JPH05171280A - Production of nonoriented silicon steel sheet having superior magnetic property and excellent in external surface appearance - Google Patents

Production of nonoriented silicon steel sheet having superior magnetic property and excellent in external surface appearance

Info

Publication number
JPH05171280A
JPH05171280A JP3326163A JP32616391A JPH05171280A JP H05171280 A JPH05171280 A JP H05171280A JP 3326163 A JP3326163 A JP 3326163A JP 32616391 A JP32616391 A JP 32616391A JP H05171280 A JPH05171280 A JP H05171280A
Authority
JP
Japan
Prior art keywords
hot
annealing
rolled
less
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3326163A
Other languages
Japanese (ja)
Other versions
JP2500033B2 (en
Inventor
Masahiko Manabe
昌彦 真鍋
Yoshinari Muro
吉成 室
Takahiro Suga
孝宏 菅
Takashi Obara
隆史 小原
Hideo Kobayashi
秀夫 小林
Kazumi Morita
和巳 森田
Yoshiaki Iida
嘉明 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3326163A priority Critical patent/JP2500033B2/en
Publication of JPH05171280A publication Critical patent/JPH05171280A/en
Application granted granted Critical
Publication of JP2500033B2 publication Critical patent/JP2500033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a nonoriented silicon steel sheet having high magnetic flux density and excellent in external surface appearance by subjecting a hot rolled strip of low carbon steel to light-degree cold rolling and to short-time annealing, on the premise that continuous annealing is done, and controlling crystalline grain size. CONSTITUTION:A slab which has a composition consisting of, by weight, <=0.02% C, <=4.0% Si or (Si+Al), <=1.0% Mn, <=0.2% P, and the balance essentially Fe and further containing, if necessary, <=0.10%, in total, of Sb and/or Sn is hot-rolled into a hot rolled steel strip, cold-rolled at 5-15% draft, and annealed so that crystalline grain size is regulated to 100-200mum. Subsequently, one is formed to the final sheet thickness by means of cold rolling and then subjected to final annealing, and the other is cold-rolled at >=50% draft, annealed so that <=20mum crystalline grain size is reached, further cold-rolled at 1-15% draft to the product sheet thickness, and then subjected to final annealing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は磁気特性の優れた無方
向性電磁鋼板の製造方法に係わり、とくに磁束密度が高
く、かつ表面外観の良い無方向性電磁鋼板を製造する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, and more particularly to a method for producing a non-oriented electrical steel sheet having a high magnetic flux density and a good surface appearance. ..

【0002】[0002]

【従来の技術】無方向性電磁鋼板は各種のモーターなど
の回転機や変圧器, 安定器などの静止器の鉄心材料に用
いられているが、これらの電気機器を小型化,高効率化
するためには使用する電磁鋼板の磁束密度の向上および
鉄損の低減が必要である。ところで、無方向性電磁鋼板
の磁性を向上させるには冷間圧延前の鋼帯の結晶粒を粗
大化すればよいことが知られている。
2. Description of the Related Art Non-oriented electrical steel sheets are used as iron core materials for rotating machines such as various motors and stationary machines such as transformers and ballasts. Therefore, it is necessary to improve the magnetic flux density and reduce the iron loss of the electrical steel sheet used. By the way, it is known that in order to improve the magnetism of the non-oriented electrical steel sheet, the crystal grains of the steel strip before cold rolling may be coarsened.

【0003】この冷間圧延前の鋼帯の結晶粒粗大化方法
として、発明者らは先に特公昭57-35628号公報において
電磁鋼素材を熱間圧延する際、熱間圧延終了温度を鋼の
化学成分により求めたAr3変態点温度以上となし、次い
でこの熱延鋼帯をA3 変態点温度以下の温度で30秒以上
15分以下の時間、焼鈍する方法を提案した。さらに、特
開平2-182831 号公報には熱間圧延終了温度をAr3変態
点温度以上とし、次いでこの熱延鋼帯をA3 変態点温度
以下で30〜15秒保持したのちの冷却速度を制御する方法
を開示した。
As a method of coarsening the crystal grains of a steel strip before cold rolling, the inventors have previously disclosed that when hot rolling an electromagnetic steel material in Japanese Patent Publication No. 57-35628, the end temperature of hot rolling is set to the steel. The temperature above the Ar 3 transformation point temperature determined by the chemical composition of is not exceeded, and then this hot rolled steel strip is kept at a temperature below the A 3 transformation point temperature for 30 seconds or more.
We proposed a method of annealing for less than 15 minutes. Further, in Japanese Patent Laid-Open No. 2-182831, the hot rolling finish temperature is set to an Ar 3 transformation point temperature or higher, and then the hot rolling steel strip is kept at the A 3 transformation point temperature or lower for 30 to 15 seconds, and then the cooling rate is set. A method of controlling is disclosed.

【0004】しかし、これらの方法は熱延鋼帯焼鈍時間
が短時間側では結晶粒の粗大化が起こり難い場合があ
り、その結果磁気特性がバラツクという欠陥があった。
また長時間側では結晶粒が過大になる場合があり、その
結果、製品に畳じわが発生し表面外観を損なうという難
点があった。一方、特開昭58-136718 号公報には熱間圧
延を上述と同じく鋼中成分によって定まるAr3変態点温
度より50℃を超えて高くはない範囲内のγ相領域で終了
し、その巻取温度をA3 変態点以下から 700℃以上に
し、熱延鋼帯のフェライト結晶粒度を No.4以下の粗大
粒にして磁性の向上を図る方法が開示されている。
However, in these methods, there is a case where coarsening of crystal grains does not easily occur on the side where the hot-rolled steel strip annealing time is short, and as a result, there is a defect that the magnetic characteristics are varied.
Further, on the long time side, the crystal grains may become excessively large, and as a result, there is a problem that the product is creased and the surface appearance is impaired. On the other hand, in Japanese Patent Application Laid-Open No. 58-136718, hot rolling is terminated in the γ phase region within a range not exceeding 50 ° C. higher than the Ar 3 transformation point temperature determined by the composition in the steel as described above, and the winding is performed. A method is disclosed in which the taking temperature is raised from the A 3 transformation point or lower to 700 ° C. or higher and the ferrite grain size of the hot-rolled steel strip is set to coarse grains of No. 4 or less to improve the magnetism.

【0005】また特開昭54-76422号公報には熱間圧延後
の巻取温度 750〜1000℃とし、コイルの保有熱による自
己焼鈍により結晶粒度 No.5〜6に再結晶させて磁性向
上を図る方法が提案されている。しかしこれらの熱延後
の巻取温度を 700℃以上にして冷間圧延前の結晶粒を大
きくして磁性を改善する方法は、熱延鋼帯焼鈍を省略で
きるが、巻取温度が高いためコイルの内、外巻部及びエ
ッジ部がコイル中心部より速く冷えるのでコイル内温度
差が大きくなり、最終的にはコイル全体に亘って均一な
磁性が得られないこと及び熱延鋼帯の酸洗による脱スケ
ール性が悪い等の欠陥がある。
Further, in Japanese Patent Laid-Open No. 54-76422, the coiling temperature after hot rolling is set to 750 to 1000 ° C., and the magnetism is improved by recrystallizing to a grain size No. 5 to 6 by self-annealing by the heat retained by the coil. A method for achieving this has been proposed. However, these methods of improving the magnetism by increasing the coiling temperature after hot rolling to 700 ° C or more and increasing the grain size before cold rolling can omit hot-rolled steel strip annealing, but the coiling temperature is high. Since the outer coil and the edge of the coil cool faster than the center of the coil, the temperature difference inside the coil becomes large, and eventually the uniform magnetism cannot be obtained over the entire coil and the acidity of the hot-rolled steel strip. There are defects such as poor descaling property due to washing.

【0006】また、特公昭45-22211号公報には熱延鋼帯
に圧下率 0.5〜15%の冷間圧延を施したのち、再結晶温
度以上A3 変態点以下の温度範囲で比較的長時間の焼鈍
を行って引続く冷間圧延前の鋼帯の結晶粒の粗大化を図
って鉄損を向上させる方法が開示されている。しかしこ
の方法の熱延鋼帯の軽冷延後の焼鈍は比較的低温度短時
間と言えども 800〜 850℃, 30分〜20時間(なお実施例
での焼鈍時間はいずれも10時間)のいわゆる箱焼鈍を前
提とした長時間焼鈍であるため製造コスト面で不利であ
るばかりでなく、結晶粒が粒度No.2.2と過大粒になる場
合があり、表面外観を損なう欠陥があった。
In Japanese Patent Publication No. 452212/1985, a hot rolled steel strip is cold-rolled with a rolling reduction of 0.5 to 15%, and then relatively long in a temperature range from the recrystallization temperature to the A 3 transformation point. A method is disclosed in which iron loss is improved by annealing for a long time to coarsen the crystal grains of the steel strip before the subsequent cold rolling. However, although the annealing of the hot-rolled steel strip by this method after light cold rolling is relatively low temperature for a short time, 800-850 ° C, 30 minutes-20 hours (the annealing time in each example is 10 hours). Since it is a long-time annealing premised on so-called box annealing, not only is it disadvantageous in terms of manufacturing cost, but the crystal grains sometimes become excessively large with a grain size of No. 2.2, which is a defect that impairs the surface appearance.

