KR20000031656A - Process for preparing non-directional electric steel plate which has good magnetic property and low magnetic-bi-directional property - Google Patents

Process for preparing non-directional electric steel plate which has good magnetic property and low magnetic-bi-directional property Download PDF

Info

Publication number
KR20000031656A
KR20000031656A KR1019980047801A KR19980047801A KR20000031656A KR 20000031656 A KR20000031656 A KR 20000031656A KR 1019980047801 A KR1019980047801 A KR 1019980047801A KR 19980047801 A KR19980047801 A KR 19980047801A KR 20000031656 A KR20000031656 A KR 20000031656A
Authority
KR
South Korea
Prior art keywords
less
rolling
magnetic
property
directional
Prior art date
Application number
KR1019980047801A
Other languages
Korean (ko)
Inventor
박종태
김병구
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019980047801A priority Critical patent/KR20000031656A/en
Publication of KR20000031656A publication Critical patent/KR20000031656A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE: A process for preparing a non-directional electric steel plate is provided to have good magnetic property and low magnetic-bi-directional property. CONSTITUTION: The process is comprised of heat-rolling, heat-soft plate-rolling, cold-rolling the following defined slab at desired thickness, and annealing the thus-obtained materials. The slab is characterized by comprising 0.04% or less of C, 2.0% or less of Si, 1.0% or less of Al, 0.1 to 1.0% of Mn, 0.010% or less of S, 0.01% or less of N, 0.010% or less of O, and the remainder being consisted of Fe and inevitable impurities. The process is characterized that the latter rolling step is performed at temperatures less than those of the phase deterioration of Ar1, and its final annealing rate is increased in rates of 10 to 50°C/sec.

Description

자기특성이 우수하고 자기이방성이 작은 무방향성 전기강판의 제조방법Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and small magnetic anisotropy

본 발명은 중소형모터 등의 철심재료로 적합한 무방향성 전기강판의 제조방법에 관한 것으로, 보다 상세하게는 Si:2.0%이하, Al:1.0%이하를 함유하는 규소강 스라브의 열간압연조건과 최종소둔시의 승온속도를 제어하여 자기특성이 우수할 뿐만 아니라 자기이방성이 작은 무방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a method for producing a non-oriented electrical steel sheet suitable for iron core materials, such as small and medium-sized motor, more specifically, hot rolling conditions and final annealing of silicon steel slab containing less than Si: 2.0%, Al: 1.0% or less The present invention relates to a method of manufacturing a non-oriented electrical steel sheet having excellent magnetic properties as well as small magnetic anisotropy by controlling the temperature rising rate of the battery.

무방향성 전기강판에 요구되는 중요한 자기적 성질은 철손과 자속밀도를 들 수 있다. 그런데, 철손과 자속밀도는 Si함량에 따라 상반되게 변화한다. 즉, Si함량이 높으면 철손이 낮아지는 반면, 자속밀도도 낮아지는 문제점이 있다. 이러한 특징 때문에 수요가들은 철심재료가 사용되는 전기기기의 용도에 적합한 제품을 선택하여 사용하여 왔다. 예를 들어 단시간 순간적으로 사용되는 중, 소형모터나 가전기기용 모터의 경우에는 자속밀도가 높은 제품을 사용한 반면, 장시간 지속적으로 사용되고 전력소비량이 큰 대형 전기기기용의 경우에는 철손이 낮은 제품을 선택하여 사용해 왔다. 그러나, 최근 에너지절약의 차원에서 이러한 전기기기의 효율을 높이고 소형화하려는 추세에 따라 철심재료인 전기강판에 있어서도 철손이 낮을 뿐만 아니라 자속밀도가 높은 제품에 대한 개발욕구가 점차 증가되고 있는 실정이다.Important magnetic properties required for non-oriented electrical steel sheet include iron loss and magnetic flux density. By the way, iron loss and magnetic flux density change in opposition with Si content. In other words, if the Si content is high, the iron loss is low, the magnetic flux density is also low. Due to these characteristics, demands have been used to select a product suitable for the purpose of an electric apparatus using iron core material. For example, a small motor or a motor for home appliances uses a high magnetic flux density, while a short time instantaneous use uses a product with a high magnetic flux density. Has been used. However, according to the recent trend to increase the efficiency and miniaturization of such electrical equipment in terms of energy saving, there is an increasing demand for development of products having low magnetic loss and high magnetic flux density even in electrical steel sheets which are iron core materials.

