JPH05214444A - Production of nonoriented silicon steel sheet minimal inplane anisotropy of magnetic property - Google Patents

Production of nonoriented silicon steel sheet minimal inplane anisotropy of magnetic property

Info

Publication number
JPH05214444A
JPH05214444A JP1615992A JP1615992A JPH05214444A JP H05214444 A JPH05214444 A JP H05214444A JP 1615992 A JP1615992 A JP 1615992A JP 1615992 A JP1615992 A JP 1615992A JP H05214444 A JPH05214444 A JP H05214444A
Authority
JP
Japan
Prior art keywords
heating
steel sheet
cold rolling
annealing
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1615992A
Other languages
Japanese (ja)
Inventor
Teruo Kaneko
輝雄 金子
Hiroyoshi Yashiki
裕義 屋鋪
Takashi Tanaka
隆 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1615992A priority Critical patent/JPH05214444A/en
Publication of JPH05214444A publication Critical patent/JPH05214444A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To minimize the inplane anisotropy of magnetic properties and further to improve the productivity of a nonoriented silicon steel sheet without deteriorating the average magnetic properties of a nonoriented silicon steel sheet containing Si and Al. CONSTITUTION:In the manufacturing process for a nonoriented silicon steel sheet having a composition consisting of, by weight, <=0.01% C, <=2.0% Mn, 2.0-5.0%, in total, of Si and Al, and the balance iron with inevitable impurities, heating at the time of annealing at least prior to final cold rolling is performed on an electric resistance heating system where direct electrification is applied to a steel strip. The heating may be done by performing the heating in a low temp. region by means of ordinary indirect heating and performing the heating only in a high temp. region of >=800 deg.C by means of electric resistance heating. By this method, rapid heating is made possible, and as a result, the crystalline grains at least before final cold rolling become extremely fine and the plane anisotropy of the nonoriented silicon steel sheet can remarkably be improved. Further, annealing time before cold rolling can also be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、SiとAlを合計で 2.0
〜5.0 %含むいわゆる高級無方向性電磁鋼板の製造方法
に係わり、特に少なくとも最終冷間圧延前の焼鈍におけ
る加熱を鋼帯に直接通電する電気抵抗加熱方式で行うこ
とによって、平均的な磁気特性を損なうことなく、磁気
特性の面内異方性を改善することを特徴とする磁気特性
面内異方性の小さい無方向性電磁鋼板の製造法に関す
る。
BACKGROUND OF THE INVENTION This invention uses Si and Al in a total amount of 2.0
It relates to the manufacturing method of so-called high-grade non-oriented electrical steel sheet containing up to 5.0%, and in particular, at least the heating in the annealing before the final cold rolling is performed by the electric resistance heating method in which the steel strip is directly energized, the average magnetic properties are The present invention relates to a method for producing a non-oriented electrical steel sheet having a small in-plane magnetic property anisotropy, which is characterized by improving the in-plane anisotropy of magnetic property without damaging the magnetic property.

【0002】[0002]

【従来の技術】無方向性電磁鋼板は、家電製品や工作機
械など各種電気機器のモーターやトランスの鉄心に用い
られる薄鋼板で、その磁気特性は、これらの機器の効率
やサイズを支配する重要なファクターである。鉄損は鉄
を磁化するときに発生する熱損失であり、この値が小さ
いと電力の使用効率が高まる。一方、磁束密度が高いと
鉄心の断面積を小さくできるので、機器の小型化に有利
である。
2. Description of the Related Art Non-oriented electrical steel sheets are thin steel sheets used for iron cores of motors and transformers of various electric appliances such as home electric appliances and machine tools, and their magnetic properties are important to control the efficiency and size of these appliances. Is a factor. Iron loss is a heat loss generated when magnetizing iron, and if this value is small, the use efficiency of electric power increases. On the other hand, if the magnetic flux density is high, the cross-sectional area of the iron core can be reduced, which is advantageous for downsizing the equipment.

【0003】鉄損は渦電流損とヒステリシス損に分けら
れる。渦電流損は鋼の比抵抗が高いほど小さくなり、比
抵抗は合金元素を添加するほど増加する。SiとAlは、添
加量当たりの比抵抗増加割合が大きく、しかも比較的安
価である。一方、ヒステリシス損は磁壁の移動を妨げる
微細析出物や粒界が少ないほど小さくなる。従って、低
鉄損の高級無方向性電磁鋼板を製造するためには、Siと
Alを多量に添加し、さらに鋼中の不純物元素をできるだ
け低くし、しかも最終焼鈍を高温で行って結晶粒を粗大
化させる対策を採るのが普通である。
Iron loss is divided into eddy current loss and hysteresis loss. The eddy current loss decreases as the specific resistance of steel increases, and the specific resistance increases as the alloying element is added. Si and Al have a large rate of increase in specific resistance per addition amount and are relatively inexpensive. On the other hand, the hysteresis loss becomes smaller as the number of fine precipitates and grain boundaries that hinder the movement of the domain wall decreases. Therefore, in order to produce a high-grade non-oriented electrical steel sheet with low iron loss, Si and
It is common practice to add a large amount of Al, further reduce the impurity elements in the steel as much as possible, and further perform final annealing at a high temperature to coarsen the crystal grains.

【0004】磁束密度は、合金元素の添加量が増えると
一般に低下する傾向にある。鉄損を小さくするためには
合金元素の添加が必須となるので、高品位の無方向性電
磁鋼板になるほど磁束密度の向上対策が重要となる。磁
束密度を向上させるためには、集合組織 (結晶粒の結晶
学的な配向) を制御することが有効である。最終焼鈍後
の集合組織は、冷間圧延前の結晶粒度や冷間圧延の圧下
率などに支配される。
The magnetic flux density generally tends to decrease as the amount of alloying element added increases. In order to reduce iron loss, the addition of alloying elements is essential, so the higher the quality of non-oriented electrical steel sheets, the more important it is to take measures to improve the magnetic flux density. In order to improve the magnetic flux density, it is effective to control the texture (the crystallographic orientation of crystal grains). The texture after the final annealing is governed by the grain size before cold rolling and the rolling reduction of cold rolling.