【0007】また特開平1-306523 号公報では、熱延鋼
帯に5〜20%の軽冷延を施したのち熱延板焼鈍を 850〜
1000℃の温度で 0.5〜10分間行って磁束密度の高い無方
向性電磁鋼板を造る方法を開示している。この方法の熱
延板焼鈍は連続炉で行うが、焼鈍時間が実施例では2分
程度の比較的長時間を必要とし、その結果大きな設備を
必要とし経済的に問題点を残していた。
Further, in JP-A-1-306523, hot-rolled steel strip is annealed at 850-
It discloses a method of producing a non-oriented electrical steel sheet having a high magnetic flux density by performing the treatment at a temperature of 1000 ° C. for 0.5 to 10 minutes. Although the hot-rolled sheet annealing of this method is performed in a continuous furnace, the annealing time in the example requires a relatively long time of about 2 minutes, and as a result, large equipment is required, which is economically problematic.

【0008】このようにいずれの場合も冷延前結晶粒径
の粗大化により、磁気特性向上を意図したものである
が、表面外観ならびに設備の経済性を考慮すると磁気特
性の向上には限界があった。また、セミプロセス電磁鋼
板の製造方法として、例えば、特開平1-139721 号公報
や特開平1-191741 号公報などで、最終工程で3〜15%
のスキンパスを付与し製品とする方法が開示されてい
る。しかしながら、セミプロセス材におけるスキンパス
圧延は製品の硬度調整を意図するものであり、また加工
後の焼鈍は、例えば 750℃×2hrといった長時間保定を
前提として、磁気特性を保証するものである。したがっ
て、こうしたセミプロセス材に連続焼鈍を前提とした短
時間焼鈍を施したとしても、安定して高い磁気特性を得
ることはできなかった。
As described above, in any of these cases, it is intended to improve the magnetic characteristics by coarsening the crystal grain size before cold rolling, but there is a limit to the improvement of the magnetic characteristics in consideration of the surface appearance and the economical efficiency of the equipment. there were. Further, as a method of manufacturing a semi-processed electromagnetic steel sheet, for example, Japanese Patent Laid-Open No. 1-139721 and Japanese Patent Laid-Open No. 1-191741 disclose 3 to 15% in the final step.
The method of giving a skin pass of the above and making it a product is disclosed. However, the skin pass rolling in the semi-processed material is intended to adjust the hardness of the product, and the annealing after working guarantees the magnetic properties on the premise of long-term retention such as 750 ° C. × 2 hr. Therefore, even if such a semi-processed material was annealed for a short time on the assumption of continuous annealing, it was not possible to stably obtain high magnetic properties.

【0009】[0009]

【発明が解決しようとする課題】以上の問題点に鑑み
て、本発明は、軽冷延後の熱延鋼帯の結晶粒の適度な粗
大化を図るための焼鈍条件を工夫し、結晶粒径を制御す
ることにより、磁気特性とくに磁束密度が高く、しかも
表面外観の良好な無方向性電磁鋼板の製造方法を提案す
ることを目的とするものである。
SUMMARY OF THE INVENTION In view of the above problems, the present invention has devised an annealing condition for achieving an appropriate coarsening of crystal grains of a hot rolled steel strip after light cold rolling, It is an object of the present invention to propose a method for producing a non-oriented electrical steel sheet which has a high magnetic property, particularly a high magnetic flux density, and a good surface appearance by controlling the diameter.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明は、重
量%で、C:0.02%以下、SiもしくはSi+Al: 4.0%以
下、Mn: 1.0%以下、P: 0.2%以下を含み、さらに必
要に応じてSbおよびSnの何れか1種または2種の合計が
0.10%以下を含み、残部が実質的にFeからなるスラブを
熱間圧延により熱延鋼帯とし、さらに圧下率5〜15%の
冷間圧延を施したのち、結晶粒径が 100〜 200μm とな
る焼鈍を施し、さらに冷間圧延により最終板厚とした
後、最終焼鈍を施すことを特徴とする磁気特性が優れか
つ表面外観の良い無方向性電磁鋼板の製造方法であり、
またさらに本発明は、重量%で、C:0.02%以下、Siも
しくはSi+Al: 4.0%以下、Mn: 1.0%以下、P: 0.2
%以下を含み、さらに必要に応じSbおよびSnの何れか1
種または2種の合計が0.10%以下を含み、残部が実質的
にFeからなるスラブを熱間圧延により熱延鋼帯とし、さ
らに圧下率5〜15%の冷間圧延を施したのち、結晶粒径
が 100〜 200μm となる焼鈍を施し、さらに冷間圧延
後、結晶粒径を20μm 以下とする焼鈍を施し、さらに1
〜15%の冷間圧延を施して製品板厚としたのち、最終焼
鈍を施すことを特徴とする磁気特性が優れかつ表面外観
の良い無方向性電磁鋼板の製造方法である。
[Means for Solving the Problems] That is, the present invention contains C: 0.02% or less, Si or Si + Al: 4.0% or less, Mn: 1.0% or less, P: 0.2% or less by weight%, and further Depending on the sum of one or two of Sb and Sn,
A slab containing 0.10% or less of which the balance is substantially Fe is hot-rolled to form a hot-rolled steel strip, and further cold-rolled at a reduction rate of 5 to 15%, and then the grain size is 100 to 200 μm. Is a final sheet thickness by further cold rolling, and is a method for producing a non-oriented electrical steel sheet having excellent magnetic properties and good surface appearance, which is characterized by performing final annealing.
Furthermore, the present invention is, by weight%, C: 0.02% or less, Si or Si + Al: 4.0% or less, Mn: 1.0% or less, P: 0.2.
% Or less, and if necessary, either Sb or Sn 1
A slab containing 0.10% or less of the total of two kinds or less and the balance being substantially Fe is formed into a hot-rolled steel strip by hot rolling, and further subjected to cold rolling with a reduction rate of 5 to 15%, and then crystallized. Annealed to a grain size of 100 to 200 μm, further cold rolled, then annealed to a grain size of 20 μm or less, and then 1
This is a method for producing a non-oriented electrical steel sheet having excellent magnetic properties and a good surface appearance, which is characterized by performing cold rolling up to 15% to obtain a product sheet thickness and then performing final annealing.

【0011】そして、上記夫々の発明において、結晶粒
径が 100〜 200μm となる焼鈍として、3℃/sec 以上
の加熱速度で所定の温度に加熱し、該温度で5〜30秒保
持する短時間焼鈍を採用することが望ましい。
In each of the above inventions, the annealing for obtaining a crystal grain size of 100 to 200 μm is performed by heating to a predetermined temperature at a heating rate of 3 ° C./sec or more and holding at the temperature for 5 to 30 seconds for a short time. It is desirable to employ annealing.