또한, 회전기기의 특성상 자화가 여러 방향으로 일어나기 때문에 이러한 철심재료에는 방향에 따른 자기특성의 차이가 작은 것이 바람직하다. 무방향성 전기강판의 자기특성은 압연방향과 압연직각방향과의 평균값으로 나타내는데 제조공정상 한 방향으로 냉간압연과 연속소둔을 거치게 되므로 압연방향의 자기특성이 압연직각방향의 자기특성보다 우수한 것이 보통이다. 특히, 이러한 자기이방성은 철손이 낮을수록 커지는 경향이 있어 회전기기용 철심재료의 고급화를 위해서는 반드시 극복해야 할 부분이다. 지금까지는 회전기기용 철심재료로 사용되는 무방향성 전기강판의 개발이 자기이방성은 도외시한 채 주로 자기특성을 향상시키는데 만 치중되어져 왔으나, 최근 전기기기의 고급화, 정밀화로 인하여 비로서 자기이방성이 주목을 받게 되었다. 그렇지만 자기이방성의 감소에 대해서는 아직까지 주목할만한 진전이 이루어지지 않았다.In addition, since the magnetization occurs in various directions due to the characteristics of the rotating machine, it is preferable that the difference in magnetic properties of the iron core material is small depending on the direction. The magnetic properties of non-oriented electrical steel sheet are represented by the average value between the rolling direction and the rolling right angle direction. In the manufacturing process, cold rolling and continuous annealing are performed in one direction. In particular, the magnetic anisotropy tends to increase as the iron loss is low, which is a part that must be overcome in order to upgrade the iron core material for a rotating machine. Until now, the development of non-oriented electrical steel sheets used as iron core materials for rotating machines has been focused on improving magnetic properties, while neglecting magnetic anisotropy. However, recently, due to the high quality and precision of electrical equipment, the magnetic anisotropy receives attention. It became. However, no significant progress has been made on the reduction of magnetic anisotropy.

무방향성 전기강판의 자기특성은 철심재료의 결정립크기와 집합조직의 발달정도에 따라 변한다. 무방향성 전기강판의 철손은 이력손실과 와전류손실로 구분되는데 이력손실은 결정립크기가 클수록 감소하는 반면 와전류손실은 증가하므로 일반적으로 철손이 최소가 되는 적정 결정립크기가 존재하게 된다. 또한, 무방향성 전기강판의 자기특성은 집합조직에 의해서도 현저하게 영향을 받으며 일반적으로 <100>축이 판면에 평행한 결정립이 많을수록 뛰어나다. 이러한 <100>축을 가장 많이 포함하는 결정면은 {100}면이므로 결국 {100}면이 판면에 평행하도록 집합조직을 잘 발달시켜야 한다. 그런데, {100}면은 재결정소둔시 {110}면 또는 {111}면 보다 상대적으로 재결정되는 속도가 느리기 때문에 종래 무방향성 전기강판으로 실제 생산되는 것은 {110}면이 판면에 평행한 {110}집합조직을 갖는 제품이다. 이 {110}집합조직을 갖는 강판은 {110}면내에 <100>축이 한 방향 대개 압연방향으로만 포함되어 있으므로 이 방향으로 자화되면 뛰어난 자기특성을 보이지만 동시에 이면내에는 <111>축도 포함되므로 자기특성은 강판내에서 큰 이방성을 보이게 된다. 따라서 자기특성도 우수하고 강판내의 이방성도 줄이기 위해서는 {100}집합조직을 충분히 발달시키는 것이 필요하다.The magnetic properties of non-oriented electrical steel sheets vary with the grain size of the core material and the degree of development of the texture. Iron loss of non-oriented electrical steel sheet is classified into hysteresis loss and eddy current loss. Hysteresis loss decreases as the grain size increases, while eddy current loss increases, so that there is a proper grain size that minimizes iron loss in general. In addition, the magnetic properties of non-oriented electrical steel sheet is significantly affected by the texture of the texture, and in general, the more grains parallel to the plane of the <100> axis, the better. Since the crystal plane containing the most <100> axes is the {100} plane, the aggregate must be well developed so that the {100} plane is parallel to the plate plane. However, the {100} plane is relatively slower to be recrystallized than the {110} plane or {111} plane during recrystallization annealing, so the actual production of conventional non-oriented electrical steel sheet is {110} plane {110} parallel to the plate plane. It is a product having an aggregate. Since the steel sheet having the {110} assembly structure contains the <100> axis in the {110} plane only in one direction, usually in the rolling direction, it shows excellent magnetic properties when magnetized in this direction, but also includes the <111> axis in the back surface. Magnetic properties show great anisotropy in the steel sheet. Therefore, in order to have excellent magnetic properties and to reduce anisotropy in the steel sheet, it is necessary to sufficiently develop the {100} texture.

무방향성 전기강판의 자기특성을 향상시키기 위한 방법으로 전기강판 제조시 Sb, Sn등과 같은 특수원소첨가, 열간압연조건을 제어하는 방법이 제안되었으며, 그 대표적인 예로는 일본공고특허공보 (소) 58-56732호 및 일본공개특허공보(평)6-192731호가 있다.As a method for improving the magnetic properties of non-oriented electrical steel sheet, a method for controlling special element addition and hot rolling conditions such as Sb and Sn during the production of electrical steel sheet has been proposed. 56732 and Japanese Patent Laid-Open No. Hei 6-192731.

상기 일본공고특허공보(소) 58-56732호에서는 철손을 감소시키기 위하여 Sn을 첨가하였는데, Sn첨가효과를 극대화시키기 위하여 열연판소둔시 냉각속도를 늦추고 또한 최종소둔시의 가열속도를 분당 50℃이하로 낮추어 철손을 감소시켰다. 그러나, 이러한 방법은 연속소둔되는 공장에 적용시키기에는 작업상의 제약이 있을 뿐만 아니라, 비경제적이다.In Japanese Laid-Open Patent Publication No. 58-56732, Sn was added to reduce iron loss. In order to maximize the effect of adding Sn, the cooling rate was decreased during hot annealing and the heating rate during final annealing was less than 50 ° C. per minute. To reduce iron loss. However, this method is not only economically inconvenient to be applied to the continuous annealing plant, but is also economical.