【0005】通常、一回の冷間圧延により高級無方向性
電磁鋼板を製造する場合では、熱延板に焼鈍(以下、
「熱延板焼鈍」という)を行うのが普通である。この理
由は、冷間圧延前の組織が再結晶していない加工組織の
ままであると、最終焼鈍後に適正な集合組織が得られ
ず、磁束密度の低下を招くからである。また、熱延板焼
鈍を行わないとリジングと呼ばれる表面性状の不具合が
出る傾向にあり、その意味においても熱延板焼鈍は高級
無方向性電磁鋼板の製造において不可欠の工程となって
いる。二回以上の冷間圧延により高級無方向性電磁鋼板
を製造する場合には、中間焼鈍が熱延板焼鈍に相当する
役目を果たし、同様の理由から少なくとも最終冷間圧延
前の組織を再結晶させておく必要がある。
Usually, in the case of producing a high grade non-oriented electrical steel sheet by one cold rolling, the hot rolled sheet is annealed (hereinafter, referred to as
"Hot-rolled sheet annealing" is usually performed. The reason for this is that if the structure before cold rolling is a restructured structure that has not been recrystallized, a proper texture cannot be obtained after the final annealing, leading to a decrease in magnetic flux density. Further, if hot-rolled sheet annealing is not performed, a surface property defect called ridging tends to occur, and in that sense, hot-rolled sheet annealing is an essential step in the production of high-grade non-oriented electrical steel sheets. When manufacturing a high-grade non-oriented electrical steel sheet by cold rolling two or more times, the intermediate annealing serves a role equivalent to hot-rolled sheet annealing, and for the same reason, at least the structure before the final cold rolling is recrystallized. I need to keep it.

【0006】最終冷間圧延前の組織の再結晶粒の大きさ
が大きいほど磁気特性が向上することも良く知られてい
る。この理由は、最終冷間圧延前の再結晶粒が粗大であ
ると、最終焼鈍後にゴス方位と呼ばれる磁気特性に有利
な結晶方位を多く含んだ集合組織が発達し易いからであ
ると考えられている。このため、冷間圧延時に鋼帯が破
断するなどのトラブルを招かない範囲内で、最終冷間圧
延前の再結晶粒を粗大化させるプロセスが採用されてい
る。
It is also well known that the larger the size of recrystallized grains in the structure before the final cold rolling, the better the magnetic properties. The reason for this is considered to be that if the recrystallized grains before the final cold rolling are coarse, a texture containing a large number of crystal orientations advantageous for magnetic properties called Goss orientation is likely to develop after the final annealing. There is. Therefore, a process for coarsening the recrystallized grains before the final cold rolling is adopted within a range that does not cause trouble such as breakage of the steel strip during cold rolling.

【0007】高級無方向性電磁鋼板は、従来から上記の
さまざまな知見に基づいて製造されている。即ち、渦電
流損を小さくする目的では、SiとAlを合計で 2.0〜5.0
%程度添加する。ヒステリシス損を小さくする目的で
は、S、N(窒素)、O(酸素)などの不純物を極力少
なくした鋼を溶製し、次いで微細な析出物が生じないよ
うに、スラブ加熱温度や仕上温度、巻取り温度を調整し
て熱間圧延を行い、さらには結晶粒を粗大化させるため
最終焼鈍を高温で行う。磁束密度を向上させる目的で
は、冷間圧延前の結晶粒度を調整するため熱延板焼鈍あ
るいは中間焼鈍を行い、さらに適正な集合組織が得られ
るように冷間圧延での圧下率や中間焼鈍温度を選ぶ。
High-grade non-oriented electrical steel sheets have been conventionally manufactured based on the above various findings. That is, for the purpose of reducing the eddy current loss, the total amount of Si and Al is 2.0 to 5.0.
% Is added. For the purpose of reducing the hysteresis loss, the steel in which impurities such as S, N (nitrogen), O (oxygen) are minimized is smelted, and then the slab heating temperature and finishing temperature are adjusted so that fine precipitates do not occur. The coiling temperature is adjusted and hot rolling is performed, and further final annealing is performed at a high temperature to coarsen the crystal grains. For the purpose of improving the magnetic flux density, hot-rolled sheet annealing or intermediate annealing is performed to adjust the grain size before cold rolling, and the rolling reduction and intermediate annealing temperature in cold rolling are performed to obtain an appropriate texture. Choose.

【0008】[0008]

【発明が解決しようとする課題】前述したとおり、高級
無方向性電磁鋼板の製造方法に関しては、従来から多く
の検討が加えられており、基本的な製造プロセスは概ね
定まってきた。しかしながら従来の製造プロセスでは、
主として磁気特性の平均値を向上させることに主眼がお
かれており、磁気特性の面内異方性を小さくすることに
関しては必ずしも十分な検討が加えられていない。例え
ば、磁気特性の平均値の改善に有利なゴス方位の発達は
鋼板の圧延方向とそれに直角な方向との磁気特性の差を
著しく増大させてしまうのである。このため、磁気特性
の平均値は良好であっても面内異方性は大きい場合があ
る。磁気特性の面内異方性が大きい無方向性電磁鋼板を
鉄心の製造に適用すると不具合が生じることがある。即
ち、無方向性電磁鋼板の圧延方向とその直角方向あるい
はそれらの中間の方向における磁気特性に大きな差があ
ると、無方向性電磁鋼板の打ち抜き方向または鉄心の形
状などに大きな制約を受けることになる。従って、磁気
特性の面内異方性はなるべく小さい方が望ましいが、磁
気特性の平均値の改善と両立させる手法は必ずしも確立
されていないのが現状である。
As described above, many studies have been made in the past regarding the method of manufacturing a high-grade non-oriented electrical steel sheet, and the basic manufacturing process has been generally determined. However, in the conventional manufacturing process,
The main focus is on improving the average value of the magnetic properties, and sufficient studies have not necessarily been made on reducing the in-plane anisotropy of the magnetic properties. For example, the development of the Goss orientation, which is advantageous for improving the average value of the magnetic properties, significantly increases the difference in the magnetic properties between the rolling direction of the steel sheet and the direction perpendicular thereto. Therefore, the in-plane anisotropy may be large even if the average value of the magnetic properties is good. When a non-oriented electrical steel sheet having a large in-plane anisotropy of magnetic properties is applied to manufacture an iron core, a problem may occur. That is, if there is a large difference in the magnetic properties between the rolling direction of the non-oriented electrical steel sheet and the direction perpendicular to the rolling direction or in the middle direction thereof, the punching direction of the non-oriented electrical steel sheet or the shape of the iron core is greatly restricted. Become. Therefore, it is desirable that the in-plane anisotropy of the magnetic properties be as small as possible, but at the present time, a method that is compatible with the improvement of the average value of the magnetic properties has not necessarily been established.

