc. are generally known. Since these are coarsely precipitated in continuous casting, the slab is heated to a high temperature of 1250 ° C. or higher and sufficiently solutionized, and then MnS and MnSe are uniformly and finely precipitated by hot rolling, and hot-rolled sheet annealing, AlN is uniformly and finely precipitated by precipitation annealing, and further, Sb, Sn, C of grain boundary segregation elements are present in the crystal grain boundaries from hot rolling to decarburization / primary recrystallization annealing.
It is effective to segregate u, Mo, Ge, B, Te, As, Bi and the like.

【0003】従来、スラブ加熱はガス加熱炉で行われる
のが一般的であった。しかし、この方法では長時間のス
ラブ加熱が必要なため、スラブ結晶粒の異常粒成長に起
因する線混と呼ばれる磁気特性不良を起こす場合があっ
た。これを解決するため、特公昭56−18654号公
報に記載されているようにスラブを誘導加熱を利用し急
速加熱する方法が提案されている。しかし、誘導加熱に
よりスラブ加熱を行った場合には、特開平3−3142
2号公報に開示されているようにスラブの端部(熱延で
最初に圧延される端部を熱延頭部、熱延で最後に圧延さ
れるもう一方の端部を熱延尾部とする。また、後述する
最終強冷延前の焼鈍の熱延頭部、熱延中央部、熱延尾部
とは、熱延において熱延頭部、熱延中央部、熱延尾部と
して圧延されたコイルの部位を指す)が熱放散によって
所定の温度まで上昇せず、端部に磁性不良を起こす場合
があった。特開平3−31422号公報には、スラブ端
部の近傍に導電性の発熱保温板を設置し、端部の磁性不
良を改善する方法が提案されているが、発熱保温板が高
温にさらされるため耐久性に問題があり、頻繁に発熱保
温板を交換しなければならないという問題があり、コス
トの上昇、設備管理の負担が大きく、また、発熱保温板
が劣化消耗した場合に磁性不良を起こしていた。
Conventionally, slab heating is generally performed in a gas heating furnace. However, in this method, since slab heating is required for a long time, there is a case where a magnetic characteristic defect called line mixing due to abnormal grain growth of slab crystal grains occurs. In order to solve this, a method of rapidly heating a slab by using induction heating has been proposed as described in Japanese Patent Publication No. 56-18654. However, when the slab heating is performed by induction heating, Japanese Patent Laid-Open No. 3-3142
As disclosed in Japanese Patent Laid-Open No. 2 (1994), the end of the slab (the end rolled first in hot rolling is the hot rolling head, and the other end rolled last in hot rolling is the hot rolling tail). The hot-rolled head, the hot-rolled central portion, and the hot-rolled tail portion of the annealing before the final strong cold rolling, which will be described later, are the coil rolled as the hot-rolled head portion, the hot-rolled central portion, and the hot-rolled tail portion in hot rolling. In some cases, the temperature does not rise to a predetermined temperature due to heat dissipation, and magnetic defects may occur at the ends. Japanese Unexamined Patent Publication No. 3-31422 proposes a method of installing a conductive heat insulation plate near the end of the slab to improve the magnetic defect of the end, but the heat insulation plate is exposed to high temperature. Therefore, there is a problem in durability, and there is a problem that the heat insulation plate must be replaced frequently, which increases costs and burdens equipment management.In addition, when the heat insulation plate deteriorates and wears out, it causes magnetic defects. Was there.

【0004】ところで、最終強冷延前の焼鈍における冷
却はAlNの析出に大きな影響を及ぼし、2次再結晶、
磁気特性に大きく影響することが知られている。特公昭
46−23820号公報には、750〜1200℃の温
度で焼鈍した後750〜950℃の温度領域から400
℃までを2秒〜200秒間で急冷する方法が提案されて
いる。特公昭62−56923号公報には、900〜1
200℃に保持した後、大気放冷より速く、30℃水中
冷却より遅い冷却速度で室温まで冷却する方法が提案さ
れている。特開平2−138419号公報には、800
〜1200℃で一次均熱後、一次冷却をし、850〜9
50℃で二次均熱するに際し、一次均熱における100
0℃以上の保持時間を20〜120秒とし、かつ二次冷
却時850〜950℃の温度から500℃までの冷却速
度を20〜100℃/秒とする方法が提案されている。
また、特公昭62−1458号公報には、ガス加熱でス
ラブ高温加熱した際におこる熱延頭部で圧延された部位
の線混による磁性不良、熱延尾部で圧延された部位の細
粒による磁性不良を最終強冷延前の焼鈍の冷却を熱延中
央部に対し熱延頭部は急冷、熱延尾部は緩冷することに
より改善する方法が提案されている。
By the way, the cooling in the annealing before the final strong cold rolling has a great influence on the precipitation of AlN, and the secondary recrystallization,
It is known that magnetic properties are greatly affected. Japanese Examined Patent Publication No. 46-23820 discloses that after annealing at a temperature of 750 to 1200 ° C., a temperature range of 750 to 950 ° C.
A method of rapidly cooling the temperature to 2 ° C to 200 seconds has been proposed. Japanese Patent Publication No. 62-56923 discloses 900-1
A method has been proposed in which the temperature is maintained at 200 ° C. and then cooled to room temperature at a cooling rate faster than atmospheric cooling and slower than 30 ° C. underwater cooling. In Japanese Patent Laid-Open No. 2-138419, there is 800
Primary soaking at ~ 1200 ° C followed by primary cooling to 850-9
When soaking at 50 ℃, 100 at the first soaking
A method has been proposed in which the holding time at 0 ° C. or higher is 20 to 120 seconds, and the cooling rate from the temperature of 850 to 950 ° C. to 500 ° C. at the time of secondary cooling is 20 to 100 ° C./second.
Further, Japanese Patent Publication No. 62-1458 discloses a magnetic defect due to wire mixing in a portion rolled by a hot rolling head that occurs when a slab is heated to a high temperature by gas heating, and fine grains in a portion rolled by a hot rolling tail. It has been proposed to improve the magnetic deficiency by cooling the annealing before the final strong cold rolling by quenching the hot rolling head part with respect to the hot rolling central part and slowly cooling the hot rolling tail part.