상기 일본공개특허공보(평)6-192731호에서는 자기특성을 향상시키기 위하여 열간압연시 Ar3변태점이상의 온도에서 열간압연을 종료하고 계속하여 Ar3변태점에서 Ar1변태점까지의 구간에서 평균냉각속도를 5℃/sec이하로 작업하였다. 그렇지만 열간압연을 Ar3변태점이상의 온도에서 종료하려면 스라브 가열온도를 높여야 하는데 스라브 가열온도가 높으면 열연판에 미세한 MnS, AlN등이 많이 석출하여 최종제품의 자기특성이 떨어지는 문제점이 있다.In Japanese Laid-Open Patent Publication No. 6-192731, in order to improve magnetic properties, hot rolling is terminated at a temperature above the Ar 3 transformation point during hot rolling, and then the average cooling rate is continued in the section from the Ar 3 transformation point to the Ar 1 transformation point. Working below 5 ° C / sec. However, in order to end the hot rolling at a temperature above the Ar 3 transformation point, the slab heating temperature must be increased. However, when the slab heating temperature is high, fine MnS, AlN, etc. precipitate in the hot rolled plate, thereby degrading the magnetic properties of the final product.

한편, 본 발명자가 기출원하여 등록공고된 대한민국 특허등록 97-122173호에는 중량%로 C:0.040%이하, Si:2.0-4.0%, Al:0.5-2.0%, Mn:0.1-2.0%, S:0.010%이하, N:0.010%이하, O:0.010%이하, 나머지 Fe 및 불가피하게 함유되는 불순물로 이루어지는 규소강 스라브를 열간압연, 열연판소둔, 최종두께까지 1회 또는 중간소둔을 포함하여 2회이상 냉간압연하고 최종소둔하는 무방향성 전기강판의 제조방법에 있어서, 최종냉간압연율은 60%이상, 최종소둔시의 승온속도를 30∼80℃/sec로 하는 것을 특징으로 하는 자기이방성이 작은 고급 무방향성 전기강판의 제조방법이 제안되었다.Meanwhile, Korean Patent Registration No. 97-122173, which is filed and published by the present inventors, has a weight% of C: less than 0.040%, Si: 2.0-4.0%, Al: 0.5-2.0%, Mn: 0.1-2.0%, and S. : Silicon steel slab consisting of 0.010% or less, N: 0.010% or less, O: 0.010% or less, remaining Fe and inevitably contained impurities, including hot rolling, hot rolled sheet annealing, one time or final annealing. In the manufacturing method of the non-oriented electrical steel sheet which is cold rolled and final annealed more than once, the final cold rolling rate is 60% or more and the high magnetic anisotropy is characterized in that the temperature increase rate at the time of final annealing is 30 to 80 ° C / sec. A method for producing non-oriented electrical steel sheet has been proposed.

그러나, 이 방법에서는 Si가 2.0∼4.0%, Al이 0.5∼2.0%로 높기 때문에 철손은 매우 낮지만 자속밀도도 동시에 낮아지는 문제점이 있어 대형모터의 철심재료로는 적합하지만 높은 자속밀도가 요구되는 중소형 모터나 가전기기용 모터의 철심재료로는 부적합하다. 따라서, 본 발명자들은 자기특성이 우수할 뿐만 아니라 자기이방성도 작은 중소형모터의 철심재료로 적합한 무방향성 전기강판을 제조하기 위하여 많은 연구와 실험을 행하고 그 결과에 근거하여 본 발명을 제안하게 이르렀다.However, in this method, since the Si is 2.0 to 4.0% and Al is 0.5 to 2.0%, the iron loss is very low but the magnetic flux density is also lowered, which is suitable for iron core materials of large motors, but high magnetic flux density is required. It is not suitable for iron core materials of small and medium sized motors and home appliances. Accordingly, the present inventors have conducted a number of studies and experiments to produce a non-oriented electrical steel sheet suitable for iron core materials of small and medium-sized motors not only excellent in magnetic properties but also small in magnetic anisotropy, and have come to propose the present invention based on the results.

본 발명은 중소형 모터나 가전기기용 모터의 철심재료로 적합하도록 Si:2.0%이하, Al:1.0%이하로 강성분계를 조정한 규소강 스라브에 대해 열간압연조건과 최종소둔조건을 제어하여 자기특성이 우수할 뿐만 아니라 자기이방성이 작은 무방향성 전기강판을 제공하는데, 그 목적이 있다.The present invention is characterized by controlling the hot rolling and final annealing conditions for silicon steel slabs in which the steel system is adjusted to less than 2.0% and less than 1.0% for Al to be suitable as iron core materials for small and medium-sized motors or motors for home appliances. To provide a non-oriented electrical steel sheet having excellent magnetic anisotropy as well as excellent, the object is.