【0009】磁気特性の平均値を改善し、さらにその面
内異方性を小さくするには、少なくとも最終冷間圧延前
の組織を完全に再結晶させた上で、なおかつ再結晶粒を
できるだけ微細に制御することが重要となるが、従来の
製造プロセスではそれらの十分な制御が不可能であっ
た。
In order to improve the average value of magnetic properties and further reduce the in-plane anisotropy, at least the structure before the final cold rolling is completely recrystallized, and the recrystallized grains are made as fine as possible. Although it is important to control them to the above, it was impossible to control them sufficiently in the conventional manufacturing process.

【0010】冷間圧延前の組織を微細な再結晶粒組織に
制御する鍵は、熱延板焼鈍または中間焼鈍の加熱速度を
どこまで速くできるかにある。大型のコイルをバッチ式
で処理する箱焼鈍の場合は、熱慣性が大きいため毎時数
十℃程度の極めて遅い加熱速度しか得られない。このた
め、加熱過程における再結晶核の生成頻度が小さい上高
温で長時間保持されるので、再結晶粒は必然的に粗大化
してしまうのである。
The key to controlling the structure before cold rolling to be a fine recrystallized grain structure is how fast the heating rate of hot-rolled sheet annealing or intermediate annealing can be. In the case of box annealing in which a large coil is processed in a batch system, since the thermal inertia is large, an extremely slow heating rate of about several tens of degrees Celsius per hour can be obtained. Therefore, the recrystallization nuclei are generated less frequently in the heating process, and the recrystallized grains are inevitably coarsened because they are kept at a high temperature for a long time.

【0011】一方、生産性が高いことから最近主流とな
ってきた連続焼鈍方式の場合には、加熱速度は圧倒的に
速く、通常の方式で毎秒数十℃のオーダーであり、さら
に誘導加熱方式を適用すれば毎秒数百℃程度にまで可能
となる。このため、再結晶核の生成頻度が高まり高温域
での保持時間も短いので、再結晶粒は箱焼鈍に比べると
微細になりしかも均一化する傾向にある。
On the other hand, in the case of the continuous annealing method, which has recently become the mainstream due to its high productivity, the heating rate is overwhelmingly high, which is of the order of several tens of degrees per second in the usual method, and further the induction heating method. If applied, it will be possible to reach several hundred degrees Celsius per second. For this reason, the frequency of recrystallized nucleation increases and the holding time in the high temperature region is short, so that the recrystallized grains tend to be finer and more uniform than in box annealing.

【0012】しかしながら、従来の方式では連続焼鈍で
あっても再結晶粒の大きさが本発明の目的とするレベル
に達することは不可能である。即ち、従来の連続焼鈍
は、少なくともラジアントチューブにより加熱した高温
均熱部に鋼帯を通し、昇温した雰囲気を介して間接的に
鋼帯を加熱する方式である。そのため、鋼帯の温度が雰
囲気温度に近づくに従って加熱速度が遅くなり、結果的
に高温域での鋼帯の滞在時間が長くなるので再結晶粒が
成長してしまう。再結晶粒が成長すると、集合組織の劣
化を招く結果となる。また、高温域で長時間保持すると
鋼帯に内部酸化が生じ易く、鋼帯の磁気特性が劣化し易
い。加熱速度だけを速めるのであれば、雰囲気温度を上
げてやればよいが、これは再結晶粒の成長と内部酸化を
さらに助長することになる。一方、雰囲気温度を下げる
ことは、再結晶粒の成長は抑えられるものの再結晶自体
が不十分となる危険性が増すので、これも採用できな
い。
However, the size of the recrystallized grains cannot reach the target level of the present invention even with continuous annealing by the conventional method. That is, the conventional continuous annealing is a system in which a steel strip is passed through at least a high temperature soaking part heated by a radiant tube, and the steel strip is indirectly heated through a heated atmosphere. Therefore, the heating rate becomes slower as the temperature of the steel strip approaches the ambient temperature, and as a result, the staying time of the steel strip in the high temperature region becomes longer and recrystallized grains grow. Growth of recrystallized grains results in deterioration of texture. Further, when the steel strip is kept in a high temperature region for a long time, internal oxidation is likely to occur in the steel strip and the magnetic properties of the steel strip are likely to deteriorate. If only the heating rate is to be increased, the ambient temperature may be raised, but this will further promote the growth of recrystallized grains and internal oxidation. On the other hand, lowering the ambient temperature increases the risk of the recrystallization itself becoming insufficient, although it suppresses the growth of recrystallized grains, and thus cannot be adopted.

【0013】結局、雰囲気を介する間接加熱方式では、
前述の問題点を抜本的に解決することはできない。
After all, in the indirect heating method through the atmosphere,
The above-mentioned problems cannot be fundamentally solved.