【0012】[0012]

【作 用】まず、実験結果に基づいて本発明に至った経
緯を説明する。重量%で、C: 0.010%,Si:0.15%,
Mn:0.25%,P:0.08%,Sb:0.045%,S: 0.004
%,Al:0.0008%,を含み残部実質的にFeよりなる溶鋼
から造ったスラブを1250℃に加熱し、通常の熱間圧延に
より 2.3mm厚の熱延鋼帯とした。引続き、該熱延鋼帯に
圧下率0〜20%の軽度の冷間圧延を施した後、 700〜10
00℃の温度で10秒間の短時間の熱延鋼帯焼鈍を連続炉で
行った。このときの加熱速度は5℃/sec であった。な
おこの素材のA3 変態点温度は 915℃であった。次いで
酸洗し通常の冷間圧延により、0.50mm厚に仕上げた後、
800℃,75秒の湿潤雰囲気で脱炭と再結晶を兼ねた連続
焼鈍を施して製品を造った。これらの製品の磁束密度と
熱延鋼帯に軽度冷間圧延を施したときの冷延率の関係を
図1に示す。この図から熱延鋼帯の軽冷延を圧下率5〜
15%にし、かつ熱延鋼帯焼鈍を 850〜915℃(A3 変態
点温度)で処理した製品の磁束密度B50がその他の条件
で処理したものより高いことが明らかである。そして、
この高い磁束密度B50が得られた条件即ち、熱延鋼帯の
圧下率5〜15%で 850〜 915℃、10秒間の熱延鋼帯焼鈍
を施したものの熱延鋼帯焼鈍後の結晶粒は粒径 100〜 2
00μm の範囲にあり、その製品の表面に畳じわは発生せ
ず表面外観は良かった。
[Operation] First, the background of the present invention will be described based on experimental results. % By weight, C: 0.010%, Si: 0.15%,
Mn: 0.25%, P: 0.08%, Sb: 0.045%, S: 0.004
%, Al: 0.0008%, and the balance made up of molten steel consisting essentially of Fe was heated to 1250 ° C and hot rolled into a 2.3 mm thick hot rolled strip by ordinary hot rolling. Subsequently, the hot-rolled steel strip was lightly cold-rolled with a rolling reduction of 0 to 20%,
Short-time hot-rolled steel strip annealing was performed at a temperature of 00 ° C for 10 seconds in a continuous furnace. The heating rate at this time was 5 ° C./sec. The A 3 transformation point temperature of this material was 915 ° C. Then, after pickling and finishing to 0.50 mm thickness by ordinary cold rolling,
A product was manufactured by continuous annealing that combines decarburization and recrystallization in a humid atmosphere at 800 ° C for 75 seconds. FIG. 1 shows the relationship between the magnetic flux density of these products and the cold rolling ratio when the hot-rolled steel strip is subjected to light cold rolling. From this figure, light cold rolling of hot-rolled steel strip can be performed with a reduction ratio of 5
It is clear that the magnetic flux density B 50 of the product treated to 15% and subjected to hot-rolled steel strip annealing at 850 to 915 ° C. (A 3 transformation temperature) is higher than those treated under other conditions. And
The conditions under which this high magnetic flux density B 50 was obtained, that is, the crystals after hot-rolled steel strip annealing at 850 to 915 ° C. for 10 seconds at a rolling reduction of 5 to 15% of hot-rolled steel strip Grain size 100 to 2
It was in the range of 00 μm, and there was no crease on the surface of the product, and the surface appearance was good.

【0013】ちなみに磁束密度B50があまり向上しなか
ったものの熱延鋼帯焼鈍後の結晶粒は粒径 100μm 未満
であった。以上のように熱延鋼帯に5〜15%の軽冷延を
施し、引続く熱延鋼帯焼鈍で 850〜 915℃(A3 変態点
温度)、10秒という比較的高温でかつ短時間の処理にお
いて、磁束密度が向上するのは、熱延鋼帯焼鈍により結
晶粒が粗大粒に成長し、その結果、製品で集合組織の改
善が図れるためである。また、熱延鋼帯焼鈍で結晶粒が
粗大化するのは粗大化(異常成長)に必要な歪を軽冷延
により熱延鋼帯に付与していることによる。
By the way, although the magnetic flux density B 50 was not improved so much, the crystal grains after annealing the hot-rolled steel strip had a grain size of less than 100 μm. Subjected to 5-15% of the light cold-rolled to a hot rolled strip, as described above, subsequent 850 to 915 ° C. In the hot rolled strip annealing (A 3 transformation temperature), relatively high temperatures and short time of 10 seconds The reason that the magnetic flux density is improved in the process (1) is that the crystal grains grow into coarse grains due to the hot-rolled steel strip annealing, and as a result, the texture of the product can be improved. Further, the reason why the crystal grains are coarsened by annealing the hot-rolled steel strip is that the strain necessary for coarsening (abnormal growth) is applied to the hot-rolled steel strip by light cold rolling.

【0014】さらに、また別の実験結果を示す。重量%
で、C: 0.010%,Si:0.15%,Mn:0.25%,P:0.08
%,Sb:0.045%,S: 0.004%,Al:0.0008%を含み
残部実質的にFeよりなる溶鋼から造ったスラブを1250℃
に加熱し、通常の熱間圧延により 2.3mm厚の熱延鋼帯と
した。引続き、圧下率10%の軽度の冷間圧延を施した
後、915 ℃の温度で10秒間の短時間焼鈍を連続炉で行っ
た。このときの加熱速度を1〜5℃/sec の範囲で変化
させた。熱延鋼帯焼鈍後の結晶粒を観察し、粒径 200μ
m より粗大な粒の占める比率(面積率)と、加熱速度の
関係を図2に示す。粗大粒が多くなると、製品板に畳じ
わが発生しやすくなる。製品板における畳じわの発生状
況も示しているが、図より加熱速度を高くして、粗大粒
の占める割合を減らすことが、表面性状の改善に有利で
あることは明らかである。
Furthermore, another experimental result will be shown. weight%
, C: 0.010%, Si: 0.15%, Mn: 0.25%, P: 0.08
%, Sb: 0.045%, S: 0.004%, Al: 0.0008%, and the balance is a slab made of molten steel consisting essentially of Fe at 1250 ° C.
Then, the hot-rolled steel strip having a thickness of 2.3 mm was formed by ordinary hot rolling. Subsequently, after performing a light cold rolling with a reduction rate of 10%, a short-time annealing for 10 seconds at a temperature of 915 ° C. was performed in a continuous furnace. The heating rate at this time was changed in the range of 1 to 5 ° C./sec. Observe the crystal grains after annealing the hot-rolled steel strip and confirm that the grain size is 200μ.
FIG. 2 shows the relationship between the heating rate and the ratio (area ratio) of grains coarser than m. When the number of coarse particles is large, the product plate is likely to be wrinkled. The state of occurrence of folds and wrinkles in the product plate is also shown, but it is clear from the figure that increasing the heating rate to reduce the proportion of coarse particles is advantageous for improving the surface properties.

【0015】なお、加熱温度 850℃以下の条件でも、焼
鈍時間を長くすることにより、結晶粒が 100μm 以上に
粗大化できれば、同様な効果があることも確認してい
る。次に、熱延鋼板焼鈍に引続く冷延・焼鈍の条件につ
いて述べる。前述の熱延鋼板と同一組成の熱延鋼板を用
い、軽冷延を10%施したのち、熱延鋼板焼鈍において、
900℃の温度で10秒間保持する。このときの結晶粒径は
120μm であった。その焼鈍板に冷間圧延を施し、0.50
〜0.65mm厚とする。次いで600 〜750 ℃で焼鈍して結晶
粒径を10〜30μm とし、0〜20%の軽冷延を施して0.50
mm厚さに仕上げ、引き続き湿潤雰囲気で 800℃60sの脱
炭を兼ねた焼鈍を行い製品とした。
It has been confirmed that even if the heating temperature is 850 ° C. or less, if the crystal grains can be coarsened to 100 μm or more by prolonging the annealing time, the same effect can be obtained. Next, the conditions of cold rolling / annealing subsequent to annealing of the hot rolled steel sheet will be described. Using a hot-rolled steel sheet having the same composition as the hot-rolled steel sheet described above, after performing 10% light cold rolling, in the hot-rolled steel sheet annealing,
Hold at a temperature of 900 ° C for 10 seconds. The crystal grain size at this time is
It was 120 μm. The annealed plate is cold rolled to 0.50
~ 0.65mm thickness. Then, it is annealed at 600 to 750 ℃ to make the crystal grain size 10 to 30 μm, and light cold rolled to 0 to 20% to give 0.50.
The product was finished to a thickness of mm and then annealed in a humid atmosphere at 800 ° C for 60 seconds to combine decarburization.

【0016】これらの製品の磁束密度と冷延焼鈍後の結
晶粒径と軽冷延の圧下率との関係を図3に示す。これか
らわかるように熱延鋼板焼鈍後の冷延・焼鈍時に、冷延
焼鈍後の結晶粒径が20μm 以下でかつ軽冷延での圧下率
が1〜15%の製品のB50が他の条件のものより高いこと
が明らかである。これらの磁束密度が高い製品表面は畳
じわもなく良好であった。
FIG. 3 shows the relationship between the magnetic flux density of these products, the crystal grain size after cold rolling annealing, and the reduction ratio in light cold rolling. As can be seen, during cold rolling / annealing after hot-rolled steel sheet annealing, B 50 of a product having a grain size of 20 μm or less after cold-rolling annealing and a reduction ratio of 1 to 15% in light cold rolling is another condition. It is clear that it is higher than that of The product surface with high magnetic flux density was good without unfolding.