상기 목적을 달성하기 위한 본 발명은, 중량%로, C:0.04%이하, Si:2.0%이하, Al:1.0%이하, Mn:0.1-1.0%, S:0.010%이하, N:0.010%이하, O:0.010%이하, 나머지 Fe 및 불가피하게 함유되는 불순물로 이루어지는 규소강 스라브를 열간압연, 열연판소둔, 최종두께까지 냉간압연하고 최종소둔하는 무방향성 전기강판의 제조방법에 있어서, 상기 열간압연시 마무리압연을 Ar1변태점이하의 온도에서 실시하고 상기 최종소둔시의 승온속도를 10∼50℃/sec로 하는 것을 포함하여 구성된다.The present invention for achieving the above object, in weight%, C: 0.04% or less, Si: 2.0% or less, Al: 1.0% or less, Mn: 0.1-1.0%, S: 0.010% or less, N: 0.010% or less In the method for producing a non-oriented electrical steel sheet, which is hot rolled, hot rolled sheet annealing, or final annealing of silicon steel slab composed of remaining Fe and inevitably contained impurities, O: 0.010% or less, the hot rolled sheet. The test finish rolling was carried out at a temperature below the Ar 1 transformation point, and the temperature increase rate during the final annealing was 10 to 50 ° C / sec.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

무방향성 전기강판에 Si나 Al을 다량 첨가하면 전기비저항이 증가하여 와전류손이 감소하므로 철손을 감소시키는 것은 가능하나, 포화자속밀도의 저하에 따른 자속밀도의 저하는 피할 수 없게 된다. 중소형 모터나 가전기기용 모터는 철손은 어느 정도 희생하더라도 자속밀도를 향상시켜 기기의 크기를 줄이는 것이 보다 중요하므로 본 발명자들은 Si와 Al함량을 각각 2.0%, 1.0%이하로 제한하는 방안을 모색하였다. 그런데, Si은 페라이트역을 확장시키는 원소이므로 그 함량이 약 2.0%이상이면 융점에서 상온까지 상변태구역이 존재하지 않는 반면, 2.0%이하이면 상변태구역이 존재하게 된다. 즉, 열간압연작업시 스라브 가열온도인 1200℃정도에서는 오스테나이트 단상역이지만 온도저하에 따라 (오스테나이트+페라이트)의 2상영역을 거쳐 페라이트 단상구역으로 된다. 이렇게 상변태구역이 존재하는 조성의 전기강판에서는 열간압연의 조건이 결정립크기와 집합조직에 변화를 주므로 어떤 온도 즉, 어떤상의 영역에서 행해졌는냐 하는 것이 결정립크기와 집합조직에 변화를 주어 결과적으로 자기특성에 영향을 미치게 된다.When a large amount of Si or Al is added to the non-oriented electrical steel sheet, it is possible to reduce the iron loss because the electrical resistivity increases and the eddy current loss is reduced, but the decrease in the magnetic flux density due to the decrease in the saturation magnetic flux density is inevitable. Small and medium-sized motors or motors for home appliances are more important to reduce the size of the device by improving the magnetic flux density at the expense of iron loss to some extent, the present inventors sought to limit the Si and Al content to less than 2.0%, 1.0%, respectively . However, since Si is an element extending the ferrite region, if the content is about 2.0% or more, the phase transformation zone does not exist from the melting point to room temperature, whereas if it is 2.0% or less, the phase transformation zone exists. That is, in the hot rolling operation, the slab heating temperature is about 1200 ° C, but the austenitic single phase region is changed to become a ferrite single phase region through the two-phase region of (austenite + ferrite) according to the temperature decrease. In the electrical steel sheet having the composition of phase transformation zone, the conditions of hot rolling change the grain size and texture, so what temperature, ie, what phase is in the region, changes the grain size and texture. Will affect.

따라서, 본 발명자들은 중소형 모터 및 가전기기용 모터의 철심재료로 적합한 Si 2.0%이하, Al 1.0%이하의 규소강 스라브에서 자기특성과 자기이방성에 영향을 미치는 여러 가지 공정조건에 대하여 검토한 결과, 열간압연시 마무리압연온도와 최종소둔시의 승온속도가 중요한 변수임을 발견하였다. 열간압연시의 마무리압연을 Ar1변태점이하의 페라이트역에서 실시하면 열간압연판의 결정립은 조대해지고 자기이방성도 유리한 집합조직이 발달되므로 최종제품의 철손이 낮을 뿐만 아니라 자기이방성도 작게 된다. 반면에 마무리압연을 Ar3변태점이상의 오스테나이트역이나 Ar1변태점이상 Ar3변태점이하(오스테나이트+페라이트)의 2상영역에서 실시하면 열간압연판은 변형이 없는 미세한 재결정립으로 이루어져 최종제품의 철손이 높아지고 자기이방성도 페라이트역에서 마무리압연된 경우에 비하여 더 크게 나타났다.Therefore, the present inventors have studied various process conditions affecting magnetic properties and magnetic anisotropy in silicon steel slabs of Si 2.0% or less and Al 1.0% or less suitable as iron core materials for small and medium-sized motors and home appliance motors. It was found that the final rolling temperature during hot rolling and the rate of temperature increase during final annealing are important variables. When the finish rolling during hot rolling is performed in the ferrite region below the Ar 1 transformation point, the grains of the hot rolled sheet are coarsened and the magnetic structure is advantageous. Therefore, the iron loss of the final product is low as well as the magnetic anisotropy is reduced. While the finish rolling to the above Ar 3 transformation point austenite region or Ar 1 transformation point or more than Ar 3 transformation point (austenite + ferrite) When carried out in two-phase region of the hot-rolled sheet is the iron loss of the final product consists of fine recrystallized grains without deformation Was higher and the magnetic anisotropy was larger than that of the finish rolled in the ferrite region.