【0014】高温域での加熱速度を高めるために高周波
誘導加熱を適用する方法もあるが、表皮効果により板幅
方向や板厚方向での温度の均一性を確保し難いという難
点がある上、磁気変態点(鉄では 770℃) を超えると加
熱効率が極端に悪くなり、十分な加熱速度を確保できな
いのである。そのため、この方法でも再結晶粒の大きさ
が本発明の目的とするレベルに達することは不可能であ
る。
There is also a method of applying high frequency induction heating in order to increase the heating rate in a high temperature region, but there is a drawback that it is difficult to ensure temperature uniformity in the width direction and the thickness direction due to the skin effect. If the temperature exceeds the magnetic transformation point (770 ° C for iron), the heating efficiency becomes extremely poor, and a sufficient heating rate cannot be secured. Therefore, even with this method, it is impossible for the size of the recrystallized grains to reach the target level of the present invention.

【0015】本発明は、磁気特性の平均値とその面内異
方性を共に改善することを目的とし、特に熱延板焼鈍ま
たは中間焼鈍の工程における加熱速度を向上させること
を目的としてなされたものである。
The present invention has been made for the purpose of improving both the average value of magnetic properties and the in-plane anisotropy thereof, and in particular the object of improving the heating rate in the steps of hot-rolled sheet annealing or intermediate annealing. It is a thing.

【0016】[0016]

【課題を解決するための手段】本発明者らは、高級無方
向性電磁鋼板の磁気特性の平均値を損なわずにその面内
異方性を小さくするには、少なくとも最終冷間圧延前の
鋼帯の再結晶粒を極めて微細にすることが決め手になる
という認識にたち、少なくとも最終冷間圧延前の焼鈍過
程で鋼帯に直接通電する抵抗加熱方式を用いることが最
適であることを見出した。この知見を基礎とする本発明
は、下記(1) および(2) を要旨とするものである。
SUMMARY OF THE INVENTION The present inventors have found that in order to reduce the in-plane anisotropy of a high-grade non-oriented electrical steel sheet without impairing the average value of its magnetic properties, at least before the final cold rolling. Recognizing that making the recrystallized grains of the steel strip extremely fine is the deciding factor, we found that it is optimal to use the resistance heating method in which the steel strip is directly energized at least during the annealing process before the final cold rolling. It was The present invention based on this finding is based on the following (1) and (2).

【0017】(1) 重量%で、Cが0.01%以下、Mnが 2.0
%以下、SiとAlが合計で 2.0〜5.0 %で、残部は不可避
的不純物と鉄からなる無方向性電磁鋼板の製造工程にお
いて、少なくとも最終冷間圧延前の焼鈍における加熱を
鋼帯に直接通電する電気抵抗加熱方式で行うことを特徴
とする磁気特性面内異方性の小さい無方向性電磁鋼板の
製造法。
(1) C of 0.01% or less and Mn of 2.0% by weight
% Or less, the total of Si and Al is 2.0 to 5.0%, and the balance is at least directly heated in the annealing before the final cold rolling in the manufacturing process of the non-oriented electrical steel sheet consisting of inevitable impurities and iron. A method of manufacturing a non-oriented electrical steel sheet having a small in-plane anisotropy of magnetic properties, which is performed by an electric resistance heating method.

【0018】(2) 少なくとも最終冷間圧延前の焼鈍にお
ける加熱を、間接加熱方式と直接通電する電気抵抗加熱
方式を併用して行い、この電気抵抗加熱を 800℃以上の
温度領域で行うことを特徴とする上記(1) に記載の磁気
特性面内異方性の小さい無方向性電磁鋼板の製造法。
(2) At least the heating in the annealing before the final cold rolling should be performed by using both the indirect heating method and the electric resistance heating method in which the electric current is directly applied, and this electric resistance heating should be performed in the temperature range of 800 ° C. or higher. A method for producing a non-oriented electrical steel sheet having a small magnetic property in-plane anisotropy according to the above (1).

【0019】上記の本発明方法において、電気抵抗加熱
方式で熱延板焼鈍あるいは中間焼鈍に付す鋼帯(コイ
ル)の製造方法には特別の制約はない。この種の電磁鋼
板の製造に通常採用されている方法、あるいはそれにさ
まざまな改良を加えた条件で溶製し、熱間圧延し、冷間
圧延し、最後に仕上焼鈍を行うすべての製造方法を対象
とする。
In the above-mentioned method of the present invention, there is no particular restriction on the method for producing a steel strip (coil) which is subjected to hot rolling sheet annealing or intermediate annealing by the electric resistance heating method. The methods usually used for manufacturing this type of electromagnetic steel sheet, or all the manufacturing methods of melting, hot rolling, cold rolling and finally finish annealing under various modified conditions set to target.

【0020】[0020]

【作用】まず、少なくとも最終冷間圧延前の焼鈍(熱延
板焼鈍または冷間圧延工程での中間焼鈍)における加熱
を鋼帯に直接通電する電気抵抗加熱方式で行う場合の作
用、効果について詳しく説明する。
[Action] First, the action and effect in the case where the heating in at least the annealing before the final cold rolling (the hot-rolled sheet annealing or the intermediate annealing in the cold rolling process) is performed by the electric resistance heating method in which the steel strip is directly energized explain.

【0021】抵抗加熱方式は、鋼帯に直接電流を流し
て、鋼帯の電気抵抗により発生するジュール熱を利用す
るものである。
In the resistance heating method, an electric current is directly applied to the steel strip to utilize Joule heat generated by the electric resistance of the steel strip.