【0005】[0005]

【発明が解決しようとする課題】前記従来技術の方法で
得られる製品の磁気特性、コイル長手方向の磁気特性の
安定性、コストという点では満足できるものではない。
本発明は、スラブ加熱を誘導加熱炉を用いて加熱した際
に特有に起こる熱延頭部、尾部で圧延された部位の磁性
不良を最終強冷延前の焼鈍における冷却を熱延中央部と
熱延頭部、熱延尾部で異ならせることにより解決し、磁
気特性に優れ、工業的にコイル長手方向に安定した製品
を安価に得られる方法を提案するものである。
The magnetic properties of the products obtained by the above-mentioned prior art methods, the stability of the magnetic properties in the longitudinal direction of the coil, and the cost are not satisfactory.
The present invention is a hot rolling head that occurs peculiarly when slab heating is performed using an induction heating furnace, and a magnetic defect of a portion rolled at the tail is a hot rolling central portion for cooling in annealing before final strong cold rolling. The present invention proposes a method for solving the problem by making the hot-rolled head and the hot-rolled tail different so as to obtain a product which has excellent magnetic properties and is stable industrially in the coil longitudinal direction at low cost.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は以下の
構成を要旨とする。 (1)重量%で、C:0.015〜0.100%、
Si:2.0〜4.0%、Mn:0.03〜0.12
%、 Sol.Al:0.010〜0.065%、N:
0.0040〜0.0100%、SおよびSeのうちか
ら選んだ1種または2種合計:0.005〜0.050
%、残部は実質的にFeの組成になる連続鋳造スラブ
を、1320〜1490℃にスラブ加熱したのち熱延
し、熱延板焼鈍し最終強冷延する工程、または予備冷
延、析出焼鈍し最終強冷延する工程、または熱延板焼
鈍、予備冷延、析出焼鈍し最終強冷延する工程の何れか
の工程の後、最終板厚とし、脱炭・1次再結晶焼鈍、最
終仕上焼鈍によって高磁束密度一方向性電磁鋼板を製造
する方法において、1200℃以上の高温域のスラブ加
熱を誘導加熱炉を用い、5℃/min以上の昇温速度で行
い、最終強冷延前の焼鈍を800〜1200℃で保持し
た後、800〜1200℃の温度から400℃までの冷
却を、熱延中央部で圧延されたコイルの部位は冷却速度
20〜120℃/sで行い、熱延頭部、熱延尾部で圧延
されたコイルの部位は冷却を10℃/s以上でかつ熱延
中央部よりも遅い冷却速度で行うことを特徴とするコイ
ル長手方向の磁気特性のばらつきの少ない高磁束密度一
方向性電磁鋼板の製造方法。および(2)連続鋳造スラ
ブがSb,Sn,Cu,Mo,Ge,B,Te,As、
およびBiから選ばれる1種または2種以上を各々の元
素量で0.003〜0.3%を含有することを特徴とす
る前項(1)に記載のコイル長手方向の磁気特性のばら
つきの少ない高磁束密度一方向性電磁鋼板の製造方法。
また、(3)1200℃以上の高温域のスラブ加熱の前
に、50%以下の圧下率で熱間変形を加えることを特徴
とする前項(1)または(2)に記載したコイル長手方
向の磁気特性のばらつきの少ない高磁束密度一方向性電
磁鋼板の製造方法である。
That is, the present invention has the following structures. (1) C: 0.015 to 0.100% by weight,
Si: 2.0-4.0%, Mn: 0.03-0.12
%, Sol. Al: 0.010-0.065%, N:
0.0040 to 0.0100%, one or two selected from S and Se: 0.005 to 0.050
%, The balance is a continuous cast slab having a substantially Fe composition, heated to slab at 1320 to 1490 ° C., hot-rolled, hot-rolled sheet annealed and finally cold-rolled, or pre-cold-rolled, precipitation annealed. After the final strong cold rolling step, or hot-rolled sheet annealing, preliminary cold rolling, precipitation annealing and final strong cold rolling, the final sheet thickness is obtained, and decarburization / primary recrystallization annealing and final finishing are performed. In the method of producing a high magnetic flux density unidirectional electrical steel sheet by annealing, slab heating in a high temperature region of 1200 ° C or higher is performed at a temperature rising rate of 5 ° C / min or higher using an induction heating furnace, and before the final strong cold rolling. After holding the annealing at 800 to 1200 ° C., cooling from the temperature of 800 to 1200 ° C. to 400 ° C. is performed at the cooling rate of 20 to 120 ° C./s at the portion of the coil rolled in the hot rolling central portion, and the hot rolling is performed. 1 part for cooling the coil part rolled in the head and hot rolled tail A method for producing a high magnetic flux density unidirectional electrical steel sheet with little variation in magnetic properties in the coil longitudinal direction, which is performed at a cooling rate of 0 ° C./s or more and slower than that of a hot rolled central portion. And (2) the continuous cast slab is Sb, Sn, Cu, Mo, Ge, B, Te, As,
1 or 2 or more selected from Bi and Bi in the amount of each element in an amount of 0.003 to 0.3% is included, and there is little variation in magnetic properties in the longitudinal direction of the coil according to the above item (1). Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet.
In addition, (3) before the slab heating in a high temperature range of 1200 ° C. or higher, hot deformation is applied at a rolling reduction of 50% or less, in the coil longitudinal direction described in the above item (1) or (2). This is a method for producing a high magnetic flux density unidirectional electrical steel sheet with little variation in magnetic properties.