페라이트역에서 마무리 압연한 경우, 최종제품의 철손은 오스테나이트역이나, (오스테나이트+페라이트)의 2상영역에서 마무리 압연한 경우에 비하여 낮아지나 자속밀도는 오히려 열화되는 현상이 발생하였다. 이러한 문제점은 많은 실험을 행한 결과, 집합조직을 제어함으로써 해결할 수 있다는 사실을 발견하였다. 즉, 최종소둔시의 승온속도를 제어하여 재결정되는 결정립들의 결정방위를 변화시킬 수 있었다. 최종소둔시의 승온속도가 10℃/sec보다 느리면 핵생성도가 상대적으로 빠른 {110} 또는 {111}면이 급격히 발달하여 자기이방성이 커질 뿐만 아니라 자기특성도 우수하지 못하였다. 한편 승온속도가 50℃/sec보다 크면 자화가 어려운 <111>축을 포함하는 {211}면이 발달하기 때문에 자기이방성이 크지는 않으나 자기특성이 크게 열화되었다.In the case of finish rolling in the ferrite region, the iron loss of the final product was lower than that in the austenite region or in the two-phase region of (austenite + ferrite), but the magnetic flux density deteriorated. Many experiments have shown that this problem can be solved by controlling the aggregates. That is, it was possible to change the crystal orientation of the crystal grains to be recrystallized by controlling the temperature increase rate during the final annealing. When the temperature increase rate at the time of final annealing was slower than 10 ° C./sec, the {110} or {111} planes, which are relatively fast in nucleation, developed rapidly, not only increasing magnetic anisotropy but also excellent magnetic properties. On the other hand, if the temperature increase rate is higher than 50 ° C./sec, the {211} plane including the <111> axis, which is difficult to magnetize, is developed, but the magnetic anisotropy is not great, but the magnetic properties are greatly deteriorated.

이하, 본 발명의, 제조방법에서 사용되는 소지금속 및 처리조건에서의 수치한정이유에 대하여 설명한다.Hereinafter, the reason for the numerical limitation in the base metal and the processing conditions used in the production method of the present invention will be described.

C는 0.04%이상 함유되어 있으면 탈탄불량이 생겨 최종제품의 자기특성을 열화시키므로 0.04%이하로 한다.If C is contained more than 0.04%, decarburization will occur, which will deteriorate the magnetic properties of the final product.

Si는 비저항증가로 인한 철손감소를 위하여 첨가가 필요하나 2.0%이상이 되면 포화자속밀도가 저하되어 자속밀도가 떨어질 뿐만 아니라 (오스테나이트+페라이트)의 상변태가 존재하지 않으므로 2.0%이하가 바람직하다.Si needs to be added to reduce the iron loss due to the increase of the resistivity, but when it is more than 2.0%, the saturation magnetic flux density is lowered, and the magnetic flux density is lowered.

Al은 Si와 같이 철손감소를 위하여 필요하나 1.0%이상이 되면 냉간압연성이 나빠질 뿐만 아니라 포화자속밀도가 저하되어 자속밀도를 떨어뜨리므로 1.0%이하로 하는 것이 바람직하다.Al is required for iron loss reduction like Si, but if it is more than 1.0%, cold rolling is not only worsened, but the saturation magnetic flux density is lowered, so the magnetic flux density is lowered.

Mn은 0.1%이하이면 열간가공성이 나쁘고 1.0%를 넘으면 최종소둔시 표면산화층을 형성하여 자기특성을 열화시키고 자속밀도를 저하시키므로 0.1-1.0%의 범위로 한다.If Mn is less than 0.1%, the hot workability is bad, and if it exceeds 1.0%, Mn forms a surface oxide layer during final annealing, thereby deteriorating magnetic properties and lowering magnetic flux density.

S,O,N은 그 함유량이 많으면 개재물을 형성하여 자구의 이동을 방해하므로 최대 0.010%이하로 제한한다.S, O, N is limited to a maximum of 0.010% or less because the content of the S, O, N is formed to interfere with the movement of the magnetic domain.

상기 규소강 스라브를 열간압연하는데 있어서 본 발명에서는 Ar1변태점이하의 온도인 페라이트역에서 마무리 압연하는 것이 바람직한데, 그 이유는 다음과 같다.In hot rolling of the silicon steel slab, in the present invention, it is preferable to finish-roll in a ferrite region having a temperature below the Ar 1 transformation point, for the following reason.