【0022】図1は、鋼帯に直接電流を流す一つの方法
を簡単に示したもので、図示のように対向する二組の通
電用ピンチロール2-1 、2-2 を用いて、その間の鋼帯1
に電源3から電流を流す方式を採用したものである。電
流の量は、鋼帯の断面積と所要の最高加熱温度から決め
られる。通電方向は、鋼帯の進行方向(図1中の矢印X
の方向)でもその逆の方向でも構わない。電流は直流で
も交流でもよいが、交流の場合には、高周波領域になる
と表皮効果によって鋼帯の表面や端部が過熱されるの
で、表皮効果が現れない程度の低周波領域にするのがよ
く、商用周波数(50Hz、60Hz) 程度で行うのが望まし
い。
FIG. 1 briefly shows one method of directly supplying an electric current to a steel strip. Two pairs of energizing pinch rolls 2-1 and 2-2 facing each other as shown in the drawing are used between them. Steel strip 1
The method in which a current is supplied from the power source 3 is adopted. The amount of electric current is determined by the cross-sectional area of the steel strip and the required maximum heating temperature. The energizing direction is the traveling direction of the steel strip (arrow X in FIG. 1).
Direction) or vice versa. The current may be direct current or alternating current, but in the case of alternating current, the surface and end of the steel strip are overheated by the skin effect in the high frequency region, so it is better to set it to a low frequency region where the skin effect does not appear. , It is desirable to use the commercial frequency (50Hz, 60Hz).

【0023】図2は、雰囲気を介する間接加熱 (従来
法)と直接通電加熱(本発明法)との加熱速度を対比し
たものである。鋼帯の電気抵抗は温度が高くなるほど大
きくなるので、直接通電加熱方式を用いると加熱速度は
高温になるほど加速度的に大きくなり、最高十万℃/se
c まで高めることが可能となる。このため所要の最高加
熱温度に到達する時間は、直接通電加熱方式の方が従来
の間接加熱方式より格段に短くなる。
FIG. 2 compares the heating rates of indirect heating through an atmosphere (conventional method) and direct electrical heating (method of the present invention). The electric resistance of the steel strip increases as the temperature rises, so if the direct current heating method is used, the heating rate will increase at an increasing rate with increasing temperature, up to 100,000 ° C / se.
It is possible to increase to c. Therefore, the time required to reach the required maximum heating temperature is much shorter in the direct current heating method than in the conventional indirect heating method.

【0024】本発明の方法によれば、高温域での加熱速
度が極めて大きいため、高温域での鋼帯の滞在時間が著
しく短くなり、従来法では到底不可能であったような極
めて微細な再結晶組織が形成される。その極めて微細な
再結晶組織が形成された鋼帯を冷間圧延し、次いで最終
焼鈍を行うと、磁気特性の面内異方性が小さくしかもそ
の平均値も良好な無方向性電磁鋼帯が得られるのであ
る。二回以上の冷間圧延を行う場合には、少なくとも最
終冷間圧延前の再結晶組織が極めて微細なものであれば
よい。
According to the method of the present invention, since the heating rate in the high temperature region is extremely high, the staying time of the steel strip in the high temperature region is remarkably shortened, which is extremely fine as previously impossible. A recrystallized structure is formed. By cold rolling the steel strip on which the extremely fine recrystallized structure is formed and then performing final annealing, a non-oriented electrical steel strip with a small in-plane anisotropy of magnetic properties and a good average value can be obtained. You can get it. When cold rolling is performed twice or more, at least the recrystallized structure before final cold rolling should be extremely fine.

【0025】また、高温域での鋼帯の保持時間が著しく
短縮するので、内部酸化が発生する危険性は殆ど皆無と
なる。さらに焼鈍時間が大幅に短縮する結果、連続焼鈍
装置の通板速度を上げることが可能となり、無方向性電
磁鋼板の生産性の向上という大きな効果もある。なお、
合金元素が多く添加される程、鋼帯の比抵抗は増加する
ので、直接通電加熱は合金元素が多く添加された高級な
無方向性電磁鋼板ほど適した方式と言える。
Further, since the holding time of the steel strip in the high temperature range is remarkably shortened, there is almost no risk of internal oxidation. Further, as a result of significantly shortening the annealing time, it becomes possible to increase the striping speed of the continuous annealing device, and there is also a great effect of improving the productivity of the non-oriented electrical steel sheet. In addition,
Since the more the alloying element is added, the more the specific resistance of the steel strip increases, it can be said that direct current heating is more suitable for a high-grade non-oriented electrical steel sheet to which more alloying element is added.

【0026】直接通電加熱方式には、上記のような多く
の利点がある。しかし、加熱時間が短時間で済むとはい
え、加熱を大気中で行うと内部酸化や表面酸化が起こる
ので、加熱部分は無酸化雰囲気でシールする必要がある
のは言うまでもない。
The direct electric heating method has many advantages as described above. However, although the heating time is short, it is needless to say that the heating portion needs to be sealed in a non-oxidizing atmosphere because internal oxidation and surface oxidation occur when heating is performed in the atmosphere.

【0027】直接通電加熱方式は、最終冷間圧延前の焼
鈍(熱延板焼鈍または中間焼鈍)における加熱の全工程
に適用されてもよい。しかし、図2からもわかるよう
に、直接通電加熱の利点は高温になるほど顕著となる。
そこで、低温域では従来の間接加熱方式を用い、高温域
のみ直接通電加熱方式とするのが合理的である。両方式
を併用する方法は、設備の簡略化と総合的なエネルギー
コストの削減に有効である。具体的には、再結晶組織や
内部酸化に対する影響が現れる 800℃以上で、直接通電
加熱を行えばよい。この温度未満では再結晶しないの
で、加熱温度が遅い間接加熱方式を用いても組織に対す
る影響は比較的小さく、また内部酸化の危険性も少な
い。
The direct current heating method may be applied to all heating steps in the annealing (hot-rolled sheet annealing or intermediate annealing) before the final cold rolling. However, as can be seen from FIG. 2, the advantage of the direct current heating becomes remarkable as the temperature becomes higher.
Therefore, it is rational to use the conventional indirect heating method in the low temperature range, and use the direct current heating method only in the high temperature range. The method that uses both methods together is effective in simplifying equipment and reducing overall energy costs. Specifically, direct current heating may be performed at 800 ° C. or higher at which an influence on the recrystallization structure and internal oxidation appears. Since recrystallization does not occur below this temperature, the influence on the structure is relatively small even if the indirect heating method in which the heating temperature is slow is used, and the risk of internal oxidation is also small.