【0017】以上のように、熱延鋼板焼鈍に引き続く冷
延焼鈍後の結晶粒径およびその後の冷延圧下率を制御す
ることにより、磁束密度が向上するのは結晶回転と粒成
長時の方位選択による集合組織改善の効果である。次に
本発明において熱延鋼板の軽冷延を圧下率5〜15%に限
定した理由を述べる。熱延鋼板の軽冷延に引き続く熱延
鋼板焼鈍が比較的高温で短時間保持処理の場合あるいは
低温で長時間処理の場合には、圧下率が5%未満では歪
が不足し、熱延鋼板焼鈍での結晶粒の粗大化が不十分な
ため、結晶粒の大きさが 100μm に達せず磁束密度の向
上が図れない。また圧下率が15%を超えると通常の冷延
と同じようになり熱延鋼板焼鈍後に結晶粒の大きさが 1
00μm にならないためである。
As described above, the magnetic flux density is improved by controlling the crystal grain size after the cold rolling annealing subsequent to the annealing of the hot rolled steel sheet and the cold rolling reduction ratio after that, and the crystal rotation and the orientation during grain growth. This is the effect of improving the texture by selection. Next, the reason why the light cold rolling of the hot rolled steel sheet is limited to the rolling reduction of 5 to 15% in the present invention will be described. When the hot-rolled steel sheet annealing following the light cold-rolling of the hot-rolled steel sheet is carried out at a relatively high temperature for a short time holding treatment or at a low temperature for a long time treatment, distortion is insufficient if the rolling reduction is less than 5%, and the hot rolled steel sheet The grain size does not reach 100 μm and the magnetic flux density cannot be improved because the grain size is not sufficiently coarsened during annealing. When the rolling reduction exceeds 15%, the same as in ordinary cold rolling, and the grain size becomes 1 after annealing of hot-rolled steel sheet.
This is because it will not be 00 μm.

【0018】また、本発明においては、熱延鋼帯焼鈍に
おいて、加熱速度を3℃/sec 以上にすることが好まし
い。加熱速度が3℃/sec 未満だと加熱中に一部粒成長
が起こり、比較的高温での短時間保持では均一かつ適度
な粒成長が起こらず混粒となりやすいからである。より
好ましい加熱速度は5℃/sec 以上である。次に、熱延
鋼帯に軽圧下の冷間圧延を施し、焼鈍した後の熱延鋼帯
の結晶粒径を 100〜 200μm に限定した理由を説明す
る。
Further, in the present invention, it is preferable that the heating rate is 3 ° C./sec or more in hot strip annealing. This is because if the heating rate is less than 3 ° C./sec, some grain growth occurs during heating, and uniform and appropriate grain growth does not occur when held at a relatively high temperature for a short time, and mixed grains tend to form. A more preferable heating rate is 5 ° C./sec or more. Next, the reason for limiting the crystal grain size of the hot rolled steel strip to 100 to 200 μm after cold rolling under light reduction and annealing to the hot rolled steel strip will be explained.

【0019】粒径が 200μm を超えると、製品板の表面
外観を損なうのでこの場合粒径 200μm を上限とした。
また磁気特性の向上をはかるためには、下限を 100μm
とする必要がある。この場合の焼鈍条件としては、製造
コストや品質安定面で有利である連続焼鈍炉を用いる場
合、 850℃以上A3 変態点以下の比較的高温で、5〜30
秒の短時間処理が好ましい。この場合、 850℃未満では
粒成長不足となり磁束密度の向上が十分図れない。
If the particle size exceeds 200 μm, the surface appearance of the product sheet is impaired, so in this case the particle size of 200 μm was made the upper limit.
In order to improve the magnetic properties, the lower limit is 100 μm.
And need to. The annealing conditions in this case are 5 to 30 at a relatively high temperature of 850 ° C. or higher and A 3 transformation point or less when using a continuous annealing furnace which is advantageous in terms of manufacturing cost and quality stability.
A short time treatment of seconds is preferred. In this case, if the temperature is lower than 850 ° C, the grain growth becomes insufficient and the magnetic flux density cannot be sufficiently improved.

【0020】また、前記の熱延鋼帯焼鈍温度が 850℃〜
3 変態点の場合、5秒未満では結晶粒の粗大化が不十
分で粒径が 100μm に達しないため磁束密度の向上が少
ない。また保持時間が30秒を超えると結晶粒が粗大化し
過ぎて、粒径が 200μm より大きくなり、その結果、磁
束密度は向上するものの製品表面に畳じわが発生し、表
面外観を損なう。この畳じわは占積率の低下を来たすと
いう問題がある。
Further, the hot-rolled steel strip annealing temperature is from 850 ° C to
In the case of the A 3 transformation point, if it is less than 5 seconds, the coarsening of the crystal grains is insufficient and the grain size does not reach 100 μm, so that the magnetic flux density is not improved much. If the holding time exceeds 30 seconds, the crystal grains become too coarse and the grain size becomes larger than 200 μm. As a result, although the magnetic flux density is improved, creases are generated on the product surface and the surface appearance is impaired. There is a problem that this tatami wrinkle causes a decrease in space factor.

【0021】また、上記したように結晶粒径が 100〜 2
00μm となる焼鈍を施したあとに、さらに、冷間圧延
後、結晶粒径を20μm 以下とする焼鈍を施し、さらに1
〜15%の冷間圧延を施して製品板厚としたのち、最終焼
鈍を施すことも本発明の1つである。中間冷延と焼鈍に
より結晶粒径を20μm 以下とすると、引き続き施す軽圧
下冷延により、結晶回転が生じかつ、その後の最終焼鈍
により、磁気特性に不利な(111)方位粒の成長を抑
制し、他方位粒に蚕食されやすくなるため、詳細な実験
の結果、このように上限を定めた。
Further, as described above, the crystal grain size is 100 to 2
After annealing to 00 μm, it was further cold-rolled and then annealed to a grain size of 20 μm or less.
It is also an aspect of the present invention to carry out final annealing after cold rolling to 15% to give a product sheet thickness. When the crystal grain size is reduced to 20 μm or less by intermediate cold rolling and annealing, the crystal rolling occurs due to the subsequent cold rolling under light pressure, and the subsequent final annealing suppresses the growth of (111) oriented grains that are disadvantageous to the magnetic properties. On the other hand, the upper limit was set in this way as a result of a detailed experiment because the grains tend to be eaten by silkworms.

【0022】また粒径調整のための焼鈍後に施す、軽圧
下冷延は、上述の集合組織改善のため1%以上の圧下率
が必要である。ただし、15%を超えると通常の冷延と同
じく再結晶が多く起こるようになるので、磁気特性向上
に結びつくような集合組織改善は望めない。次に本発明
における素材成分の限定理由を述べる。
Further, the light reduction cold rolling performed after the annealing for adjusting the grain size requires a reduction rate of 1% or more in order to improve the texture described above. However, if it exceeds 15%, recrystallization often occurs as in the case of normal cold rolling, so texture improvement that leads to improvement of magnetic properties cannot be expected. Next, the reasons for limiting the material components in the present invention will be described.

【0023】Cは、0.02%を超えると磁性に有害である
ばかりでなく、最終焼鈍時に脱炭不良となり、非時効化
に対して不利となるので、Cは0.02%以下とした。Siも
しくはSi+Alは高い固有抵抗を有し、増量すると鉄損は
少なくなり、飽和磁束密度は低下する。従って、鉄損・
磁束密度の要求に応じて、この量を調節する。しかし、
Si+Al量が、 4.0%を超えると、著しく冷延性を損なう
ので、4%を上限とする。
When C exceeds 0.02%, not only is it harmful to magnetism, but also decarburization is unsatisfactory during final annealing, which is disadvantageous for non-aging. Therefore, C is set to 0.02% or less. Si or Si + Al has a high specific resistance, and if the amount is increased, the iron loss decreases and the saturation magnetic flux density decreases. Therefore, iron loss
This amount is adjusted according to the magnetic flux density requirement. But,
If the Si + Al content exceeds 4.0%, the cold rolling property is significantly impaired, so the upper limit is 4%.

【0024】SbおよびSnは集合組織改善により磁束密度
が向上するので、特に高い磁束密度を得るためには必要
に応じて添加することが望ましい。その場合SbおよびSn
の1種または2種の合計が0.10%を超えるとかえって磁
気特性を劣化させるのでいずれか単独かまたは併用する
場合でも含有量は0.10%以下に限定した。Mnは脱酸剤と
して、あるいはSによる熱間脆性を制御するために添加
されるが1.0%を超えるとコスト上昇を招くのでMnは 1.
0%以下とする。
Since the magnetic flux density of Sb and Sn is improved by the improvement of the texture, it is desirable to add Sb and Sn as needed in order to obtain a particularly high magnetic flux density. Then Sb and Sn
If the total of one or two of them exceeds 0.10%, the magnetic properties are rather deteriorated. Therefore, the content is limited to 0.10% or less even when either of them is used alone or in combination. Mn is added as a deoxidizer or to control hot embrittlement due to S, but if it exceeds 1.0%, the cost increases, so Mn is 1.
0% or less.