열간압연시의 마무리압연을 Ar1변태점이하의 페라이트역에서 실시하면 열간압연판의 결정립은 조대해지고 자기이방성에 유리한 집합조직이 발달되므로 최종제품의 철손이 낮을 뿐만 아니라 자기이방성도 작게 된다. 반면에 마무리압연을 Ar3변태점이상의 오스테나이트역이나 Ar1변태점이상 Ar3변태점이하(오스테나이트+페라이트)의 2상영역에서 실시하면 열간압연판은 변형이 없는 미세한 재결정립으로 이루어져 최종제품의 철손이 높아지고 자기이방성도 페라이트역에서 마무리 압연된 경우에 비하여 크기 때문이다. 본 발명의 열간압연에 있어 마무리압연온도의 하한은 소재의 압연성과 압연설비를 고려하여 설정하는 것이 바람직하며, 통상의 압연설비를 고려할 때 약 800℃이상에서 행할 수 있다.When the finish rolling during hot rolling is performed in the ferrite region below the Ar 1 transformation point, the grains of the hot rolled sheet are coarse and the aggregate structure which is favorable for the magnetic anisotropy is developed, so that the iron loss of the final product is low and the magnetic anisotropy is also small. While the finish rolling to the above Ar 3 transformation point austenite region or Ar 1 transformation point or more than Ar 3 transformation point (austenite + ferrite) When carried out in two-phase region of the hot-rolled sheet is the iron loss of the final product consists of fine recrystallized grains without deformation This is because it is higher and the magnetic anisotropy is larger than the case of finish rolling in the ferrite region. In the hot rolling of the present invention, the lower limit of the finish rolling temperature is preferably set in consideration of the rolling property of the raw material and the rolling equipment, and may be performed at about 800 ° C. or more in consideration of the usual rolling equipment.

상기와 같이 열간압연한 후 열연판소둔을 거쳐 최종두께까지 냉간압연하게 되는데, 본 발명에서 열연판소둔은 700℃이상의 온도에서 행하면 되고 생략하여도 무방하다.After hot rolling as described above, the hot rolled sheet annealing is cold rolled to the final thickness. In the present invention, the hot rolled sheet annealing may be performed at a temperature of 700 ° C. or higher, and may be omitted.

또한, 본 발명에서 상기와 같이 냉간압연된 규소강스라브를 최종소둔하게 되는데, 이때의 승온속도는 10∼50℃/sec의 범위로 하는 것이 바람직하며 그 이유는 다음과 같다. 최종소둔시의 승온속도가 10℃/sec보다 느리면 재결정시 핵생성되는 속도가 상대적으로 빠른 {110} 또는 {111}면이 급격하게 발달하여 자기이방성이 커질 뿐만 아니라 자기특성도 우수하지 못하다. 한편, 승온속도가 50℃/sec 보다 크면 자화가 어려운 <111>축을 포함하는 {211}면이 발달하기 때문에 자기이방성이 크지 않으나 자기특성이 크게 열화되기 때문이다.In addition, the present invention is the final annealing of the cold-rolled silicon steel slab as described above, the temperature increase rate is preferably in the range of 10 ~ 50 ℃ / sec, the reason is as follows. If the temperature increase rate at the time of final annealing is slower than 10 ° C./sec, the {110} or {111} planes which rapidly generate nucleation during recrystallization are rapidly developed to increase magnetic anisotropy and not have excellent magnetic properties. On the other hand, if the temperature increase rate is higher than 50 ℃ / sec, because the {211} plane including the <111> axis difficult to magnetize is developed, the magnetic anisotropy is not large, but the magnetic properties are greatly deteriorated.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

중량%로, C:0.0045%, Si:0.78%, Al:0.22%, Mn:0.15%, S:0.0051%, N:0.0024%, O:0.0035%, 나머지 Fe로 이루어지는 규소강 스라브를 1210℃에서 재가열하여 마무리압연온도를 표 1과 같이 변화시켜 두께 2.1mm로 열간압연하고 660℃에서 권취하였다. 이 규소강의 상변태온도가 Ar1이 920℃이고 Ar3가 1002℃였다. 열연판을 산세한 후 스케일을 제거하여 최종두께가 0.50mm가 되도록 냉간압연하였다. 냉간압연판을 표 1에 표시된 조건으로 변화시켜 최종소둔한 후 자기특성과 자기이방성을 측정하였고 그 결과를 표 1에 함께 나타내었다.By weight percent, a silicon steel slab consisting of C: 0.0045%, Si: 0.78%, Al: 0.22%, Mn: 0.15%, S: 0.0051%, N: 0.0024%, O: 0.0035%, and the remaining Fe at 1210 ° C. After reheating, the finish rolling temperature was changed as shown in Table 1, hot rolled to a thickness of 2.1 mm, and wound at 660 ° C. The phase transformation temperature of this silicon steel was Ar 1 at 920 ° C and Ar 3 at 1002 ° C. After pickling the hot rolled plate, the scale was removed and cold rolled to a final thickness of 0.50 mm. After cold-rolled sheet was changed to the conditions shown in Table 1 and finally annealed, the magnetic properties and magnetic anisotropy were measured, and the results are shown in Table 1 together.