【0028】本発明方法が対象とする無方向性電磁鋼板
の成分の含有量の選定理由を説明すれば次のとおりであ
る。なお、%は全て重量%である。
The reason for selecting the content of the components of the non-oriented electrical steel sheet targeted by the method of the present invention is as follows. All percentages are by weight.

【0029】C:Cは、炭化物を形成して磁気特性を劣
化する元素で、少ないほどよい。Cの含有量が0.01%を
超えると悪影響が顕著となるので、上限を0.01%とす
る。磁気時効の点からは、0.003 %以下にすることが望
ましい。
C: C is an element that forms carbides and deteriorates magnetic properties, and the smaller the content, the better. If the C content exceeds 0.01%, the adverse effect becomes remarkable, so the upper limit is made 0.01%. From the viewpoint of magnetic aging, 0.003% or less is desirable.

【0030】Mn:Mnは、Sによる熱間脆性を防止するた
め、0.05%以上添加した方が望ましいが、 2.0%を超え
ると粒成長性が悪くなるので、上限を 2.0%とする。な
お、Mnは比抵抗を高める上でも効果がある。
Mn: Mn is preferably added in an amount of 0.05% or more in order to prevent hot embrittlement due to S. However, if it exceeds 2.0%, the grain growth property deteriorates, so the upper limit is made 2.0%. Mn is also effective in increasing the specific resistance.

【0031】SiとAl:SiとAlは、比抵抗を上げるために
添加する。それらの合計含有量が 2.0%未満の場合は変
態点が現れ、変態点で焼鈍温度の上限が決まるため、本
発明方法の効果が十分発揮できなくなる。従って、下限
を 2.0%とする。一方、合計含有量が5.0%を超える
と、冷間圧延性が著しく劣化するので、上限を 5.0%と
する。なお、SiはAlよりも安いので、通常はSiを主体と
してAlを補助的に使用することが多いが、理論的にはSi
とAlのいずれか一方だけを使用してもよい。
Si and Al: Si and Al are added to increase the specific resistance. When the total content of these elements is less than 2.0%, a transformation point appears, and the upper limit of the annealing temperature is determined by the transformation point, so that the effect of the method of the present invention cannot be sufficiently exhibited. Therefore, the lower limit is 2.0%. On the other hand, if the total content exceeds 5.0%, the cold rolling property deteriorates significantly, so the upper limit is made 5.0%. In addition, since Si is cheaper than Al, Al is often used as the main component and Al is used as a supplement, but theoretically Si is used.
Only one of Al and Al may be used.

【0032】その他、不可避的不純物であるS、N、O
はそれぞれ 0.003%以下で、できるだけ低く抑えること
が望ましい。
In addition, inevitable impurities such as S, N and O
Each is 0.003% or less, and it is desirable to keep it as low as possible.

【0033】[0033]

【実施例】【Example】

C:0.002 %、Si:3.25%、Mn:0.25%、P:0.015
%、S:0.001 %、Al:0.83%、N:0.002 %、O:0.
001 %を含有し、残部は実質上鉄からなる連続鋳造スラ
ブを1200℃に加熱し、仕上温度 850℃、巻取り温度 550
℃で熱間圧延を行い、2.3mm 厚さの熱延コイルとした。
C: 0.002%, Si: 3.25%, Mn: 0.25%, P: 0.015
%, S: 0.001%, Al: 0.83%, N: 0.002%, O: 0.
A continuous cast slab containing 001% and the balance essentially iron is heated to 1200 ° C, finishing temperature 850 ° C, winding temperature 550
Hot rolling was performed at ℃ to obtain a hot rolled coil with a thickness of 2.3 mm.

【0034】この熱延コイルを酸洗後、下記 (A)およ
び(B)に示す工程で熱延板焼鈍あるいは中間焼鈍を実
施した。
After this hot rolled coil was pickled, hot rolled sheet annealing or intermediate annealing was carried out in the steps shown in (A) and (B) below.

【0035】次いで、最終冷間圧延の前の鋼板の結晶粒
径を測定した後、0.5mm 厚さに冷間圧延を行った。さら
に最終焼鈍を施して、得られた無方向性電磁鋼板の磁気
特性を評価した。
Then, after measuring the grain size of the steel sheet before the final cold rolling, cold rolling was performed to a thickness of 0.5 mm. Further, final annealing was performed to evaluate the magnetic properties of the obtained non-oriented electrical steel sheet.

【0036】(A)一回冷間圧延の場合:酸洗した熱延
コイルを 200mm幅にスリットした後、本発明方法である
直接通電加熱方式と従来の間接加熱方式 (雰囲気加熱お
よび高周波誘導加熱) で焼鈍した。
(A) In the case of single cold rolling: After pickling a hot-rolled coil that has been pickled to a width of 200 mm, the direct current heating method which is the method of the present invention and the conventional indirect heating method (atmosphere heating and high frequency induction heating) ) Was annealed.

【0037】(B)二回冷間圧延の場合:酸洗した熱延
コイルを1.2 mm厚さに冷間圧延し、その一次冷延コイル
を 200mm幅にスリットした後、本発明方法である直接通
電加熱方式と従来の間接加熱方式(雰囲気加熱および高
周波誘導加熱) で中間焼鈍を実施した。
(B) In the case of double cold rolling: The pickled hot-rolled coil is cold-rolled to a thickness of 1.2 mm and the primary cold-rolled coil is slit to a width of 200 mm. Intermediate annealing was performed by the electric heating method and the conventional indirect heating method (atmosphere heating and high frequency induction heating).