【0025】Pは硬度を高め打抜性を向上させるために
添加されることがあるが、0.20%より多いと脆くなるの
で0.20%以下にする必要がある。次に、本発明の実施例
について説明する。なお、実施例1〜5は請求項1の発
明に対応するものであり、実施例6〜9は請求項2の発
明に夫々対応するものである。
P may be added in order to increase hardness and punchability, but if it exceeds 0.20%, it becomes brittle, so it is necessary to make it 0.20% or less. Next, examples of the present invention will be described. Note that Examples 1 to 5 correspond to the invention of claim 1, and Examples 6 to 9 correspond to the invention of claim 2, respectively.

【0026】[0026]

【実施例】【Example】

実施例1 転炉で溶製し、真空脱ガス処理した溶鋼を連続鋳造し、
1〜9までのスラブを造った。それらの化学成分はC:
0.006%、Si:0.35%、Mn:0.25%、P:0.08%、Al:
0.0009%を含み残部実質的にFeであった。それらのスラ
ブを通常の熱間圧延で、 2.3mm厚の熱延鋼帯とした。な
お熱延鋼帯のA3 変態点は 955℃であった。
Example 1 Molten steel in a converter and vacuum degassed molten steel are continuously cast,
Made slabs 1-9. Their chemical composition is C:
0.006%, Si: 0.35%, Mn: 0.25%, P: 0.08%, Al:
The balance was 0.0009% and the balance was essentially Fe. The slabs were hot rolled into ordinary hot rolled steel strips with a thickness of 2.3 mm. The A 3 transformation point of the hot rolled steel strip was 955 ° C.

【0027】引続き、熱延鋼帯に軽冷延を施したのち熱
延鋼帯焼鈍を行った。冷延率および焼鈍条件を表1に示
す。次いで、1回の冷間圧延で0.50mm厚に仕上げ、引続
いて850℃, 75秒の脱炭兼再結晶焼鈍を施して製品にし
た。それらの製品および 750℃,2Hrの歪取焼鈍後の磁
性をエプスタイン試片で測定した結果を表2に示した。
これらから、本発明の適合例のように熱延鋼帯の軽冷延
の圧下率および熱延鋼帯焼鈍条件を適正範囲にとれば、
熱延鋼帯焼鈍後の結晶粒が適度に粗大化し、その結果、
製品の集合組織改善が図れ、とくに磁束密度B50が高
く、かつ表面外観の良いものが得られることが明らかで
ある。
Subsequently, the hot-rolled steel strip was lightly and cold rolled, and then hot-rolled steel strip was annealed. Table 1 shows the cold rolling rate and the annealing conditions. Then, it was finished by cold rolling once to a thickness of 0.50 mm, and subsequently subjected to decarburization / recrystallization annealing at 850 ° C. for 75 seconds to obtain a product. Table 2 shows the results of measuring the magnetism of these products and the stress after strain relief annealing at 750 ° C for 2 hours with Epstein test pieces.
From these, if the reduction ratio of the hot-rolled steel strip and the annealing conditions of the hot-rolled steel strip are set to appropriate ranges as in the conformity example of the present invention,
After the hot-rolled steel strip is annealed, the crystal grains are appropriately coarsened, and as a result,
It is clear that the texture of the product can be improved and that the magnetic flux density B 50 is high and the surface appearance is good.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】実施例2 実施例1と同様に、C: 0.007%、Si:1.0 %、Mn:0.
30%、P: 0.018%、Al:0.30%を含み、残部実質的に
Feであるスラブを10〜15まで造った。次いで、通常の熱
間圧延で2.0mm 厚の熱延鋼帯とした。これらの熱延鋼帯
のA3 変態点は1050℃であった。
Example 2 As in Example 1, C: 0.007%, Si: 1.0%, Mn: 0.
30%, P: 0.018%, Al: 0.30%, the balance is substantially
I made a slab that is Fe from 10 to 15. Then, a hot rolled steel strip having a thickness of 2.0 mm was formed by ordinary hot rolling. The A 3 transformation point of these hot-rolled steel strips was 1050 ° C.

【0031】引続き、熱延鋼帯に軽冷延を施したのち熱
延鋼帯焼鈍を行った。それらの条件を表3に示す。つぎ
に、1回の冷間圧延で0.50mm厚に仕上げてから、 830
℃,75秒の脱炭兼再結晶焼鈍を施して製品とした。それ
らの製品および 750℃,2Hrの歪取焼鈍後の磁性をエプ
スタイン試片で測定した結果を表4に示した。これらか
ら、本発明の適合例が比較例に比し、とくに磁束密度が
優れ、かつ表面外観の良いことが明らかである。
Subsequently, the hot-rolled steel strip was lightly and cold-rolled, and then hot-rolled steel strip was annealed. Table 3 shows those conditions. Next, after performing one cold rolling to a thickness of 0.50 mm,
The product was decarburized and recrystallized at 75 ° C for 75 seconds. Table 4 shows the results of measuring the magnetic properties of these products and the stress after annealing for 2 hours at 750 ° C with an Epstein test piece. From these, it is apparent that the conforming example of the present invention has a particularly excellent magnetic flux density and a good surface appearance as compared with the comparative example.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】実施例3 転炉で溶製し、真空脱ガス処理した溶鋼を連続鋳造し、
16〜22のスラブを造った。それらの化学成分はC: 0.0
05%、Si:0.33%、Mn:0.25%、P:0.07%、Al:0.00
08%、Sb:0.050 %を含み残部実質的にFeであった。そ
れらのスラブを通常の熱間圧延で、 2.3mm厚の熱延鋼帯
とした。なお、熱延鋼帯のA3 変態点温度は 950℃であ
った。
Example 3 Molten steel melted in a converter and subjected to vacuum degassing was continuously cast,
Made 16 to 22 slabs. Their chemical composition is C: 0.0
05%, Si: 0.33%, Mn: 0.25%, P: 0.07%, Al: 0.00
The balance was 08%, Sb: 0.050%, and the balance was essentially Fe. The slabs were hot rolled into ordinary hot rolled steel strips with a thickness of 2.3 mm. The A 3 transformation point temperature of the hot rolled steel strip was 950 ° C.

【0035】引続き、熱延鋼帯に軽冷延を施したのち、
熱延鋼帯焼鈍を連続炉で行った。冷延率および焼鈍条件
を表5に示す。次いで1回の冷間圧延で0.50mm厚に仕上
げ、その後 810℃,60秒の脱炭兼再結晶焼鈍を施して製
品にした。それらの製品および 750℃,2Hrの歪取焼鈍
後の磁性をエブスタイン試片で測定した結果を表6に示
した。これらから、本発明の適合例のように熱延鋼帯の
圧下率とそれに引き続く熱延鋼帯焼鈍条件を適正範囲に
とれば、とくに磁束密度が高く、かつ表面外観の良い電
磁鋼板が得られることが明らかである。
Subsequently, the hot rolled steel strip is lightly and cold rolled,
Hot-rolled steel strip annealing was performed in a continuous furnace. Table 5 shows the cold rolling ratio and the annealing conditions. Next, it was finished by cold rolling once to a thickness of 0.50 mm, and then subjected to decarburization and recrystallization annealing at 810 ° C for 60 seconds to obtain a product. Table 6 shows the results of measuring the magnetism of these products and the stress after annealing for 2 hours at 750 ° C with an Ebstein sample. From these, if the reduction ratio of the hot-rolled steel strip and the subsequent hot-rolled steel strip annealing conditions are set in an appropriate range as in the conformity example of the present invention, a magnetic steel sheet having a particularly high magnetic flux density and a good surface appearance can be obtained. It is clear.