구분division 열간압연조건Hot Rolling Condition 최종소둔조건Final Annealing Condition 자기이방성Magnetic anisotropy 자기특성Magnetic properties 마무리압연온도(℃)Finish rolling temperature (℃) 온도(℃)Temperature (℃) 승온속도(℃/sec)Temperature rise rate (℃ / sec) W15/50,R/W15/50,C W 15/50, R / W 15/50, C B50,R/B50,C B 50, R / B 50, C 철손(W15/50,w/kg) Iron loss (W 15/50 , w / kg) 자속밀도(B50,Tesla)Magnetic flux density (B 50 , Tesla) 비교재1Comparative Material 1 10351035 840840 77 0.950.95 1.0141.014 5.955.95 1.7021.702 비교재2Comparative Material 2 960960 840840 77 0.960.96 1.0121.012 5.765.76 1.6881.688 비교재3Comparative Material 3 880880 840840 77 0.970.97 1.0081.008 5.435.43 1.6941.694 비교재4Comparative Material 4 10351035 945945 77 0.940.94 1.0211.021 5.325.32 1.6971.697 비교재5Comparative Material 5 960960 945945 77 0.960.96 1.0191.019 5.095.09 1.6911.691 비교재6Comparative Material 6 880880 945945 77 0.960.96 1.0181.018 4.874.87 1.6931.693 발명재1Invention 1 880880 945945 2020 0.980.98 1.0141.014 4.704.70 1.7041.704 발명재2Invention 2 880880 945945 3030 0.970.97 1.0141.014 4.634.63 1.7061.706 발명재3Invention 3 880880 945945 4040 0.970.97 1.0161.016 4.574.57 1.7091.709 비교재7Comparative Material7 880880 945945 6565 0.980.98 1.0121.012 4.954.95 1.6921.692 W15/50,w/kg:자속밀도 1.5T, 주파수 50Hz에서의 철손값B50,Tesla:자장의 세기가 5000A/m일때의 자속밀도 값W15/50,R/W15/50,C:압연직강방향의 철손에 대한 압연방향의 철손비를 나타내며, 이 값은 1에 가까울수록 자기이방성이 작음. 여기서 아래첨자 R은 압연방향, C는 압연직각방향을 가리킴.B50,R/B50,C:압연직각방향의 자속밀도에 대한 압연방향의 자속밀도비를 나타내며, 이 값은 1에 가까울수록 자기이방성이 작음.W 15/50, w / kg: magnetic flux density of 1.5T, the iron loss value at a frequency of 50Hz B 50, Tesla: magnetic flux density value of the intensity of the magnetic field 5000A / m when W 15/50, R / W 15/50, C : The iron loss ratio in the rolling direction to the iron loss in the rolled steel direction. The closer to 1, the smaller the magnetic anisotropy. Where subscript R denotes rolling direction and C denotes rolling direction. B 50, R / B 50, C : represents magnetic flux density ratio of rolling direction to magnetic flux density in rolling direction. Low magnetic anisotropy.

상기 표 1에 나타난 바와 같이, 페라이트역에서 마무리압연된 비교재 3과 비교재 6은 각각 비교재 1과 비교재2 그리고 비교재4와 비교재5에 비하여 철손이 낮고 자기이방성이 작지만 자속밀도가 낮아지는 문제점이 있다.As shown in Table 1, Comparative material 3 and Comparative 6 rolled in the ferrite region has lower iron loss and lower magnetic anisotropy, but magnetic flux density compared to Comparative Material 1, Comparative Material 2 and Comparative Material 4 and Comparative Material 5, respectively. There is a problem of being lowered.

이에 반하여, 페라이트역에서 마무리 압연되고 최종소둔시의 승온속도가 본 발명의 범위에 속하는 발명재1, 발명재2, 발명재3은 최종소둔시의 승온속도가 본 발명의 범위 보다 늦은 비교재3과 비교재6에 비하여 자기특성이 우수하고 자기이방성도 작아진다는 사실을 알 수 있다. 그렇지만, 페라이트역에서 마무리 압연되었으나 최종소둔시의 승온속도가 본 발명의 범위보다 빠른 비교재7은 자기이방성은 작으나 자기특성이 열화되는 것으로 나타났다.On the contrary, Invention 1, Inventive Material 2, and Inventive Material 3, which are finish-rolled in a ferrite region and the temperature increase rate at the time of final annealing, fall within the scope of the present invention, are the comparative materials 3 whose temperature increase rate at the time of final annealing is later than the range of the present invention. It can be seen that the magnetic properties are superior and the magnetic anisotropy is smaller than that of the comparative material 6 and. However, Comparative Material 7, which was finish-rolled in the ferrite region but whose temperature rise rate was higher than the range of the present invention at the time of final annealing, was shown to have low magnetic anisotropy but deteriorated magnetic properties.

상술한 바와 같이, 본 발명은 중소형 모터 및 가전기기용 모터의 철심재료로 적합한 Si:2.0%이하, Al:1.0%이하인 규소강 스라브를 열간압연시 마무리 압연조건과 최종소둔시의 승온속도를 제어하여 자기특성이 우수할 뿐만 아니라 자기이방성도 작은 무방향성 전기강판을 제공함으로서 회전기기의 효율을 높이고 소형화시킴과 동시에 정밀도를 높이는 효과가 있는 것이다.As described above, the present invention controls the finishing rolling conditions during hot rolling and the temperature rising rate during final annealing of silicon steel slabs having Si: 2.0% or less and Al: 1.0% or less suitable as iron core materials for small and medium-sized motors and motors for home appliances. Therefore, the non-oriented electrical steel sheet having excellent magnetic properties as well as small magnetic anisotropy has the effect of increasing the efficiency and miniaturization of the rotating machine and increasing the precision.

Claims (1)

중량%로, C:0.04%이하, Si:2.0%이하, Al:1.0%이하, Mn:0.1-1.0%, S:0.010%이하, N:0.010%이하, O:0.010%이하, 나머지 Fe 및 불가피하게 함유되는 불순물로 이루어지는 규소강 스라브를 열간압연, 열연판소둔, 최종두께까지 냉간압연하고 최종소둔하는 무방향성 전기강판의 제조방법에 있어서, 상기 열간압연시 마무리압연을 Ar1변태점이하의 온도에서 실시하고 상기 최종소둔시의 승온속도를 10∼50℃/sec로 하는 것을 특징으로 하는 자기특성이 우수하고 자기이방성이 작은 무방향성 전기강판의 제조방법.By weight%, C: 0.04% or less, Si: 2.0% or less, Al: 1.0% or less, Mn: 0.1-1.0%, S: 0.010% or less, N: 0.010% or less, O: 0.010% or less, remaining Fe and In the manufacturing method of the non-oriented electrical steel sheet which hot-rolled, hot-rolled sheet annealing and the final thickness of the silicon steel slab which consists of an impurity contained unavoidably, the finish rolling at the time of hot rolling is carried out at the temperature below Ar 1 transformation point. The method for producing a non-oriented electrical steel sheet having excellent magnetic properties and small magnetic anisotropy, which is carried out in the above and characterized in that the temperature increase rate at the time of final annealing is 10 to 50 ° C / sec.
KR1019980047801A 1998-11-09 1998-11-09 Process for preparing non-directional electric steel plate which has good magnetic property and low magnetic-bi-directional property KR20000031656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980047801A KR20000031656A (en) 1998-11-09 1998-11-09 Process for preparing non-directional electric steel plate which has good magnetic property and low magnetic-bi-directional property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980047801A KR20000031656A (en) 1998-11-09 1998-11-09 Process for preparing non-directional electric steel plate which has good magnetic property and low magnetic-bi-directional property

Publications (1)

Publication Number Publication Date
KR20000031656A true KR20000031656A (en) 2000-06-05

Family

ID=19557580

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980047801A KR20000031656A (en) 1998-11-09 1998-11-09 Process for preparing non-directional electric steel plate which has good magnetic property and low magnetic-bi-directional property

Country Status (1)

Country Link
KR (1) KR20000031656A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020016025A (en) * 2000-08-24 2002-03-04 이구택 A method for manufacturing non-grain oriented electric steel sheet with superior magnetic property
KR100516464B1 (en) * 2000-12-21 2005-09-23 주식회사 포스코 A method for manufacturing high hardness non-grain oriented silicon steel sheet
KR100516458B1 (en) * 2000-08-08 2005-09-23 주식회사 포스코 A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR100544531B1 (en) * 2000-12-20 2006-01-24 주식회사 포스코 A method for manufacturing non-oriented electrical steel sheet with excellent magnetic flux density
KR100825560B1 (en) * 2001-12-03 2008-04-25 주식회사 포스코 Method for Manufacturing Nonoriented Electrical Steel Sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100516458B1 (en) * 2000-08-08 2005-09-23 주식회사 포스코 A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR20020016025A (en) * 2000-08-24 2002-03-04 이구택 A method for manufacturing non-grain oriented electric steel sheet with superior magnetic property
KR100544531B1 (en) * 2000-12-20 2006-01-24 주식회사 포스코 A method for manufacturing non-oriented electrical steel sheet with excellent magnetic flux density
KR100516464B1 (en) * 2000-12-21 2005-09-23 주식회사 포스코 A method for manufacturing high hardness non-grain oriented silicon steel sheet
KR100825560B1 (en) * 2001-12-03 2008-04-25 주식회사 포스코 Method for Manufacturing Nonoriented Electrical Steel Sheet

Similar Documents

Publication Publication Date Title
JP4319889B2 (en) Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same
US5116435A (en) Method for producing non-oriented steel sheets
CN103882293A (en) Non-oriented electrical steel and production method thereof
KR100449575B1 (en) Elctromagnetic steel sheet having excellent magnetic properties and production method thereof
KR20000031656A (en) Process for preparing non-directional electric steel plate which has good magnetic property and low magnetic-bi-directional property
KR20000039855A (en) Method for producing non-oriented electric steel plate having excellent magnetism
JPH0832927B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JP4013262B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR100370547B1 (en) Non-oriented electrical steel sheet excellent in permeability and method of producing the same
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
JPH05214444A (en) Production of nonoriented silicon steel sheet minimal inplane anisotropy of magnetic property
KR100321035B1 (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
KR970007160B1 (en) Making method of non oriented electrical steel sheet having high tensile strength
KR100544612B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Superior Magnetic Property
JPH06192731A (en) Production of non-oriented electrical steel sheet high in magnetic flux density and low in core loss
CN115003845B (en) Non-oriented electrical steel sheet and method for manufacturing same
JPH0580527B2 (en)
KR970007034B1 (en) Method for manufacturing non-oriented electrical steel sheet having high flux density
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPS5855209B2 (en) Method for manufacturing non-oriented silicon steel sheet with little aging deterioration and good surface quality
KR960014510B1 (en) Method for manufacturing non-oriented electro magnetic steel plates with excellent magnetic characteristic
KR100501000B1 (en) Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application