【0038】直接通電加熱はコイルを1m/minの速度で通
板し、 1mの間隔で配置した二組の通電用ピンチロール
間に電源電圧10Vで、上記 (A)に示す工程の場合に50
00Aの電流、上記(B)に示す工程の場合に2500Aの電
流を流すことにより常温から加熱した。最高加熱温度は
1100℃で、雰囲気は 100%窒素とした。
In the direct current heating, the coil is passed at a speed of 1 m / min, the power source voltage is 10 V between two sets of current-use pinch rolls arranged at an interval of 1 m, and in the case of the step shown in (A) above, 50
A current of 00 A, and a current of 2500 A in the case of the process shown in (B) above were applied to heat from room temperature. The maximum heating temperature is
At 1100 ° C, the atmosphere was 100% nitrogen.

【0039】雰囲気加熱は電気ヒ−タ−によって加熱さ
れる連続焼鈍炉に、コイルを1m/minの速度で通板し、常
温から加熱した。最高加熱温度は1100℃で、雰囲気は 1
00%窒素とした。
The atmosphere was heated from room temperature by passing the coil through a continuous annealing furnace heated by an electric heater at a speed of 1 m / min. Maximum heating temperature is 1100 ℃, atmosphere is 1
00% nitrogen was used.

【0040】高周波誘導加熱は、周波数60Hz、電力60kW
の高周波誘導加熱装置によって加熱される連続焼鈍炉
に、コイルを1m/minの速度で通板し、常温から加熱し
た。最高加熱温度は1100℃で、雰囲気は 100%窒素とし
た。
High frequency induction heating has a frequency of 60 Hz and power of 60 kW
The coil was passed through a continuous annealing furnace heated by the high-frequency induction heating device at 1 m / min and heated from room temperature. The maximum heating temperature was 1100 ° C and the atmosphere was 100% nitrogen.

【0041】結晶粒径の測定は、顕微鏡写真を撮影し、
リニアアナリシス法で行った。
To measure the crystal grain size, a micrograph is taken,
A linear analysis method was used.

【0042】最終焼鈍は、赤外線加熱ヒ−タ−によって
加熱される連続焼鈍炉で行い、雰囲気ガスは98%窒素+
2%水素、均熱温度は1000℃、均熱温度での保持時間は
1分とした。
The final annealing is carried out in a continuous annealing furnace heated by an infrared heating heater, and the atmosphere gas is 98% nitrogen +
2% hydrogen, the soaking temperature was 1000 ° C., and the holding time at the soaking temperature was 1 minute.

【0043】磁気特性の評価は、単板磁気測定機を用い
て、鉄損W15/50 と磁束密度B50を測定することにより
行った。
The magnetic properties were evaluated by measuring the iron loss W 15/50 and the magnetic flux density B 50 using a single plate magnetometer.

【0044】表1に一回冷間圧延の場合(熱延板焼鈍の
場合)、表2に二回冷間圧延の場合(中間焼鈍の場合)
での、結晶粒径と磁気特性を示す。表1および表2に
は、圧延方向(表中に記載する試験方向「0°」) 、そ
れに直角方向 (同「90°」) および45度方向 (同「45
°」) にそれぞれ採取した試料の鉄損W15/50 と磁束密
度B50の測定値、さらにそれらの平均値を示している。
Table 1 shows the case of single cold rolling (in the case of hot rolled sheet annealing), and Table 2 shows the case of double cold rolling (in the case of intermediate annealing).
Shows the crystal grain size and magnetic characteristics. Tables 1 and 2 show rolling direction (test direction “0 °” described in the table), perpendicular direction (90 °) and 45 ° direction (45 °).
The measured values of the iron loss W 15/50 and the magnetic flux density B 50 of each sample are shown in “°”), and their average values are shown.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】本発明方法の直接通電加熱方式では、従来
の間接加熱方式に比べて加熱速度は著しく速く、少なく
とも最終冷間圧延前の鋼板の結晶粒が極めて微細になる
ため、最終焼鈍後の磁気特性の面内異方性は、鉄損につ
いても磁束密度についても共に極めて小さくなってい
る。さらに磁気特性の平均値も、同様に本発明方法の直
接通電加熱方式の方が従来の間接加熱方式よりも良好で
ある。
The direct current heating method of the method of the present invention has a significantly higher heating rate than the conventional indirect heating method, and at least the crystal grains of the steel sheet before the final cold rolling are extremely fine. The in-plane anisotropy of the characteristics is extremely small both in terms of iron loss and magnetic flux density. Further, the average value of the magnetic characteristics is also better in the direct current heating method of the method of the present invention than in the conventional indirect heating method.

【0048】従って、本発明方法の直接通電加熱方式を
用いることにより、従来より高品位の無方向性電磁鋼板
を製造できることがわかる。
Therefore, it can be seen that by using the direct current heating method of the method of the present invention, it is possible to manufacture a higher quality non-oriented electrical steel sheet than before.

【0049】[0049]

【発明の効果】本発明の製造方法により、磁気特性の面
内異方性が極めて小さく、しかもその平均値も良好な高
級無方向性電磁鋼板を、工業的に安定して製造できる。
この磁気特性の面内異方性が小さい無方向性電磁鋼板を
素材とすることにより、鉄心の加工や使用に当たっての
制約がなくなる。
Industrial Applicability According to the manufacturing method of the present invention, a high-grade non-oriented electrical steel sheet having extremely small in-plane anisotropy of magnetic properties and a good average value can be manufactured industrially and stably.
By using this non-oriented electrical steel sheet having a small in-plane anisotropy of magnetic characteristics as a material, there is no restriction in processing or using the iron core.

【0050】さらに、この無方向性電磁鋼板は、その磁
気特性が従来法で製造したものより良好であるのみなら
ず、その生産性においても従来法に勝っており、実用的
な価値は極めて高い。
Further, this non-oriented electrical steel sheet not only has better magnetic properties than those manufactured by the conventional method, but also has productivity higher than that of the conventional method, and its practical value is extremely high. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法における直接通電加熱を説明する略
図である。
FIG. 1 is a schematic diagram illustrating direct electric heating in the method of the present invention.