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【表6】 [Table 6]

【0038】実施例4 実施例3と同様に、C: 0.008%、Si:1.1 %、Mn:0.
28%、P:0.018 %、Al:0.31%、Sn:0.055 %を含み
残部実質的にFeよりなる溶鋼から23〜28のスラブを、ま
たC:0.007 %、Si: 1.1%、Mn:0.30%、P:0.019
%、Al:0.30%、Sb:0.03%、Sn:0.03%を含み残部実
質的にFeよりなる溶鋼から29〜31のスラブを造り、通常
の熱間圧延で2.0mm 厚さの熱延鋼帯とした。23〜28の熱
延鋼帯のA3 変態点は1045℃で29〜31の熱延鋼帯のA3
変態点は1055℃であった。
Example 4 As in Example 3, C: 0.008%, Si: 1.1%, Mn: 0.
Slab of 23 to 28 from molten steel consisting of 28%, P: 0.018%, Al: 0.31%, Sn: 0.055% and the balance being essentially Fe, C: 0.007%, Si: 1.1%, Mn: 0.30% , P: 0.019
%, Al: 0.30%, Sb: 0.03%, Sn: 0.03%, the balance is made of molten steel consisting of substantially 29% to 31% slab, and hot-rolled steel strip with a thickness of 2.0 mm is produced by normal hot rolling. And The A 3 transformation point of 23 to 28 hot rolled steel strips is 1045 ℃ and the A 3 transformation temperature of 29 to 31 hot rolled steel strips is A 3
The transformation point was 1055 ° C.

【0039】引続き、熱延鋼帯に軽冷延を施したのち熱
延鋼帯焼鈍を連続炉で行った。これらの軽冷延と熱延鋼
帯焼鈍条件を表7に示す。つぎに、1回の冷間圧延で0.
50mm厚さに仕上げてから、830 ℃,75sの脱炭兼再結晶
焼鈍を施して製品とした。それらの製品および 750℃,
2Hrの歪取焼鈍後の磁性をエプスタイン試片で測定した
結果を表8に示した。
Subsequently, the hot-rolled steel strip was lightly and cold-rolled, and then hot-rolled steel strip was annealed in a continuous furnace. Table 7 shows these light cold rolling and hot strip annealing conditions. Next, in one cold rolling, 0.
After finishing to a thickness of 50 mm, it was decarburized and recrystallized at 830 ° C for 75 s to obtain a product. Those products and 750 ℃,
Table 8 shows the results of measuring the magnetism after strain relief annealing of 2 Hr with an Epstein test piece.

【0040】これらから、本発明の適合例が比較例に比
し、とくに磁束密度が優れ、かつ表面外観の良いことが
明らかである。
From these, it is apparent that the conforming example of the present invention has a particularly excellent magnetic flux density and a good surface appearance as compared with the comparative example.

【0041】[0041]

【表7】 [Table 7]

【0042】[0042]

【表8】 [Table 8]

【0043】実施例5 C: 0.002%、Si:3.26%、Mn:0.14%、P:0.02%、
Al:0.61%を含み残部実質的にFeよりなる溶鋼から32〜
37のスラブを、またC:0.003 %、Si:3.31%、Mn:0.
15%、P:0.02%、Al:0.59%、Sb:0.06%を含み残部
実質的にFeよりなる溶鋼から38〜41のスラブを、また
C:0.002 %、Si:3.33%、Mn:0.16%、P:0.02%、
Al:0.62%、Sb:0.03%、Sn;0.04%を含み残部実質的
にFeよりなる溶鋼から、42〜45のスラブを造り、通常の
熱間圧延で2.0mm 厚の熱延鋼帯とした。これら32〜45の
熱延鋼帯は、未変態鋼であった。
Example 5 C: 0.002%, Si: 3.26%, Mn: 0.14%, P: 0.02%,
Al: A molten steel containing 0.61% and the balance consisting essentially of Fe 32 to 32
37 slabs, C: 0.003%, Si: 3.31%, Mn: 0.
A slab of 38-41 from molten steel consisting of 15%, P: 0.02%, Al: 0.59%, Sb: 0.06% and the balance consisting essentially of Fe, and C: 0.002%, Si: 3.33%, Mn: 0.16%. , P: 0.02%,
A slab of 42 to 45 was made from molten steel consisting of Al: 0.62%, Sb: 0.03%, Sn: 0.04% and the balance consisting essentially of Fe, and a hot rolled steel strip with a thickness of 2.0 mm was formed by normal hot rolling. .. These 32-45 hot-rolled steel strips were untransformed steels.

【0044】引続き、熱延鋼帯に軽冷延を施したのち熱
延鋼帯焼鈍を連続炉で行った。これらの軽冷延と熱延鋼
帯焼鈍条件を表9に示す。つぎに、1回の冷間圧延で0.
50mm厚さに仕上げてから、1000℃,30秒の再結晶焼鈍を
施して製品とした。それらの製品および 750℃×2hrの
歪取焼鈍後の磁性をエプスタイン試片で測定した結果を
表10に示した。これらから、本発明の適合例が比較例に
比し、磁束密度の向上に伴い、鉄損が低くなり、かつ表
面外観が良いことが明らかである。
Subsequently, the hot-rolled steel strip was lightly and cold-rolled, and then hot-rolled steel strip was annealed in a continuous furnace. Table 9 shows these light cold rolling and hot strip annealing conditions. Next, in one cold rolling, 0.
After finishing to a thickness of 50 mm, recrystallization annealing was performed at 1000 ° C for 30 seconds to obtain a product. Table 10 shows the results of measuring the magnetism of these products and the stress after strain relief annealing at 750 ° C x 2 hr using Epstein test pieces. From these, it is apparent that the conforming example of the present invention has a lower iron loss and a better surface appearance as the magnetic flux density improves, as compared with the comparative example.

【0045】[0045]

【表9】 [Table 9]

【0046】[0046]

【表10】 [Table 10]

【0047】実施例6 転炉で溶製し、真空脱ガス処理した溶鋼を連続鋳造し、
スラブとする。このC:0.007 %、Si:0.15%、Mn:0.
25%、P:0.03%、Al:0.0008%を含み残部が実質的に
Feであるスラブを通常の熱間圧延で、2.0mm の熱延鋼板
とした。この鋼板のA3 変態点は 920℃であった。
Example 6 Molten steel melted in a converter and vacuum degassed was continuously cast,
Slavic. This C: 0.007%, Si: 0.15%, Mn: 0.
25%, P: 0.03%, Al: 0.0008% including the balance
The slab of Fe was hot rolled into a hot rolled steel sheet of 2.0 mm. A 3 transformation point of the steel plate was 920 ° C..

【0048】この熱延板を表11に示すような冷延焼鈍条
件で処理し、表11に示すような結晶粒径を持つ組織を得
る。さらに、これを0.50〜0.60mm厚に大圧下冷延後、60
0 〜800 ℃で焼鈍した。そのときの結晶粒径も表11に示
す。さらに、表11に示したような冷延圧下率で、0.50mm
厚の製品厚さに仕上げ、 800℃75sの脱炭焼鈍を施して
製品とした。
This hot-rolled sheet is treated under the cold-rolling annealing conditions shown in Table 11 to obtain a structure having a crystal grain size shown in Table 11. Furthermore, after cold-rolling this to a thickness of 0.50 to 0.60 mm under heavy rolling, 60
Annealed at 0-800 ° C. Table 11 also shows the crystal grain size at that time. Furthermore, at the cold rolling reduction rate as shown in Table 11, 0.50 mm
Finished to a thick product thickness and decarburized and annealed at 800 ℃ for 75s to obtain a product.

【0049】これらの製品をエプスタイン試片で測定し
た結果および表面性状も表11に併記した。なお比較例と
して、2回目の冷延後焼鈍して製品とした場合も含んで
いる。本発明の実施例が、比較例に対して、とくに磁束
密度、表面性状ともに優れていることは明らかである。
The results and surface properties of these products measured with Epstein test pieces are also shown in Table 11. In addition, as a comparative example, a case in which a product is obtained by annealing after the second cold rolling is also included. It is apparent that the examples of the present invention are superior to the comparative examples in terms of magnetic flux density and surface properties.

【0050】[0050]

【表11】 [Table 11]

【0051】実施例7 転炉で溶製し、真空脱ガス処理した溶鋼を連続鋳造し、
スラブとする。このC:0.006 %、Si:0.18%、Mn:0.
25%、P:0.003 %、Al:0.0011%、Sb:0.06%を含
み、残部が実質的にFeであるスラブを通常の熱間圧延
で、2.0mm の熱延鋼板とした。この鋼板のA3 変態点は
925℃であった。
Example 7 Molten steel melted in a converter and subjected to vacuum degassing was continuously cast,
Slavic. This C: 0.006%, Si: 0.18%, Mn: 0.
A slab containing 25%, P: 0.003%, Al: 0.0011%, and Sb: 0.06%, and the balance being substantially Fe was formed into a 2.0 mm hot-rolled steel sheet by ordinary hot rolling. The A 3 transformation point of this steel sheet is
It was 925 ° C.