【0007】本発明者は、スラブを誘導加熱炉を用いて
加熱した際に、発熱保温板なしにスラブ端部の磁気特性
不良を解消し、磁気特性に優れ、コイル長手方向に安定
した製品を安価に得られる方法を鋭意検討したところ、
最終強冷延前の焼鈍における冷却の速度を熱延中央部よ
り熱延頭部、熱延尾部を遅くすることが非常に有効であ
ることを見出した。
The present inventor eliminates the magnetic characteristic defect at the end of the slab when the slab is heated using an induction heating furnace without a heat insulating plate, has excellent magnetic characteristics and is stable in the longitudinal direction of the coil. After diligently examining the method that can be obtained at low cost,
It was found that it is very effective to make the cooling rate in the annealing before the final strong cold rolling slower in the hot rolling head and hot rolling than in the hot rolling central part.

【0008】図1、図2は、本発明者が行なった実験結
果の一例である。本発明に従った成分範囲にある[C]
0.070%、[Si]3.22%、[Mn]0.07
1%、[S]0.021%、[Sol.Al]0.030
%、[N]0.0071%を含有する鋳片を250mm厚
に連続鋳造し、ガス燃焼炉で1100℃×3h加熱した
後、スラブ長手方向中央部で温度制御し12℃/hで昇
温し、1380〜1385℃×30分のスラブ加熱した
後熱延し、板厚2.40mmの熱延板を作成した。そし
て、熱延頭部、中央部、尾部よりサンプルを採取して実
験を行った。熱延板焼鈍は1000℃×2分均熱し、そ
の後1000℃から400℃までの冷却速度を種々変更
した。その後、0.30mmに冷間圧延し、脱炭・1次再
結晶焼鈍を行い、最終仕上焼鈍そして絶縁コーティング
を施した。
FIG. 1 and FIG. 2 show an example of the results of an experiment conducted by the present inventor. Within the range of ingredients according to the invention [C]
0.070%, [Si] 3.22%, [Mn] 0.07
1%, [S] 0.021%, [Sol.Al] 0.030
%, [N] 0.0071% is continuously cast to a thickness of 250 mm, heated at 1100 ° C. for 3 hours in a gas combustion furnace, and the temperature is controlled at the central portion in the longitudinal direction of the slab to raise the temperature at 12 ° C./h. Then, the slab was heated at 1380 to 1385 ° C. for 30 minutes and then hot-rolled to prepare a hot-rolled plate having a plate thickness of 2.40 mm. Then, samples were taken from the hot rolled head portion, the central portion, and the tail portion to perform the experiment. The hot-rolled sheet annealing was soaked at 1000 ° C for 2 minutes, and thereafter the cooling rate from 1000 ° C to 400 ° C was variously changed. Then, it was cold rolled to 0.30 mm, decarburized and subjected to primary recrystallization annealing, final finish annealing and insulating coating.

【0009】この時の熱延板焼鈍の熱延頭部、中央部、
尾部の冷却速度とB8 1.88T以上の発生率の関係を
図1に、また、熱延板焼鈍の熱延頭部、中央部、尾部の
冷却速度とB8 が1.88T以上発現した試料の平均の
鉄損W17/50 の関係を図2に示す。熱延頭部、尾部は冷
却速度を中央部よりも遅くするとB8 1.88T以上の
発生率が高くなることが分かる。また、熱延中央部は2
0℃/s、熱延頭部、尾部は10℃/sよりも冷却速度
が遅いと鉄損W17/50 が悪化することが分かる。なお、
熱延板焼鈍の熱延頭部、熱延中央部、熱延尾部とは、熱
延で熱延頭部、熱延中央部、熱延尾部で圧延されたコイ
ルの部位を指す。また、予備冷延有りの場合でも同様の
結果を得られることを確認した。
At this time, the hot rolling head portion of the hot rolled sheet annealing, the central portion,
The relationship between the cooling rate of the tail portion and the incidence of B 8 1.88 T or more is shown in FIG. 1, and the cooling rate of the hot rolling head, the central portion and the tail portion of the hot rolled sheet annealing and B 8 of 1.88 T or more were developed. The relationship between the average iron loss W 17/50 of the samples is shown in FIG. It can be seen that when the cooling rate of the hot rolled head and tail is slower than that of the central portion, the rate of occurrence of B 8 1.88T or higher becomes higher. Also, the hot rolled central part is 2
It can be seen that the core loss W 17/50 deteriorates at 0 ° C./s , the hot rolling head and the tail when the cooling rate is slower than 10 ° C./s . In addition,
The hot-rolled head, hot-rolled central portion, and hot-rolled tail portion of hot-rolled sheet annealing refer to the parts of the coil rolled by the hot-rolled head, hot-rolled central portion, and hot-rolled tail portion in hot rolling. It was also confirmed that similar results could be obtained with the preliminary cold rolling.