【図2】直接通電加熱(本発明法)と間接加熱(従来
法)による鋼板の昇温パターンを比較して示す図であ
る。
FIG. 2 is a diagram showing a comparison of temperature rising patterns of a steel sheet by direct current heating (method of the present invention) and indirect heating (conventional method).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Cが0.01%以下、Mnが 2.0%以
下、SiとAlが合計で 2.0〜5.0 %で、残部は不可避的不
純物と鉄からなる無方向性電磁鋼板の製造工程におい
て、少なくとも最終冷間圧延前の焼鈍における加熱を鋼
帯に直接通電する電気抵抗加熱方式で行うことを特徴と
する磁気特性面内異方性の小さい無方向性電磁鋼板の製
造法。
1. A process for producing a non-oriented electrical steel sheet comprising C: 0.01% or less, Mn: 2.0% or less, Si and Al: 2.0 to 5.0% in total, the balance being inevitable impurities and iron. 2. A method for producing a non-oriented electrical steel sheet having a small magnetic property in-plane anisotropy, wherein at least the heating in the annealing before the final cold rolling is performed by an electric resistance heating method in which a steel strip is directly energized.
【請求項2】少なくとも最終冷間圧延前の焼鈍における
加熱を、間接加熱方式と直接通電する電気抵抗加熱方式
を併用して行い、この電気抵抗加熱を 800℃以上の温度
領域で行うことを特徴とする請求項1に記載の磁気特性
面内異方性の小さい無方向性電磁鋼板の製造法。
2. At least the heating in the annealing before the final cold rolling is performed by using both the indirect heating method and the electric resistance heating method of directly energizing, and the electric resistance heating is performed in a temperature range of 800 ° C. or higher. The method for producing a non-oriented electrical steel sheet according to claim 1, wherein the magnetic property in-plane anisotropy is small.
JP1615992A 1992-01-31 1992-01-31 Production of nonoriented silicon steel sheet minimal inplane anisotropy of magnetic property Pending JPH05214444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1615992A JPH05214444A (en) 1992-01-31 1992-01-31 Production of nonoriented silicon steel sheet minimal inplane anisotropy of magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1615992A JPH05214444A (en) 1992-01-31 1992-01-31 Production of nonoriented silicon steel sheet minimal inplane anisotropy of magnetic property

Publications (1)

Publication Number Publication Date
JPH05214444A true JPH05214444A (en) 1993-08-24

Family

ID=11908733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1615992A Pending JPH05214444A (en) 1992-01-31 1992-01-31 Production of nonoriented silicon steel sheet minimal inplane anisotropy of magnetic property

Country Status (1)

Country Link
JP (1) JPH05214444A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017933A1 (en) * 2010-08-04 2012-02-09 新日本製鐵株式会社 Process for producing non-oriented electromagnetic steel sheet
WO2012086534A1 (en) * 2010-12-22 2012-06-28 Jfeスチール株式会社 Process for production of non-oriented electromagnetic steel sheet
JP2013010982A (en) * 2011-06-28 2013-01-17 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
JP2018066040A (en) * 2016-10-19 2018-04-26 Jfeスチール株式会社 HOT-ROLLED SHEET ANNEALING FACILITY OF Si-CONTAINING HOT-ROLLED STEEL SHEET, HOT-ROLLED SHEET ANNEALING METHOD AND DESCALING METHOD
US9978488B2 (en) 2013-02-21 2018-05-22 Jfe Steel Corporation Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017933A1 (en) * 2010-08-04 2012-02-09 新日本製鐵株式会社 Process for producing non-oriented electromagnetic steel sheet
JP5437476B2 (en) * 2010-08-04 2014-03-12 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet
US9579701B2 (en) 2010-08-04 2017-02-28 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of non-oriented electrical steel sheet
WO2012086534A1 (en) * 2010-12-22 2012-06-28 Jfeスチール株式会社 Process for production of non-oriented electromagnetic steel sheet
JP2012132070A (en) * 2010-12-22 2012-07-12 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel plate
JP2013010982A (en) * 2011-06-28 2013-01-17 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
US9978488B2 (en) 2013-02-21 2018-05-22 Jfe Steel Corporation Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties
JP2018066040A (en) * 2016-10-19 2018-04-26 Jfeスチール株式会社 HOT-ROLLED SHEET ANNEALING FACILITY OF Si-CONTAINING HOT-ROLLED STEEL SHEET, HOT-ROLLED SHEET ANNEALING METHOD AND DESCALING METHOD
KR20190044660A (en) * 2016-10-19 2019-04-30 제이에프이 스틸 가부시키가이샤 Hot-rolled sheet annealing equipment for Si-containing hot-rolled steel sheets, hot-rolled sheet annealing method and descaling method
EP3530762B1 (en) 2016-10-19 2022-08-17 JFE Steel Corporation Method for annealing si containing hot rolled steel sheet for descaling.
US11788165B2 (en) 2016-10-19 2023-10-17 Jfe Steel Corporation Hot-band annealing equipment, hot-band annealing method and descaling method for Si-containing hot rolled steel sheet

Similar Documents

Publication Publication Date Title
JPH03219020A (en) Production of nonoriented silicon steel sheet
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH05214444A (en) Production of nonoriented silicon steel sheet minimal inplane anisotropy of magnetic property
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH055126A (en) Production of nonoriented silicon steel sheet
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
JP2679927B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2701443B2 (en) High silicon steel sheet having excellent iron loss characteristics and method for producing the same
JP4292805B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JPH04280921A (en) Production of steel sheet for particle accelerator by continuous annealing
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP3456860B2 (en) Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics
JPH0559441A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH0741860A (en) Production of grain-oriented silicon steel sheet
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
KR100256356B1 (en) The manufacturing method for non-oriented electrical steel sheet