【0052】この熱延板を表12に示すような冷延焼鈍条
件で処理し、表12に示すような結晶粒径を持つ組織を得
る。さらに、これを0.50〜0.60mm厚に冷延後、600 〜 8
00℃で焼鈍した。そのときの結晶粒径も表12に示す。さ
らに、表12に示したような冷延圧下率で、0.50mm厚の製
品厚さに仕上げ、800 ℃75sの脱炭焼鈍を施して製品と
した。
This hot-rolled sheet is treated under the cold-rolling annealing conditions shown in Table 12 to obtain a structure having a crystal grain size shown in Table 12. Furthermore, after cold rolling this to a thickness of 0.50 to 0.60 mm, 600 to 8
Annealed at 00 ° C. Table 12 also shows the crystal grain size at that time. Further, at a cold rolling reduction rate as shown in Table 12, a product thickness of 0.50 mm was finished, and decarburization annealing was performed at 800 ° C for 75 s to obtain a product.

【0053】これらの製品をエプスタイン試片で測定し
た結果および表面性状を表12に併記した。なお比較例と
して、2回目の冷延後焼鈍して製品とした場合も含んで
いる。本発明の実施例が、比較例に対して、とくに磁束
密度、表面性状ともに優れていることは明らかである。
Table 12 shows the results and surface properties of these products measured with Epstein test pieces. In addition, as a comparative example, a case in which a product is obtained by annealing after the second cold rolling is also included. It is apparent that the examples of the present invention are superior to the comparative examples in terms of magnetic flux density and surface properties.

【0054】[0054]

【表12】 [Table 12]

【0055】実施例8 溶炉で溶製し、真空脱ガス処理した溶鋼を連続鋳造し、
スラブとする。このC:0.008 %、Si:0.35%、Mn:0.
35%、P:0.05%、Al:0.0012%、Sb:0.05%、Sn:0.
03%を含み、残部が実質的にFeであるスラブを通常の熱
間圧延で、2.0mm の熱延鋼板とした。この鋼板のA3
態点は 940℃であった。
Example 8 Molten steel melted in a melting furnace and vacuum degassed is continuously cast,
Slavic. This C: 0.008%, Si: 0.35%, Mn: 0.
35%, P: 0.05%, Al: 0.0012%, Sb: 0.05%, Sn: 0.
A slab containing 03% and the balance being substantially Fe was made into a 2.0 mm hot rolled steel sheet by ordinary hot rolling. A 3 transformation point of the steel plate was 940 ° C..

【0056】この熱延板を表13に示すような冷延焼鈍条
件で処理し、表13に示すような結晶粒径を持つ組織を得
る。さらに、これを0.50〜0.60mm厚に冷延後、 600〜80
0 ℃で焼鈍した。そのときの結晶粒径も表13に示す。さ
らに、表13に示したような冷延圧下率で、0.50mm厚の製
品厚さに仕上げ、 800℃75sの脱炭焼鈍を施して製品と
した。
This hot-rolled sheet is treated under the cold-rolling annealing conditions shown in Table 13 to obtain a structure having a crystal grain size shown in Table 13. Furthermore, after cold rolling this to a thickness of 0.50 to 0.60 mm, 600 to 80
Annealed at 0 ° C. Table 13 also shows the crystal grain size at that time. Further, at a cold rolling reduction ratio as shown in Table 13, a product thickness of 0.50 mm was finished, and decarburization annealing was performed at 800 ° C for 75 s to obtain a product.

【0057】これらの製品をエブスタイン試片で測定し
た結果および表面性状も表13に併記した。なお比較例と
して、2回目の冷延後焼鈍して製品とした場合も含んで
いる。本発明の実施例が、比較例に対して、とくに磁束
密度、表面性状ともにすぐれていることは明らかであ
る。
Table 13 also shows the results and surface properties of these products measured with Ebstein test pieces. In addition, as a comparative example, a case in which a product is obtained by annealing after the second cold rolling is also included. It is apparent that the examples of the present invention are superior to the comparative examples in terms of magnetic flux density and surface properties.

【0058】[0058]

【表13】 [Table 13]

【0059】実施例9 転炉で溶製し、真空脱ガス処理した溶鋼を連続鋳造し、
スラブとする。97〜101 のスラブは、C:0.002 %、S
i:3.31%、Mn:0.16%、P:0.02%、Al:0.64%、を
含み残部実質的にFeよりなる。102 〜106 のスラブは、
C:0.003 %、Si:3.25%、Mn:0.15%、P:0.02%、
Al:0.62%、Sb:0.05%を含み残部実質的にFeよりな
る。
Example 9 Molten steel melted in a converter and vacuum degassed is continuously cast,
Slavic. Slabs 97 to 101 have C: 0.002%, S
i: 3.31%, Mn: 0.16%, P: 0.02%, Al: 0.64%, and the balance consists essentially of Fe. The slabs of 102-106 are
C: 0.003%, Si: 3.25%, Mn: 0.15%, P: 0.02%,
Al: 0.62%, Sb: 0.05% are included, and the balance is substantially Fe.

【0060】107 〜111 のスラブはC:0.002 %、Si:
3.28%、Mn:0.17%、P:0.02%、Al:0.58%、Sb:0.
03%、Sn:0.04%を含み残部実質的にFeよりなる。以上
のスラブを通常の熱間圧延で、2.0mm の熱延鋼板とし
た。これらの鋼板は未変態である。この熱延板を表14に
示すような冷延焼鈍条件で処理し、表14に示すような結
晶粒径を持つ組織を得る。さらに、これを0.50〜0.60mm
に冷延後 600〜800 ℃で焼鈍した。そのときの結晶粒径
も表14に示す。さらに、表14に示したような冷延圧下率
で0.50mm厚の製品厚さに仕上げ、1000℃×30sの再結晶
焼鈍を施して製品とした。これらの製品をエプスタイン
試片で測定した結果および表面性状も表14に併記した。
The slabs of 107 to 111 have C: 0.002% and Si:
3.28%, Mn: 0.17%, P: 0.02%, Al: 0.58%, Sb: 0.
03%, Sn: 0.04% included, and the balance consisting essentially of Fe. The above slab was subjected to normal hot rolling to obtain a 2.0 mm hot rolled steel sheet. These steel sheets have not been transformed. This hot-rolled sheet is treated under the cold-rolling annealing conditions shown in Table 14 to obtain a structure having a crystal grain size shown in Table 14. Furthermore, this is 0.50-0.60mm
After cold rolling, it was annealed at 600 to 800 ° C. Table 14 also shows the crystal grain size at that time. Further, the product was finished by cold rolling reduction as shown in Table 14 to a product thickness of 0.50 mm and subjected to recrystallization annealing at 1000 ° C. for 30 s to obtain a product. Table 14 also shows the results and surface properties of these products measured with Epstein test pieces.

【0061】[0061]

【表14】 [Table 14]

【0062】[0062]

【発明の効果】以上の如く、熱延鋼帯に適度な軽冷延を
行い、熱延鋼帯焼鈍を施すことにより適正な結晶粒と
し、あるいはさらに、冷延後の焼鈍と軽圧下を組合せる
ことにより、とくに磁束密度が高く、かつ表面外観の良
い無方向性電磁鋼板を低コストでしかも安定して製造す
ることができる。
As described above, the light-rolled steel strip is appropriately lightly and cold-rolled, and the hot-rolled steel strip is annealed to obtain proper crystal grains, or further, annealing after cold-rolling and light reduction are combined. By doing so, a non-oriented electrical steel sheet having a particularly high magnetic flux density and a good surface appearance can be manufactured stably at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁束密度B50と熱延鋼帯の冷延率の関係を示す
グラフである。
FIG. 1 is a graph showing a relationship between a magnetic flux density B 50 and a cold rolling rate of a hot rolled steel strip.

【図2】熱延板焼鈍後の粗大粒の占める比率と加熱速度
の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a heating rate and a ratio of coarse particles after annealing a hot rolled sheet.