【0010】次に本発明の諸条件および限定する理由を
説明する。Cは、下限0.015%未満であれば2次再
結晶が不安定となり、上限の0.100%は、これより
Cが多くなると脱炭所要時間が長くなり経済的に不利と
なるために限定した。Siは、下限2%未満では良好な
鉄損が得られず、上限4%を越えると冷延性が著しく劣
化する。
Next, the conditions and the reasons for limiting the present invention will be described. If the lower limit of C is less than 0.015%, the secondary recrystallization becomes unstable, and the upper limit of 0.100% is that if C is more than this, the time required for decarburization becomes longer, which is economically disadvantageous. Limited. If Si is less than the lower limit of 2%, good iron loss cannot be obtained, and if it exceeds the upper limit of 4%, cold ductility is significantly deteriorated.

【0011】Mnは、下限0.03%未満であれば熱間
脆化を起こし、上限0.12%を越えるとかえって磁気
特性を劣化させる。S,Seは、MnS,MnSeを形
成するために必要な元素で、これらの1種または2種の
合計が下限0.005%未満ではMnS,MnSeの絶
対量が不足し、上限0.050%を越えると熱間割れを
生じ、また、最終仕上焼鈍での純化が困難となる。
Mn causes hot embrittlement when the lower limit is less than 0.03%, and degrades magnetic properties when the upper limit exceeds 0.12%. S and Se are elements necessary for forming MnS and MnSe. If the total of one or two of these is less than the lower limit of 0.005%, the absolute amount of MnS and MnSe is insufficient, and the upper limit is 0.050%. If it exceeds the range, hot cracking occurs and it becomes difficult to purify in the final finish annealing.

【0012】Sol.Alは、AlNを形成するために必要
な元素で、下限0.010%未満ではAlNの絶対量が
不足し、上限0.065%を越えるとAlNの適当な分
散状態が得られない。Nは、AlNを形成するために必
要な元素で、下限0.0040%未満ではAlNの絶対
量が不足し、上限0.0100%を越えるとAlNの適
当な分散状態が得られない。
Sol.Al is an element necessary for forming AlN. If the lower limit is less than 0.010%, the absolute amount of AlN is insufficient, and if the upper limit is more than 0.065%, a suitable dispersed state of AlN is obtained. I can't. N is an element necessary for forming AlN, and if the lower limit is less than 0.0040%, the absolute amount of AlN is insufficient, and if it exceeds the upper limit of 0.0100%, a proper dispersed state of AlN cannot be obtained.

【0013】Sb,Sn,Cu,Mo,Ge,B,T
e,As、およびBiは粒界に偏析させ、2次再結晶を
安定化させるが、各々の元素量が下限0.003%未満
では偏析量が不足し、上限0.3%は経済的理由と脱炭
性の悪化によるものである。添加する元素は1種でもよ
いし、2種以上添加してもよい。
Sb, Sn, Cu, Mo, Ge, B, T
e, As, and Bi segregate at the grain boundaries to stabilize the secondary recrystallization, but if the content of each element is less than the lower limit of 0.003%, the segregation amount is insufficient, and the upper limit of 0.3% is economical. And the deterioration of decarburization. The element to be added may be one kind or two or more kinds.

【0014】1200℃以上の高温域のスラブ加熱は誘
導加熱炉を用い、5℃/min以上の昇温速度で行う。5℃
/minよりも昇温速度が遅いとスラブの異常粒成長による
線混と呼ばれる磁性不良が発生する。スラブ加熱は13
20℃〜1490℃で行う。1320℃より温度が低い
とMnS,AlNなどのインヒビターの固溶の不十分に
よる磁性不良を起こし、1490℃より高いとスラブが
溶融する。
The slab heating in the high temperature range of 1200 ° C. or higher is carried out using an induction heating furnace at a temperature rising rate of 5 ° C./min or higher. 5 ℃
If the heating rate is slower than / min, a magnetic defect called line mixing occurs due to abnormal grain growth of the slab. Slab heating is 13
It is carried out at 20 ° C to 1490 ° C. If the temperature is lower than 1320 ° C, magnetic failure occurs due to insufficient solid solution of inhibitors such as MnS and AlN, and if the temperature is higher than 1490 ° C, the slab melts.

【0015】1200℃以上の高温域のスラブ加熱の前
に、50%以下の圧下率で熱間変形を加えてもよく、こ
のことは、スラブの柱状晶を破壊し、鉄損の改善効果を
有する。圧下率の上限を50%としたのは、効果が飽和
するためである。
Prior to slab heating in a high temperature range of 1200 ° C. or higher, hot deformation may be applied at a rolling reduction of 50% or less, which destroys columnar crystals of the slab and improves iron loss. Have. The upper limit of the rolling reduction is set to 50% because the effect is saturated.

【0016】最終強冷延前の焼鈍は800〜1200℃
で保持する。これにより、AlNの一部を析出させ、析
出量、サイズ、分布密度を調整する。800℃より低い
場合や1200℃より高い場合には良好な磁気特性が得
られない。この保持における温度サイクルは、特開昭5
7−198214号公報に提案されているように、前半
と後半の温度を異ならせる温度サイクルも勿論採用でき
る。
Annealing before the final strong cold rolling is 800 to 1200 ° C.
Hold with. Thereby, a part of AlN is precipitated, and the amount of precipitation, size, and distribution density are adjusted. When the temperature is lower than 800 ° C or higher than 1200 ° C, good magnetic properties cannot be obtained. The temperature cycle for this holding is disclosed in Japanese Patent Laid-Open No.
As proposed in Japanese Patent Publication No. 7-198214, it is of course possible to employ a temperature cycle in which the temperatures of the first half and the second half are different.

【0017】800〜1200℃の温度から400℃ま
での最終強冷延前の焼鈍の熱延中央部で圧延されたコイ
ルの部位の冷却速度は20〜120℃/sとする。この
冷却中にAlNの一部を析出させ、析出量、サイズ、分
布密度を調整する。図1に示すように冷却速度が120
℃/sより速い場合にはB8 1.88T以上の発生率が
低くなり、図2に示すように冷却速度が20℃/sより
遅い場合には良好な磁気特性を得られない。なお、最終
強冷延前の焼鈍の熱延頭部、熱延中央部、熱延尾部と
は、熱延で熱延頭部、熱延中央部、熱延尾部で圧延され
たコイルの部位を指す。
The cooling rate of the portion of the coil rolled in the hot rolled central portion of the annealing before the final strong cold rolling from the temperature of 800 to 1200 ° C. to 400 ° C. is set to 20 to 120 ° C./s. During this cooling, a part of AlN is precipitated, and the precipitation amount, size and distribution density are adjusted. As shown in FIG. 1, the cooling rate is 120
When it is faster than ℃ / s, the generation rate of B 8 1.88T or higher becomes low, and as shown in FIG. 2, when the cooling rate is slower than 20 ℃ / s, good magnetic properties cannot be obtained. The hot rolling head, the hot rolling central portion, and the hot rolling tail portion of the annealing before the final strong cold rolling are the hot rolling head portion, the hot rolling central portion, and the portion of the coil rolled by the hot rolling tail portion in the hot rolling. Point to.

【0018】800〜1200℃の温度から400℃ま
での最終強冷延前の焼鈍の熱延頭部、熱延尾部で圧延さ
れたコイルの部位の冷却速度は10℃/s以上でかつ熱
延中央部よりも遅くする。熱延頭部、尾部とはコイルの
最頭部、最尾部から長手方向にa2 /b(a:誘導加熱
時のスラブ厚、b:最終強冷延前焼鈍時の板厚)の範囲
の部分である。図1に示すように、熱延頭部、尾部の冷
却速度を熱延中央部よりも遅くするとB8 1.88T以
上の発生率が高くなり、製品の歩留が向上する。好まし
くは、10℃/s以上遅くする。図2に示すように10
℃/sより遅いと良好な磁気特性を得られない。熱延頭
部、尾部の冷却速度を熱延中央部よりも遅くする方法と
しては、冷却媒体の流量を鋼板長手方向で制御する手段
が採用できる。
The cooling rate of the coil portion rolled at the hot rolling head and the hot rolling tail of the annealing before the final strong cold rolling from the temperature of 800 to 1200 ° C. to 400 ° C. is 10 ° C./s or more and the hot rolling is performed. Be slower than the central part. The hot-rolled head and tail are the top of the coil and the range of a 2 / b (a: slab thickness during induction heating, b: sheet thickness during final strong cold rolling annealing) in the longitudinal direction from the backmost portion. It is a part. As shown in FIG. 1, when the cooling rate of the hot rolled head and tail is slower than that of the hot rolled central portion, the occurrence rate of B 8 1.88T or higher is increased and the product yield is improved. Preferably, it is slowed down by 10 ° C./s or more. As shown in FIG.
If it is slower than ° C / s, good magnetic properties cannot be obtained. As a method of lowering the cooling rate of the hot rolling head portion and the tail portion than that of the hot rolling central portion, means for controlling the flow rate of the cooling medium in the longitudinal direction of the steel sheet can be adopted.

【0019】[0019]

【実施例】【Example】

[実施例1][C]0.070〜0.074%、[S
i]3.35〜3.38%、[Mn]0.064〜0.
066%、[S]0.022〜0.024%、[Sol.A
l]0.033〜0.034%、[N]0.0072〜
0.0079%、[Sn]0.12%、[Cu]0.0
6%を含有する鋳片を250mm厚に連続鋳造し、105
0℃×3hガス加熱炉でスラブ加熱し、その後、誘導加
熱炉でスラブ長手方向センター部で温度制御し、10℃
/minの速度で昇温し、1380℃で40分スラブ加熱
し、2.40mm厚に熱延した。そして、1.65mmに予
備冷延し、析出焼鈍は1100℃×10秒保持し、その
後950℃で120秒保持し冷却した。この時、400
℃までの熱延中央部で圧延されたコイルの部位の冷却速
度は100℃/sとし、熱延頭部、尾部で圧延されたコ
イルの部位は冷却水の流量を変更し種々冷却速度を変更
した。その後0.22mmに最終強冷延とし製品板厚と
し、脱炭・1次再結晶焼鈍を行ない、次いで焼鈍分離剤
を塗布した後、最終仕上焼鈍を行ない、コーティング液
を塗布した。
[Example 1] [C] 0.070 to 0.074%, [S
i] 3.35-3.38%, [Mn] 0.064-0.
066%, [S] 0.022 to 0.024%, [Sol.A
1] 0.033 to 0.034%, [N] 0.0072 to
0.0079%, [Sn] 0.12%, [Cu] 0.0
Continuously cast a slab containing 6% to a thickness of 250 mm,
Heat the slab in a 0 ° C x 3h gas heating furnace, and then control the temperature at the center of the slab in the induction heating furnace at 10 ° C.
The temperature was raised at a rate of / min, slab heating was performed at 1380 ° C. for 40 minutes, and hot rolling was performed to a thickness of 2.40 mm. Then, it was pre-cold rolled to 1.65 mm, precipitation annealing was held at 1100 ° C. for 10 seconds, and then held at 950 ° C. for 120 seconds to cool. At this time, 400
The cooling rate of the coil part rolled in the central part of hot rolling up to ℃ is 100 ° C / s, and the cooling rate of the coil part rolled in the hot rolling head and tail is changed by changing the cooling water flow rate. did. After that, final strong cold rolling was performed to 0.22 mm to obtain a product sheet thickness, decarburization and primary recrystallization annealing were performed, and then an annealing separator was applied, followed by final finishing annealing and application of a coating solution.

【0020】製品として合格するのは、B8 が1.88
T以上発現したものをいう。熱延頭部、尾部で圧延され
た部位とはコイルの最頭部、最尾部から37.8mの範
囲の部分である。熱延中央部の製品の歩留は100%で
あり、平均の鉄損W17/50 は0.782W/kgである。
この時の析出焼鈍の熱延頭部、尾部の冷却速度、製品歩
留とB8 が1.88T以上発現した試料の平均の鉄損W
17/50 を表1に示す。これより、熱延頭部、尾部は熱延
中央部よりも冷却速度を遅くすると製品の歩留が高くな
り、10℃/sより冷却速度が遅い場合は鉄損が悪化す
ることが分かる。
The product passed is B 8 of 1.88.
It means that T or more is expressed. The hot-rolled head portion and the portion rolled by the tail portion are the top portion of the coil and the portion within the range of 37.8 m from the tail portion. The yield of the product in the central part of the hot rolling is 100%, and the average iron loss W 17/50 is 0.782 W / kg.
At this time, the hot rolling head of precipitation annealing, the cooling rate of the tail, the product yield, and the average iron loss W of the sample in which B 8 was 1.88 T or more.
17/50 is shown in Table 1. From this, it can be seen that when the cooling rate of the hot-rolled head portion and the tail portion is slower than that of the hot-rolled central portion, the product yield is high, and when the cooling rate is slower than 10 ° C./s, the iron loss is deteriorated.

【0021】[0021]

【表1】 [Table 1]

【0022】[実施例2][C]0.079〜0.08
2%、[Si]3.39〜3.42%、[Mn]0.0
70〜0.071%、[S]0.010%、[Se]
0.018〜0.019%、[Sol.Al]0.022〜
0.023%、[N]0.0090〜0.0095%、
[Sb]0.017%、[Mo]0.012%を含有す
る鋳片を250mm厚に連続鋳造し、1150℃×3hガ
ス加熱炉でスラブ加熱し、その後一部の鋳片は12%の
圧下率で220mm厚に熱間圧延し、誘導加熱炉でスラブ
長手方向センター部で温度制御し、種々の速度で昇温
し、1380℃で40分スラブ加熱し、2.60mm厚に
熱延した。そして、1130℃×2分の均熱後急冷する
という熱延板焼鈍をし、1.35mmに予備冷延し、析出
焼鈍は1090℃×90秒保持し、冷却した。この時、
400℃までの冷却速度は熱延中央部、熱延頭部、熱延
尾部で圧延されたコイルの部位で冷却水の流量を変更し
種々冷却速度を変更した。この後、0.17mmに最終強
冷延し、脱炭・1次再結晶焼鈍を行ない、次いで焼鈍分
離剤を塗布した後、最終仕上焼鈍を行ない、コーティン
グ液を塗布した。
[Embodiment 2] [C] 0.079 to 0.08
2%, [Si] 3.39 to 3.42%, [Mn] 0.0
70-0.071%, [S] 0.010%, [Se]
0.018 to 0.019%, [Sol.Al] 0.022 to
0.023%, [N] 0.0090 to 0.0095%,
A slab containing 0.017% of [Sb] and 0.012% of [Mo] is continuously cast to a thickness of 250 mm and slab-heated in a gas heating furnace at 1150 ° C. for 3 hours. It was hot-rolled to a thickness of 220 mm at a reduction rate, temperature-controlled in the center part of the slab longitudinal direction in an induction heating furnace, heated at various speeds, slab heated at 1380 ° C. for 40 minutes, and hot rolled to a thickness of 2.60 mm. . Then, the hot-rolled sheet was annealed by soaking at 1130 ° C. for 2 minutes and then rapidly cooled, pre-cold rolled to 1.35 mm, and the precipitation annealing was held at 1090 ° C. for 90 seconds and cooled. At this time,
As for the cooling rate up to 400 ° C., the flow rate of cooling water was changed at various portions of the coil rolled in the hot rolling central portion, hot rolling head portion, and hot rolling tail portion to change various cooling rates. After this, final strong cold rolling to 0.17 mm was performed, decarburization and primary recrystallization annealing were performed, and then an annealing separator was applied, followed by final finishing annealing and application of the coating liquid.

【0023】製品として合格するのは、B8 が1.88
T以上発現したものをいう。熱延頭部、尾部とは誘導加
熱前の熱間圧延なしの場合はコイルの最頭部、最尾部か
ら42.3mの範囲の部分であり、誘導加熱前に12%
の熱間圧延で220mm厚としたものはコイルの最頭部、
最尾部から35.9mの範囲の部分である。この時のス
ラブの誘導加熱炉の昇温速度、熱延中央部、熱延頭部、
熱延尾部の析出焼鈍の冷却速度、製品歩留、B8 が1.
88T以上発現したもの平均の鉄損W17/50 を表2に示
す。これより、スラブ加熱の昇温速度が5℃/s以上の
場合に良好な鉄損を得られ、熱延中央部よりも熱延頭
部、尾部の析出焼鈍の冷却速度を遅くすると、熱延頭
部、尾部の製品歩留が高くなることが分かる。また、誘
導加熱前に50%以下の熱間変形を加えると鉄損が改善
されることが分かる。
The product passed is B 8 of 1.88.
It means that T or more is expressed. The hot-rolled head and tail are the parts within the range of 42.3 m from the top and the tail of the coil without hot rolling before induction heating, and 12% before induction heating.
220mm thick by hot rolling is the top of the coil,
It is a part within a range of 35.9 m from the tail. Temperature rising rate of induction heating furnace of slab at this time, hot rolling center, hot rolling head,
Cooling rate of precipitation annealing of hot rolled tail, product yield, B 8 is 1.
Table 2 shows the average iron loss W 17/50 expressed in 88 T or more. As a result, good iron loss can be obtained when the heating rate of slab heating is 5 ° C./s or more, and when the cooling rate of precipitation annealing of the hot rolling head and tail is slower than that of the hot rolling central portion, hot rolling is performed. It can be seen that the product yield of the head and tail is high. Further, it is understood that iron loss is improved by applying hot deformation of 50% or less before induction heating.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】以上ごとく本発明によれば、工業的にコ
イル長手方向に安定して磁束密度の高い製品を製造で
き、その工業的効果は非常に大きい。
As described above, according to the present invention, it is possible to industrially manufacture a product having a high magnetic flux density in the longitudinal direction of the coil, and the industrial effect thereof is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱延中央部、熱延頭部、熱延尾部の最終強冷延
前の焼鈍の冷却速度とB8 1.88T以上の発生率の関
係図である。
FIG. 1 is a diagram showing the relationship between the cooling rate of annealing at the center of hot rolling, the head of hot rolling, and the tail of hot rolling before final strong cold rolling and the incidence of B 8 1.88 T or more.

【図2】熱延中央部、熱延頭部、熱延尾部の最終強冷延
前の焼鈍の冷却速度とB8 が1.88T以上の発生した
試料の平均のW17/50 の関係図である。
FIG. 2 is a diagram showing the relationship between the cooling rate of annealing at the center of the hot rolling, the head of the hot rolling, and the tail of the hot rolling before final strong cold rolling and the average W 17/50 of the samples in which B 8 is 1.88 T or more. Is.

フロントページの続き (72)発明者 西脇 健一 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内 (72)発明者 真弓 康弘 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内Front page continued (72) Kenichi Nishiwaki, 1st Fujimachi, Hirohata-ku, Himeji-shi, Hyogo Shin-Nihon Steel Co., Ltd. Hirohata Works (72) Inventor Yasuhiro Mayumi 1st Fuji-machi, Hirohata-ku, Himeji-shi Hyogo Japan Hirohata Works, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.015〜0.100%、 Si:2.0〜4.0%、 Mn:0.03〜0.12%、 Sol.Al:0.010〜0.065%、 N :0.0040〜0.0100%、 SおよびSeのうちから選んだ1種または2種合計:
0.005〜0.050%、残部は実質的にFeの組成
になる連続鋳造スラブを、1320〜1490℃にスラ
ブ加熱したのち熱延し、この熱延板を焼鈍し最終強冷延
する工程、または熱延板を予備冷延し、析出焼鈍し最終
強冷延する工程、または熱延板を焼鈍し、予備冷延し、
析出焼鈍し最終強冷延する工程の何れかの工程の後、最
終板厚とし、脱炭・1次再結晶焼鈍、最終仕上焼鈍によ
って高磁束密度一方向性電磁鋼板を製造する方法におい
て、1200℃以上の高温域のスラブ加熱を誘導加熱炉
を用いて、5℃/min以上の昇温速度で行い、最終強冷延
前の焼鈍を800〜1200℃で保持した後、800〜
1200℃の温度から400℃までの冷却を、熱延中央
部で圧延されたコイルの部位は冷却速度20〜120℃
/sで行い、熱延頭部、熱延尾部で圧延されたコイルの
部位は冷却を10℃/s以上でかつ熱延中央部よりも遅
い冷却速度で行うことを特徴とするコイル長手方向の磁
気特性のばらつきの少ない高磁束密度一方向性電磁鋼板
の製造方法。
1. By weight%, C: 0.015 to 0.100%, Si: 2.0 to 4.0%, Mn: 0.03 to 0.12%, Sol.Al: 0.010 to 0.065%, N: 0.0040 to 0.0100%, one or two kinds selected from S and Se in total:
A step in which a continuously cast slab having a composition of 0.005 to 0.050% and the balance substantially Fe is heated to 1320 to 1490 ° C., then hot rolled, and this hot rolled sheet is annealed and finally strongly cold rolled. , Or the step of pre-cold rolling the hot rolled sheet, precipitation annealing and final strong cold rolling, or annealing the hot rolled sheet, pre-cold rolling,
A method for producing a high magnetic flux density unidirectional electrical steel sheet by decarburization / primary recrystallization annealing or final finishing annealing after any of the steps of precipitation annealing and final strong cold rolling Slab heating in a high temperature range of ℃ or more is performed at a temperature rising rate of 5 ℃ / min or more using an induction heating furnace, and after annealing at 800 to 1200 ℃ before final strong cold rolling,
Cooling from a temperature of 1200 ° C to 400 ° C is performed at a cooling rate of 20 to 120 ° C at the portion of the coil rolled in the hot rolled central portion.
/ S, and the portion of the coil rolled at the hot rolling head and the hot rolling tail is cooled at a cooling rate of 10 ° C / s or more and slower than the central portion of the hot rolling. A method of manufacturing a high magnetic flux density unidirectional electrical steel sheet with little variation in magnetic properties.
【請求項2】 連続鋳造スラブがSb,Sn,Cu,M
o,Ge,B,Te,As、およびBiから選ばれる1
種または2種以上を各々の元素量で0.003〜0.3
%を含有することを特徴とする請求項1に記載のコイル
長手方向の磁気特性のばらつきの少ない高磁束密度一方
向性電磁鋼板の製造方法。
2. The continuous casting slab is Sb, Sn, Cu, M.
1 selected from o, Ge, B, Te, As, and Bi
Species or two or more kinds of each element amount 0.003 to 0.3
%, The method for producing a high magnetic flux density unidirectional electrical steel sheet according to claim 1, wherein there is little variation in magnetic properties in the coil longitudinal direction.
【請求項3】 1200℃以上の高温域のスラブ加熱の
前に、50%以下の圧下率で熱間変形を加えることを特
徴とする請求項1または2に記載したコイル長手方向の
磁気特性のばらつきの少ない高磁束密度一方向性電磁鋼
板の製造方法。
3. The coil longitudinal magnetic properties according to claim 1 or 2, wherein hot deformation is applied at a rolling reduction of 50% or less before slab heating in a high temperature range of 1200 ° C. or higher. A method for manufacturing a high magnetic flux density unidirectional electrical steel sheet with little variation.
JP30176095A 1995-11-20 1995-11-20 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet Expired - Lifetime JP3338257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30176095A JP3338257B2 (en) 1995-11-20 1995-11-20 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30176095A JP3338257B2 (en) 1995-11-20 1995-11-20 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH09143561A true JPH09143561A (en) 1997-06-03
JP3338257B2 JP3338257B2 (en) 2002-10-28

Family

ID=17900846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30176095A Expired - Lifetime JP3338257B2 (en) 1995-11-20 1995-11-20 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3338257B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113832322A (en) * 2021-09-26 2021-12-24 武汉钢铁有限公司 High-efficiency decarburization annealing process for high-magnetic-induction oriented silicon steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113832322A (en) * 2021-09-26 2021-12-24 武汉钢铁有限公司 High-efficiency decarburization annealing process for high-magnetic-induction oriented silicon steel
CN113832322B (en) * 2021-09-26 2023-04-28 武汉钢铁有限公司 High-efficiency decarburization annealing process for high-magnetic induction oriented silicon steel

Also Published As

Publication number Publication date
JP3338257B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
KR960011799B1 (en) Method of producing non-oriented electrical steel sheet having good magnetic properties
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH09143561A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JP3338263B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPS6242968B2 (en)
JP2680519B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP2002212635A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3336172B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3369407B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3369408B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JP2562259B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH1030125A (en) Production of grain oriented silicon steel sheet
JPH07316657A (en) Production of grain oriented silicon steel sheet reduced in iron loss
JPH08176665A (en) Production of grain oriented silicon steel sheet with low iron loss
JPH05255753A (en) Production of nonoriented silicon steel sheet
JPH06330174A (en) Production of low iron loss grain oriented silicon steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term