【図3】最終焼鈍前の冷延率とその前の結晶粒径と製品
の磁束密度の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the cold rolling rate before final annealing, the crystal grain size before that, and the magnetic flux density of the product.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小原 隆史 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 小林 秀夫 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 森田 和巳 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 飯田 嘉明 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takashi Obara 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division (72) Hideo Kobayashi 1 Kawasaki-cho, Chiba-shi Kawasaki Steel Co., Ltd. (72) Inventor Kazumi Morita 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture (no house number) Inside the Mizushima Steel Works, Kawasaki Steel Co., Ltd. (72) In-house Yoshiaki Iida, 1-chome, Mizushima Kawasaki-dori, Kurashiki City, Okayama Prefecture Shi) Inside Kawashima Steel Co., Ltd. Mizushima Steel Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.02%以下、Siもしくは
Si+Al: 4.0%以下、Mn: 1.0%以下、P: 0.2%以下
を含み、残部が実質的にFeからなるスラブを熱間圧延に
より熱延鋼帯とし、さらに圧下率5〜15%の冷間圧延を
施したのち、結晶粒径が 100〜 200μm となる焼鈍を施
し、さらに冷間圧延により最終板厚とした後、最終焼鈍
を施すことを特徴とする磁気特性が優れかつ表面外観の
良い無方向性電磁鋼板の製造方法。
1. By weight%, C: 0.02% or less, Si or
A slab containing Si + Al: 4.0% or less, Mn: 1.0% or less, P: 0.2% or less, and the balance being substantially Fe, is hot-rolled into a hot-rolled steel strip, which is cold-rolled at a reduction rate of 5 to 15%. After rolling, it is annealed so that the grain size becomes 100-200 μm, and then cold-rolled to the final plate thickness, followed by final annealing, which has excellent magnetic properties and good surface appearance. Manufacturing method of grain-oriented electrical steel sheet.
【請求項2】 重量%で、C:0.02%以下、Siもしくは
Si+Al: 4.0%以下、Mn: 1.0%以下、P: 0.2%以下
を含み、残部が実質的にFeからなるスラブを熱間圧延に
より熱延鋼帯とし、さらに圧下率5〜15%の冷間圧延を
施したのち、結晶粒径が 100〜 200μm となる焼鈍を施
し、さらに冷間圧延後、結晶粒径を20μm 以下とする焼
鈍を施し、さらに1〜15%の冷間圧延を施して製品板厚
としたのち、最終焼鈍を施すことを特徴とする磁気特性
が優れかつ表面外観の良い無方向性電磁鋼板の製造方
法。
2. C: 0.02% or less by weight%, Si or
A slab containing Si + Al: 4.0% or less, Mn: 1.0% or less, P: 0.2% or less, and the balance being substantially Fe, is hot-rolled into a hot-rolled steel strip, which is cold-rolled at a reduction rate of 5 to 15%. After rolling, annealing is performed to obtain a crystal grain size of 100 to 200 μm, further cold rolling is performed, annealing is performed to reduce the grain size to 20 μm or less, and cold rolling of 1 to 15% is performed. A method for producing a non-oriented electrical steel sheet having excellent magnetic properties and good surface appearance, which is characterized by performing final annealing after making the sheet thickness.
【請求項3】 結晶粒径が 100〜 200μm となる焼鈍
が、3℃/sec 以上の加熱速度で所定の温度に加熱し、
該温度で5〜30秒保持する短時間焼鈍であることを特徴
とする請求項1又は2記載の磁気特性が優れかつ表面外
観の良い無方向性電磁鋼板の製造方法。
3. Annealing with a crystal grain size of 100 to 200 μm is performed by heating to a predetermined temperature at a heating rate of 3 ° C./sec or more,
The method for producing a non-oriented electrical steel sheet having excellent magnetic properties and good surface appearance according to claim 1 or 2, characterized in that the annealing is performed for a short time at the temperature for 5 to 30 seconds.
【請求項4】 スラブ組成が、重量%で、C:0.02%以
下、SiもしくはSi+Al: 4.0%以下、Mn: 1.0%以下、
P: 0.2%以下、SbおよびSnの何れか1種または2種の
合計が0.10%以下を含み、残部が実質的にFeとからなる
ことを特徴とする請求項1、2又は3記載の磁気特性が
優れかつ表面外観の良い無方向性電磁鋼板の製造方法。
4. The slab composition, in% by weight, C: 0.02% or less, Si or Si + Al: 4.0% or less, Mn: 1.0% or less,
P: 0.2% or less, the sum of one or two of Sb and Sn is 0.10% or less, and the balance consists essentially of Fe, The magnetic material according to claim 1, 2 or 3. A method for producing a non-oriented electrical steel sheet with excellent characteristics and good surface appearance.
JP3326163A 1990-12-10 1991-12-10 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance Expired - Fee Related JP2500033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3326163A JP2500033B2 (en) 1990-12-10 1991-12-10 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP40104890 1990-12-10
JP2-401048 1990-12-10
JP27513891 1991-10-23
JP3-275138 1991-10-23
JP3326163A JP2500033B2 (en) 1990-12-10 1991-12-10 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance

Publications (2)

Publication Number Publication Date
JPH05171280A true JPH05171280A (en) 1993-07-09
JP2500033B2 JP2500033B2 (en) 1996-05-29

Family

ID=27336231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3326163A Expired - Fee Related JP2500033B2 (en) 1990-12-10 1991-12-10 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance

Country Status (1)

Country Link
JP (1) JP2500033B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046806A (en) * 2010-08-30 2012-03-08 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
JP2013517380A (en) * 2010-08-26 2013-05-16 宝山鋼鉄股▲分▼有限公司 Method for improving coarse crystal grains of non-oriented silicon steel
EP2886667A4 (en) * 2012-08-17 2015-09-30 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
KR20160075262A (en) * 2014-12-19 2016-06-29 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method for the same
JP2018507958A (en) * 2014-12-24 2018-03-22 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof
KR20180089500A (en) 2016-01-15 2018-08-08 제이에프이 스틸 가부시키가이샤 Non-oriented electric steel sheet and manufacturing method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057082B2 (en) 2013-03-13 2017-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
JP5790953B2 (en) 2013-08-20 2015-10-07 Jfeスチール株式会社 Non-oriented electrical steel sheet and its hot-rolled steel sheet
JP5995002B2 (en) 2013-08-20 2016-09-21 Jfeスチール株式会社 High magnetic flux density non-oriented electrical steel sheet and motor
JP6020863B2 (en) 2015-01-07 2016-11-02 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP6048699B2 (en) 2015-02-18 2016-12-21 Jfeスチール株式会社 Non-oriented electrical steel sheet, manufacturing method thereof and motor core
KR101977510B1 (en) 2017-12-26 2019-08-28 주식회사 포스코 Non-oriented electrical steel sheet having exelleant magnetic properties low deviation of thickness and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306523A (en) * 1988-06-04 1989-12-11 Kobe Steel Ltd Production of non-oriented electrical sheet having high magnetic flux density
JPH02263952A (en) * 1989-04-03 1990-10-26 Nippon Steel Corp Nonoriented silicon steel sheet having high magnetic flux density and low core loss and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306523A (en) * 1988-06-04 1989-12-11 Kobe Steel Ltd Production of non-oriented electrical sheet having high magnetic flux density
JPH02263952A (en) * 1989-04-03 1990-10-26 Nippon Steel Corp Nonoriented silicon steel sheet having high magnetic flux density and low core loss and its manufacture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013517380A (en) * 2010-08-26 2013-05-16 宝山鋼鉄股▲分▼有限公司 Method for improving coarse crystal grains of non-oriented silicon steel
JP2012046806A (en) * 2010-08-30 2012-03-08 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
EP2886667A4 (en) * 2012-08-17 2015-09-30 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
US9748027B2 (en) 2012-08-17 2017-08-29 Jfe Steel Corporation Method for manufacturing non-oriented electromagnetic steel sheet
KR20160075262A (en) * 2014-12-19 2016-06-29 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method for the same
JP2018507958A (en) * 2014-12-24 2018-03-22 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof
US10941457B2 (en) 2014-12-24 2021-03-09 Posco Non-oriented electrical steel sheet and method for manufacturing the same
KR20180089500A (en) 2016-01-15 2018-08-08 제이에프이 스틸 가부시키가이샤 Non-oriented electric steel sheet and manufacturing method thereof
US11008633B2 (en) 2016-01-15 2021-05-18 Jfe Steel Corporation Non-oriented electrical steel sheet and production method thereof

Also Published As

Publication number Publication date
JP2500033B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
JPH09118964A (en) Grain-directional silicon steel having high volume resistivity
US4773948A (en) Method of producing silicon iron sheet having excellent soft magnetic properties
JP2500033B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance
EP0490617B1 (en) Method for producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
JPH03219020A (en) Production of nonoriented silicon steel sheet
JP3290446B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP4013262B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH0784615B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic flux density
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JPH10317060A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP2680519B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS5855209B2 (en) Method for manufacturing non-oriented silicon steel sheet with little aging deterioration and good surface quality
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method
JP2716987B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0892644A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH042724A (en) Production of thin grain-oriented silicon steel sheet excellent in magnetic property
JPH0257125B2 (en)
JP2818290B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JP2758915B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH06330174A (en) Production of low iron loss grain oriented silicon steel sheet
JPS6256205B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees