KR100516464B1 - A method for manufacturing high hardness non-grain oriented silicon steel sheet - Google Patents

A method for manufacturing high hardness non-grain oriented silicon steel sheet Download PDF

Info

Publication number
KR100516464B1
KR100516464B1 KR10-2000-0079599A KR20000079599A KR100516464B1 KR 100516464 B1 KR100516464 B1 KR 100516464B1 KR 20000079599 A KR20000079599 A KR 20000079599A KR 100516464 B1 KR100516464 B1 KR 100516464B1
Authority
KR
South Korea
Prior art keywords
steel sheet
oriented electrical
electrical steel
magnetic
hardness
Prior art date
Application number
KR10-2000-0079599A
Other languages
Korean (ko)
Other versions
KR20020050450A (en
Inventor
김기열
이석주
오성엽
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-2000-0079599A priority Critical patent/KR100516464B1/en
Publication of KR20020050450A publication Critical patent/KR20020050450A/en
Application granted granted Critical
Publication of KR100516464B1 publication Critical patent/KR100516464B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명은 마그네틱 스위치용 철심재료로 사용되는 무방향성 전기강판의 제조방법에 관한 것으로서, 강중 Si 함량과 예비소둔조건 및 최종소둔조건을 제어함으로써, 보자력과 잔류자속밀도뿐 아니라 경도도 우수한 마그네틱 스위치용 무방향성 전기강판을 제조하는 것을, 그 목적으로 한다.The present invention relates to a non-oriented electrical steel sheet manufacturing method used as an iron core material for magnetic switch, by controlling the Si content, pre-annealing conditions and final annealing conditions in the steel, for magnetic switches having excellent hardness as well as coercivity and residual magnetic flux density It is an object to manufacture a non-oriented electrical steel sheet.

상기한 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

중량%로, C: 0.004∼0.006%, Si: 2.6∼3.0%, Mn: 0.25∼0.35%, P: ≤0.01%, S: ≤0.003%, Al: 0.4∼0.5%, N: 0.005%이하, 잔부 Fe 및 불가피한 불순물로 이루어진 규소강 슬라브를 1230∼1290℃ 에서 재가열한 후 열간압연 및 권취한 다음, 1000∼1100℃에서 예비소둔하고, 냉간압연후 15∼16℃/sec 의 승온속도로 870∼900℃ 까지 가열하고 이 온도에서 유지하는 최종소둔을 실시하는 것을 포함하여 이루어지는 고경도 무방향성 전기강판의 제조방법을, 그 기술적 요지로 한다.By weight%, C: 0.004-0.006%, Si: 2.6-3.0%, Mn: 0.25-0.35%, P: ≤0.01%, S: ≤0.003%, Al: 0.4-0.5%, N: 0.005% or less, The silicon steel slab composed of the balance Fe and unavoidable impurities is reheated at 1230-1290 ° C, hot rolled and wound up, preannealed at 1000-1100 ° C, and then cold-rolled at a temperature rising rate of 15-16 ° C / sec. The technical gist of the manufacturing method of the high hardness non-oriented electrical steel sheet which includes heating to 900 degreeC and carrying out the final annealing which hold | maintains at this temperature is made into the technical summary.

Description

고경도 무방향성 전기강판의 제조방법{A METHOD FOR MANUFACTURING HIGH HARDNESS NON-GRAIN ORIENTED SILICON STEEL SHEET}Manufacturing method of high hardness non-oriented electrical steel sheet {A METHOD FOR MANUFACTURING HIGH HARDNESS NON-GRAIN ORIENTED SILICON STEEL SHEET}

본 발명은 마그네틱 스위치용 철심재료로 사용되는 무방향성 전기강판의 제조방법에 관한 것으로서, 보다 상세하게는 철손이 낮고 비커스 경도가 높은 무방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing an non-oriented electrical steel sheet used as an iron core material for a magnetic switch, and more particularly, to a method for manufacturing a non-oriented electrical steel sheet having low iron loss and high Vickers hardness.

무방향성 전기강판은, 각종 모터 및 발전기 등의 철심재료로 사용되는 소재로서, 여기서 요구되는 자기적 특성으로는, 철손(Core Loss)과 자속밀도(Magnetic Induction)를 들 수 있다.The non-oriented electrical steel sheet is a material used for iron core materials such as various motors and generators, and the magnetic properties required here include core loss and magnetic induction.

상기 철손은, 이력손실(Hysteresis Loss)와 와전류손실(Eddy Current Loss)로 구분된다. 이러한 이력손실은 자구벽의 비가역적 이동에 기인하는 에너지 손실로서, 철심재료의 결정방위, 순도(불순물,설출물), 내부응력 등에 영향을 받는다. 반면에, 와전류손실은 자구이동에 수반되는 자속변화 때문에 발생하는 와전류에 의한 에너지 손실로서, 무방향성의 경우 거의 철심재료의 두께에 의해 결정된다. The iron loss is classified into hysteresis loss and eddy current loss. This hysteresis loss is an energy loss due to the irreversible movement of the magnetic domain wall, and is affected by crystal orientation, purity (impurity, snow), and internal stress of iron core material. On the other hand, the eddy current loss is the energy loss due to the eddy current caused by the magnetic flux change accompanying the magnetic domain movement, and in the nondirectional direction, it is almost determined by the thickness of the iron core material.

일반적으로 무방향성 전기강판의 철손은, 비저항을 크게 증가시키는 규소함량과 판두께에 의해 대부분 좌우되지만, 이들이 동일하다면 주로 결정립 크기와 집합조직에 따라 변화한다. 즉, 결정립 크기가 증가하면 자구벽의 이동을 방해하는 입계면적이 줄어들어 이력손실이 감소하는 반면 자구폭이 커져 자구벽의 이동속도의 증가로 자구벽 주위에 많은 양의 와전류가 형성되어 와전류손실은 증가한다. 따라서, 철손을 최소화하는 적정 결정립 크기가 존재하고 이는 규소함량, 판두께 및 합금원소 등에 따라 변화하는 것으로 알려져 있다. In general, the iron loss of non-oriented electrical steel sheet is largely dependent on the silicon content and the plate thickness, which greatly increases the resistivity, but if they are the same, it mainly depends on grain size and texture. In other words, as the grain size increases, the hysteresis loss decreases due to the reduction of the grain boundary area that impedes the movement of the magnetic domain wall, while the magnetic domain width increases, and the eddy current loss increases due to the increase of the moving speed of the magnetic domain wall. Increases. Therefore, there is an appropriate grain size for minimizing iron loss, which is known to vary depending on the silicon content, plate thickness and alloying elements.

한편, 자속밀도는 규소함량에 의하여 대부분 결정되긴 하지만 집합조직에 따라 현저히 변하는 것으로 알려져 있다. 따라서, 무방향성 전기강판의 철손을 감소시킴과 동시에 자속밀도를 증가시키려면, 결정립을 적정크기로 성장시키고, 이러한 결정립들이 자화용이축인 <100> 방향을 포함하고 있는 {200}, {110}면을 갖도록 하는 것이 관건임을 알 수 있다.On the other hand, the magnetic flux density is known to vary significantly depending on the texture, although it is mostly determined by the silicon content. Therefore, in order to reduce the iron loss of the non-oriented electrical steel sheet and increase the magnetic flux density, the grains are grown to an appropriate size, and the grains include the {200} and {110} directions containing the <100> direction of the magnetization axis. It is important to have a face.

무방향성 전기강판의 자성에 영향을 미치는 여러 인자중에서 Si함량, 불순물 및 두께의 영향과 자화과정에서 자구벽 이동에 대한 장애물에 대하여 간단히 살펴보면 다음과 같다.Among the factors affecting the magnetism of non-oriented electrical steel sheet, the effects of Si content, impurities and thickness and the obstacles to the movement of the magnetic domain walls during the magnetization process are as follows.

*Si함량 : 무방향성 전기강판의 여러성분중에서 가장 중요한 Si의 역할은 비저항을 증가시켜 와전류손실을 감소시키고, 페라이트 확장원소로서 열처리 범위를 넓혀주며 회전기기의 철심재로 사용되는데 필요한 강도를 부여해 준다.* Si content: The most important role of Si among the various components of non-oriented electrical steel sheet is to increase the resistivity, reduce the eddy current loss, widen the heat treatment range as ferrite expansion element, and give the strength needed to be used as iron core material of rotating equipment. .

*불순물(C,S,O,N) : C,S,O,N 등의 불순물은 열간압연과정에서 MnS, AlN 처럼 석출물을 형성하여 소둔시 결정립 성장을 방해하고 자구의 이동을 어렵게 하며, 재결정 집합조직을 자성에 불리하게 형성시키므로 자성에 나쁜 영향을 미친다.* Impurities (C, S, O, N): Impurities such as C, S, O, N form precipitates like MnS and AlN during hot rolling, which hinders grain growth during annealing and makes the movement of domains difficult and recrystallization Aggregates form adversely to the magnetism, which adversely affects the magnetism.

*두께: 철손은 두께가 얇아짐에 따라 감소하다가 어느 두께 이하가 되면 다시 증가하기 때문에, 철손이 최소가 되는 두께가 존재한다는 것을 알 수 있다. 이와 같은 현상은 철손을 구성하는 이력손실과 와전류손실이 두께에 따라 서로 상반되게 변화하기 때문에 발생한다. 다시 말해 두께가 얇아질수록 이력손실은 증가하는 반면 와전류손실은 감소하기 때문이다. 두께가 얇아짐에 따라 이력손실과 완전류손실이 서로 상반되게 변화하는 이유는 두께가 얇아짐에 따라 결정립 크기가 감소하여 자구벽의 이동을 방해하는 입계면적이 증가하는 동시에 자화에 불리한 {222}, {211}면의 집적도가 증가하여 자속밀도가 감소하기 때문이다. 한편 와전류손실이 감소하는 이유는 두께가 얇아져서 재료내에 와전류가 흐르는 경로가 축소되기 때문이다.* Thickness: As the iron loss decreases as the thickness becomes thinner and then increases again when it is less than a certain thickness, it can be seen that there is a minimum thickness of the iron loss. This phenomenon occurs because the hysteresis loss and the eddy current loss constituting the iron loss change opposite to each other depending on the thickness. In other words, the thinner the thickness, the hysteresis loss increases while the eddy current loss decreases. The reason why hysteresis loss and complete flow loss change as the thickness becomes thinner is that the grain size decreases as the thickness becomes thinner, which increases the grain boundary area which hinders the movement of the magnetic domain wall and is disadvantageous for magnetization {222} This is because the density of the magnetic flux decreases due to the increased degree of integration of the {211} plane. On the other hand, the reason why the eddy current loss decreases is because the thickness becomes thin and the path through which the eddy current flows in the material is reduced.

한편, 상기한 무방향성 전기강판은, 특히 마그네틱 스위치용으로 사용될 수 있는데, 이 때는 상기한 특성 이외에, 경도(Hardness), 보자력(Coercive Force), 및 잔류자속밀도(Remanence) 등의 특성도 추가적으로 요구된다. 마그네틱 스위치란 전기회로를 개폐하는 스위치로 사용되는 일종의 전자석으로서, 스위치를 개폐하는 제어회로(control circuit)와 동작회로(operating circuit)가 전기적으로 서로 분리되어 있으므로 제어회로에서 아주 약한 전류로도 동작회로의 훨씬 큰 전류를 제어할 수 있는 특징을 갖고 있다. 스위치의 제어회로는 자화될 수 있게 코일이 감긴채 고정되어 있는 코어(core)와 회로를 개폐할 수 있게 움직이도록 되어 있는 코어로 구성되어 있기 때문에, 마그네틱 스위치의 철심재료는 E형 코어의 접점이 서로 빈번하게 충돌하므로 경도가 높아야 하며, 전류를 끊었을 때 스위치가 끊어지기 쉬워야 하므로 보자력과 잔류자속밀도가 낮은 것이 바람직하다. 또한, 철손이 낮고 자속밀도가 높아야 함은 말할 나위도 없다.On the other hand, the non-oriented electrical steel sheet, in particular can be used for the magnetic switch, in addition to the above-described characteristics, such as hardness (Hardness), Coercive Force, and residual magnetic flux density (Remanence) also requires additional do. A magnetic switch is a kind of electromagnet used as a switch for opening and closing an electric circuit. Since a control circuit and an operating circuit for opening and closing a switch are electrically separated from each other, an operation circuit is operated even with a weak current in the control circuit. It has the characteristic to control much larger current. Since the control circuit of the switch consists of a core which is coiled and fixed so as to be magnetized and a core which is movable to open and close the circuit, the magnetic core material of the magnetic switch has a contact point of the E-type core. Since they collide frequently with each other, the hardness must be high, and when the current is cut off, the switch must be easy to be broken, so the coercive force and the residual magnetic flux density are low. In addition, it is needless to say that the iron loss is low and the magnetic flux density is high.

그러나, 지금까지는 상기한 바와 같은 마그네틱 스위치용 재료로서 Si 함량이 2.1% 수준이고 두께가 0.50mmt인 일반 무방향성 전기강판을 사용하였기 때문에, 생산성과 내마모성 측면에서 크게 불리하여 제품의 경쟁력이 떨어지는 문제점이 있었다.However, until now, the non-oriented electrical steel sheet having a Si content of 2.1% and a thickness of 0.50 mmt was used as the magnetic switch material as described above. Thus, there is a problem that the competitiveness of the product is deteriorated because it is greatly disadvantageous in terms of productivity and wear resistance. there was.

이에, 본 발명의 발명자들은 상기와 같은 문제점을 해결하기 위하여 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 강중 Si 함량과 예비소둔조건 및 최종소둔조건을 제어함으로써, 보자력과 잔류자속밀도뿐 아니라 경도도 우수한 마그네틱 스위치용 무방향성 전기강판을 제조하는 것을, 그 목적으로 한다.Accordingly, the inventors of the present invention have repeatedly studied and experimented to solve the above problems, and proposed the present invention based on the results. The present invention controls the Si content, pre-annealing condition and final annealing condition in steel. It is an object of the present invention to manufacture a non-oriented electrical steel sheet for magnetic switches having excellent hardness as well as coercive force and residual magnetic flux density.

상기한 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

중량%로, C: 0.004∼0.006%, Si: 2.6∼3.0%, Mn: 0.25∼0.35%, P: ≤0.01%, S: ≤0.003%, Al: 0.4∼0.5%, N: 0.005%이하, 잔부 Fe 및 불가피한 불순물로 이루어진 규소강 슬라브를 1230∼1290℃ 에서 재가열한 후 열간압연 및 권취한 다음, 1000∼1100℃에서 예비소둔하고, 냉간압연후 15∼16℃/sec 의 승온속도로 870∼900℃ 까지 가열하고 이 온도에서 유지하는 최종소둔을 실시하는 것을 포함하여 이루어지는 고경도 무방향성 전기강판의 제조방법에 관한 것이다.By weight%, C: 0.004-0.006%, Si: 2.6-3.0%, Mn: 0.25-0.35%, P: ≤0.01%, S: ≤0.003%, Al: 0.4-0.5%, N: 0.005% or less, The silicon steel slab composed of the balance Fe and unavoidable impurities is reheated at 1230-1290 ° C, hot rolled and wound up, preannealed at 1000-1100 ° C, and then cold-rolled at a temperature rising rate of 15-16 ° C / sec. It relates to a method for producing a high hardness non-oriented electrical steel sheet comprising heating to 900 ℃ and the final annealing to maintain at this temperature.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명의 발명자들은, 일반적으로 무방향성 전기강판의 경도가 Si 함량 및 예비소둔,최종소둔판의 결정립 크기에 의해 영향을 받는다는 점에 착안하여, 이들에 대한 최적의 조건을 구하기 위한 연구 및 실험을 거듭한 결과, 본 발명을 완성시킨 것이다. The inventors of the present invention, in view of the fact that the hardness of the non-oriented electrical steel sheet is generally affected by the Si content and the pre-annealed, the grain size of the final annealing plate, the inventors and experiments to find the optimum conditions for these As a result, the present invention has been completed.

즉, 본 발명에서는 Si을 제외한 성분 및 그 함량 범위는 무방향성 전기강판의 제조시 일반적으로 사용되고 있는 것을 이용하였고, 본 발명의 특징적인 원소인 Si의 함량만을 최적의 값으로 설정하였다. That is, in the present invention, components other than Si and their content ranges were used in the manufacture of non-oriented electrical steel sheet, and were used in general, and only the content of Si, which is a characteristic element of the present invention, was set to an optimal value.

상기 Si은 치환형 원소로서, 그 함량을 증가시킬수록 고용강화효과에 의해 경도가 증가하게 되며, 또한 철손이 개선되어 에너지 효율화 측면에서 유리하게 된다. 그러나, 과잉 첨가되면, 포화자속밀도가 낮아져 결국 자속밀도가 열위해지며, 또한 재료비 상승에 따른 원가부담이 올라가는 문제가 있다. 따라서, 상기 Si의 함량범위는 2.6~3.0%로 설정하는 것이 바람직하다.The Si is a substitutional element, the hardness increases as the content is increased, and the iron loss is improved, which is advantageous in terms of energy efficiency. However, when excessively added, the saturation magnetic flux density is lowered, so that the magnetic flux density is thermally deteriorated, and there is a problem in that the cost burden is increased due to the material cost increase. Therefore, the content range of the Si is preferably set to 2.6 ~ 3.0%.

이와 같이 조성된 강 슬라브는 통상의 방법에 따라, 재가열한 다음 열간압연하고 권취한 후 냉간압연되어 무방향성 전기강판으로 제조되는데, 이 때, 본 발명에서는 상기 열간압연후 코일로 권취한 다음 실시되는 예비소둔과 냉간압연후 실시되는 최종소둔의 온도조건을 적절히 제어하는 데 특징이 있다. 상기한 바와 같이, 경도를 높이기 위해서는 최종 소둔판에서의 결정립이 미세화되어 있어야 하는데, 그 이유는 결정립 크기가 증가하면 결정립계에서 균열이 발생할 가능성이 커지기 때문이다. 따라서 적정 Si함량 조건에서 결정립 크기를 제어하여 경도를 높이기 위해서는, 결국 소둔온도를 하향하고 재로시간을 짧게 하는 것이 유리하다. 그러나, 이 때 결정립 성장이 지나치게 미흡하면, 이력손실은 증가하고 와전류손실은 감소하나, 이력손실의 증가효과가 와전류손실의 감소효과를 훨씬 능가하기 때문에 철손이 열위되며 또한 그에 따라 마그네틱 스위치용 무방향성 전기강판으로 요구되는 중요한 특성인 보자력과 잔류자속밀도가 커지는 문제가 발생한다.The steel slabs thus formed are made of a non-oriented electrical steel sheet after reheating, hot rolling and winding, followed by cold rolling according to a conventional method, in which the present invention is carried out after winding with a coil after hot rolling. It is characterized by appropriately controlling the temperature conditions of the final annealing after pre-annealing and cold rolling. As described above, in order to increase the hardness, the grains in the final annealing plate should be refined because the increase in grain size increases the possibility of cracking at grain boundaries. Therefore, in order to increase the hardness by controlling the grain size under the appropriate Si content conditions, it is advantageous to lower the annealing temperature and short the ashing time. However, if grain growth is too low at this time, hysteresis loss increases and eddy current loss decreases, but iron loss is inferior because hysteresis loss increases far more than eddy current loss, and accordingly, non-directional magnetic switch is used. There is a problem of increasing coercivity and residual magnetic flux density, which are important characteristics required for electrical steel sheet.

본 발명에서는 최종소둔후 결정립이 지나치게 미세화되어 자기적 특성이 요구수준 이하로 열위되는 것을 방지하기 위하여 열간압연 및 열연권취후 실시되는 예비소둔온도를 1000~1100℃로 설정하였다. 즉, 상기 예비소둔은 초립이 적정한 결정립으로 성장할 만한 조건을 만들어주는 역할을 하는데, 상기 예비소둔 온도가 1000℃ 미만인 경우에는 적정한 결정립 성장에 미흡하며, 1100℃ 이상으로 지나치게 높을 경우에는 석출물이 재고용된후 냉각과정에서 다시 미세하게 석출하므로서 최종소둔에서의 결정립 성장을 방해할 수 있기 때문에 바람직하지 않다.In the present invention, in order to prevent the crystal grains from becoming too fine after the final annealing and inferior to the required level, the pre-annealing temperature carried out after hot rolling and hot rolling is set to 1000 to 1100 ° C. That is, the pre-annealing serves to create conditions for growth of the granules into the proper grains, when the pre-annealing temperature is less than 1000 ℃ is insufficient for proper grain growth, if the precipitate is excessively high above 1100 ℃ It is not preferable because it may inhibit fine grain growth in final annealing as it precipitates finely again in the cooling process afterwards.

또한, 상기 냉간압연후 상온까지 냉각된 냉연강판을 최종소둔하는데, 이 때는 15∼16℃/sec 의 승온속도로 870∼900℃ 까지 가열하고 이 온도에서 유지하는 식으로 실시하는 것이 바람직하다. 그 이유는, 상기 승온속도가 15℃/sec 미만이면 소둔시간이 필요 이상으로 길어져 그결과 지나친 결정립 성장으로 경도가 요구수준을 만족시키지 못 할 수가 있고, 16℃/sec 이상이면 소둔시간 부족으로 결정립 미세화에 의해 자기적 특성이 열위될 수 있기 때문이다. 또한, 상기 최종소둔시 강판을 870∼900℃ 까지 가열하는 이유는, 상기 소둔온도가 900℃ 보다 높으면 결정립 성장에 따른 경도확보가 곤란하고, 870℃ 미만이면 결정립 미세화로 자기적 특성이 열위되기 때문이다. 상기 소둔온도에서 유지시간은 통상 40~50초 정도 소요된다.In addition, the cold-rolled steel sheet cooled to room temperature after the cold rolling is finally annealed, in which case it is preferably carried out by heating to 870 to 900 ℃ at a temperature rising rate of 15 to 16 ℃ / sec and maintained at this temperature. The reason is that the annealing time is longer than necessary when the temperature increase rate is less than 15 ° C / sec. As a result, the hardness may not satisfy the required level due to excessive grain growth. This is because magnetic properties may be inferior by miniaturization. In addition, the reason for heating the steel sheet to 870 ~ 900 ℃ during the final annealing is, because the annealing temperature is higher than 900 ℃ difficult to secure the hardness due to grain growth, if less than 870 ℃ magnetic properties are inferior due to grain refinement to be. The holding time at the annealing temperature usually takes about 40 to 50 seconds.

이와 같이 하여 제조된 무방향성 전기강판은, 1kg의 하중으로 측정한 비커스 경도가 180 이상으로, 마그네틱 스위치용으로 적합한 소재로 된다.The non-oriented electrical steel sheet thus produced has a Vickers hardness of 180 or more, measured at a load of 1 kg, and is a suitable material for magnetic switches.

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

(비교 실시예 1)(Comparative Example 1)

중량%로, C:0.005%, Mn:0.29%, P:0.009%, S:0.0028%, Al:45%, N:0.0012%, 잔부 Fe 및 기타 불가피한 불순물을 함유하고, Si 의 함량은 하기 표 1과 같이 변화시킨 강 슬라브를 1270℃ 에서 재가열한 후 1.8mmt 두께로 열간압연하고, 예비소둔을 실시하지 않거나 또는 1100℃ 에서 실시하였다. 그 후, 0.70mmt 로 냉간압연하고, 13.5℃/sec 의 승온속도로 760℃ 로 가열한 다음 이 온도에서 유지하는 최종소둔을 실시하였다. By weight, it contains C: 0.005%, Mn: 0.29%, P: 0.009%, S: 0.0028%, Al: 45%, N: 0.0012%, balance Fe and other unavoidable impurities, and the content of Si is shown in the following table. The steel slab changed as described above was reheated at 1270 ° C. and then hot rolled to a thickness of 1.8 mmt, and not preannealed or carried out at 1100 ° C. Thereafter, the product was cold rolled to 0.70 mmt, heated to 760 ° C at a temperature rising rate of 13.5 ° C / sec, and then subjected to final annealing to be maintained at this temperature.

이와 같이 하여 제조된 소재의 기계적특성 및 자기적 특성을 조사하고, 그 결과를 하기 표 1에 나타내었다. 여기서, 자기특성은 5000A/m의 자장하에서 시편에 유도되는 자속밀도(B50) 및 1.5Tesla, 50Hz 하에서 측정한 철손값을 측정한 것이다.The mechanical and magnetic properties of the materials thus prepared were investigated, and the results are shown in Table 1 below. Here, the magnetic properties are measured by the magnetic flux density (B 50 ) induced in the specimen under the magnetic field of 5000 A / m and the iron loss value measured under 1.5 Tesla, 50 Hz.

구분division Si 함량(wt%)Si content (wt%) 예비소둔실시여부Preliminary Annealing 철손(W15/50) Iron loss (W 15/50 ) 자속밀도(B50),TeslaMagnetic flux density (B 50 ), Tesla 경도(하중 1kg)Hardness (load 1 kg) 보자력(A/m)Coercive force (A / m) 비교재1Comparative Material 1 2.12.1 OO 5.5485.548 1.7181.718 154154 9696 비교재2Comparative Material 2 2.12.1 XX 6.4276.427 1.6921.692 156156 112112 비교재3Comparative Material 3 2.62.6 OO 5.3355.335 1.6831.683 189189 124124 비교재4Comparative Material 4 2.62.6 XX 5.9285.928 1.6621.662 183183 133133 비교재5Comparative Material 5 3.03.0 OO 4.9774.977 1.6641.664 202202 105105 비교재6Comparative Material 6 3.03.0 XX 5.6245.624 1.6491.649 207207 127127

상기 표 1에 나타난 바와 같이, 예비소둔을 생략한 비교재(2),(4),(6)의 경우에는, 자기적 특성이 열위해지는 경향이 크게 나타나, 마그네틱 스위치용 소재로는 부적합함을 확인할 수 있었다. As shown in Table 1, in the case of the comparative materials (2), (4), and (6) in which preliminary annealing was omitted, a tendency for the magnetic properties to be inferior is large, which is not suitable as a magnetic switch material. I could confirm it.

또한, 고용강화효과를 높여주는 Si의 함량이 적은 비교재(1)의 경우에는, 최종소둔 온도를 최대한 하향하여 결정립을 미세화 하더라도 요구되는 경도특성을 만족시키기 어려움을 알 수 있었다.In addition, in the case of the comparative material (1) having a small content of Si, which enhances the solid solution strengthening effect, even when the final annealing temperature was lowered as much as possible, it was found that it was difficult to satisfy the required hardness characteristics.

한편, 비교재(3),(5)의 경우에는, Si의 함량 및 예비소둔조건이 본 발명범위이며 또한 하중을 1kg으로 하였을 때의 비커스 경도는 모두 180 이상을 만족하고 있으나, 최종소둔조건이 본 발명범위를 벗어나서, 보자력이 모두 75A/m 이상으로 아주 열위함을 알 수 있었다.On the other hand, in the case of the comparative materials (3) and (5), the content of Si and pre-annealing conditions are within the scope of the present invention, and the Vickers hardness when the load is 1 kg satisfies all 180 or more, but the final annealing conditions Outside the scope of the present invention, it can be seen that the coercive force is very inferior to all 75A / m or more.

따라서, 마그네틱 스위치용으로 사용하기에 적합한 특성인, 비커스 경도 180 이상, 보자력 75A/m 이하의 조건을 만족시키기 위해서는, Si의 함량, 예비소둔 및 최종소둔조건이 모두 본 발명조건을 만족시켜야 함을 알 수 있다.Therefore, in order to satisfy the conditions of Vickers hardness of 180 or more and coercive force of 75 A / m or less, which are characteristics suitable for use for the magnetic switch, it is required that all Si content, preannealing and final annealing conditions must satisfy the present invention conditions. Able to know.

(실시예 2)(Example 2)

중량%로, C:0.005%, Mn:0.29%, P:0.009%, S:0.0028%, Al:45%, N:0.0012%, 잔부 Fe 및 기타 불가피한 불순물을 함유하고, Si 의 함량은 하기 표 2와 같이 변화시킨 강 슬라브를 1270℃ 에서 재가열한후 1.8mmt 두께로 열간압연하고, 1100℃ 에서 예비소둔을 실시한 후 냉간압연하고, 최종소둔처리하는데 있어서 최종소둔조건을 하기 표 2와 같이 달리하였다.By weight, it contains C: 0.005%, Mn: 0.29%, P: 0.009%, S: 0.0028%, Al: 45%, N: 0.0012%, balance Fe and other unavoidable impurities, and the content of Si is shown in the following table. After reheating the steel slab changed as shown in 2 and hot-rolled to 1.8mmt thickness, pre-annealed at 1100 ° C and cold-rolled, the final annealing conditions were different as shown in Table 2 below. .

이후, 강판의 기계적특성 및 자기적 특성을 조사하고 그 결과를 하기 표 2에 나타내었다. 여기서, 자기특성은 5,000A/m의 자장하에서 시편에 유도되는 자속밀도(B50) 및 1.5Tesla, 50Hz 하에서 측정한 철손값(W15/50)을 측정한 것이다.Then, the mechanical properties and magnetic properties of the steel sheet were investigated and the results are shown in Table 2 below. Here, the magnetic properties are measured magnetic flux density (B 50 ) induced in the specimen under the magnetic field of 5,000A / m and iron loss value (W 15/50 ) measured under 1.5 Tesla, 50Hz.

구분division Si함량Si content 승온속도(℃/sec)Temperature rise rate (℃ / sec) 소둔온도(℃)Annealing Temperature (℃) 철손(W15/50) Iron loss (W 15/50 ) 자속밀도(B50),TeslaMagnetic flux density (B 50 ), Tesla 경도 Hardness 보자력(A/m)Coercive force (A / m) 비교예1Comparative Example 1 2.42.4 14.714.7 830830 5.6225.622 1.6471.647 172172 102102 비교예2Comparative Example 2 15.515.5 870870 5.3245.324 1.6631.663 169169 8686 비교예3Comparative Example 3 15.815.8 890890 5.0675.067 1.6791.679 154154 5757 비교예4Comparative Example 4 16.316.3 920920 4.7764.776 1.6891.689 122122 4545 비교예5Comparative Example 5 2.62.6 14.714.7 830830 5.3215.321 1.6621.662 186186 8888 발명예1Inventive Example 1 15.515.5 870870 4.9554.955 1.6741.674 187187 7474 발명예2Inventive Example 2 15.815.8 890890 4.7184.718 1.6881.688 181181 5656 비교예6Comparative Example 6 16.316.3 920920 4.3444.344 1.7021.702 175175 4242 비교예7Comparative Example 7 3.03.0 14.714.7 830830 4.9724.972 1.6831.683 205205 105105 발명예3Inventive Example 3 15.515.5 870870 4.4854.485 1.6921.692 187187 7272 발명예4Inventive Example 4 15.815.8 890890 4.2184.218 1.7041.704 182182 6565 비교예8Comparative Example 8 16.316.3 920920 3.9453.945 1.7181.718 174174 4848

상기 표 2에 나타난 바와 같이, Si 함량이 낮은 비교예(1)~(4)의 경우에는, 고용강화효과가 미흡하여 원하는 경도를 확보하기가 어려웠으며, 소둔온도가 높은 비교재(6),(8) 경우, 지나친 결정립 성장으로 경도확보가 곤란하다는 것을 알 수 있다. As shown in Table 2, in the case of Comparative Examples (1) to (4) having a low Si content, it was difficult to secure the desired hardness due to insufficient solidifying effect, and the comparative material (6) having a high annealing temperature, In the case of (8), it can be seen that it is difficult to secure hardness due to excessive grain growth.

한편, 본 발명의 발명예(1)~(3)의 경우에는, 자기특성이 비교예와 동등 이상이면서, 1kg의 하중으로 측정하였을 때의 비커스 경도가 180 이상으로 모두 우수한 것을 알 수 있다.On the other hand, in the case of Inventive Examples (1) to (3) of the present invention, it is understood that the Vickers hardness when measured under a load of 1 kg is superior to the magnetic properties while being equal to or greater than that of the comparative example.

상기한 바와 같은 본 발명에 의하면, 비커스(Vickers) 경도가 180 이상이고 보자력이 75A/m 이하인 고경도 무방향성 전기강판을 제조할 수 있어서, 마그네틱 스위치용으로 적용할 수 있는 효과가 있는 것이다.According to the present invention as described above, a high hardness non-oriented electrical steel sheet having a Vickers hardness of 180 or more and a coercive force of 75 A / m or less can be produced, which has an effect that can be applied for a magnetic switch.

Claims (2)

중량%로, C: 0.004∼0.006%, Si: 2.6∼3.0%, Mn: 0.25∼0.35%, P: ≤0.01%, S: ≤0.003%, Al: 0.4∼0.5%, N: 0.005%이하, 잔부 Fe 및 불가피한 불순물로 이루어진 규소강 슬라브를 1230∼1290℃ 에서 재가열한 후 열간압연 및 권취한 다음, 1000∼1100℃에서 예비소둔하고, 냉간압연후 15∼16℃/sec의 승온속도로 870∼900℃ 까지 가열하고 이 온도에서 유지하는 최종소둔을 실시하는 것을 포함하여 이루어지는 고경도 무방향성 전기강판의 제조방법By weight%, C: 0.004-0.006%, Si: 2.6-3.0%, Mn: 0.25-0.35%, P: ≤0.01%, S: ≤0.003%, Al: 0.4-0.5%, N: 0.005% or less, The silicon steel slab composed of the balance Fe and unavoidable impurities is reheated at 1230-1290 ° C, hot rolled and wound, and then preannealed at 1000-1100 ° C, and then cold-rolled at a temperature rising rate of 15-16 ° C / sec. Method for producing a high hardness non-oriented electrical steel sheet comprising heating to 900 ℃ and the final annealing maintained at this temperature 제 1항에 있어서, 상기 무방향성 전기강판은 1kg의 하중으로 측정한 비커스 경도가 180 이상인 것을 특징으로 하는 고경도 무방향성 전기강판의 제조방법The method of claim 1, wherein the non-oriented electrical steel sheet is a high hardness non-oriented electrical steel sheet, characterized in that Vickers hardness of 180 or more measured by a load of 1kg.
KR10-2000-0079599A 2000-12-21 2000-12-21 A method for manufacturing high hardness non-grain oriented silicon steel sheet KR100516464B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0079599A KR100516464B1 (en) 2000-12-21 2000-12-21 A method for manufacturing high hardness non-grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0079599A KR100516464B1 (en) 2000-12-21 2000-12-21 A method for manufacturing high hardness non-grain oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
KR20020050450A KR20020050450A (en) 2002-06-27
KR100516464B1 true KR100516464B1 (en) 2005-09-23

Family

ID=27684130

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0079599A KR100516464B1 (en) 2000-12-21 2000-12-21 A method for manufacturing high hardness non-grain oriented silicon steel sheet

Country Status (1)

Country Link
KR (1) KR100516464B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726764A (en) * 2013-12-23 2015-06-24 鞍钢股份有限公司 Production method of non-oriented electrical steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533063A (en) * 1991-07-31 1993-02-09 Kawasaki Steel Corp Production of semiprocessed electrical steel sheet excellent in blankability
KR19980013906A (en) * 1996-08-05 1998-05-15 김종진 Method for manufacturing non-oriented electrical steel sheet excellent in tensile strength
KR20000031656A (en) * 1998-11-09 2000-06-05 이구택 Process for preparing non-directional electric steel plate which has good magnetic property and low magnetic-bi-directional property
KR20010007290A (en) * 1999-06-16 2001-01-26 고지마 마타오 Non-oriented electrical steel sheet and method for producing the same
KR20010060774A (en) * 1999-12-28 2001-07-07 이구택 A method for manufacturing non grain-oriented electrical steel sheet with superior punching property

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533063A (en) * 1991-07-31 1993-02-09 Kawasaki Steel Corp Production of semiprocessed electrical steel sheet excellent in blankability
KR19980013906A (en) * 1996-08-05 1998-05-15 김종진 Method for manufacturing non-oriented electrical steel sheet excellent in tensile strength
KR20000031656A (en) * 1998-11-09 2000-06-05 이구택 Process for preparing non-directional electric steel plate which has good magnetic property and low magnetic-bi-directional property
KR20010007290A (en) * 1999-06-16 2001-01-26 고지마 마타오 Non-oriented electrical steel sheet and method for producing the same
KR20010060774A (en) * 1999-12-28 2001-07-07 이구택 A method for manufacturing non grain-oriented electrical steel sheet with superior punching property

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726764A (en) * 2013-12-23 2015-06-24 鞍钢股份有限公司 Production method of non-oriented electrical steel
CN104726764B (en) * 2013-12-23 2017-04-26 鞍钢股份有限公司 Production method of non-oriented electrical steel

Also Published As

Publication number Publication date
KR20020050450A (en) 2002-06-27

Similar Documents

Publication Publication Date Title
US20230050497A1 (en) Non-oriented electrical steel sheet and method for manufacturing same
KR100516464B1 (en) A method for manufacturing high hardness non-grain oriented silicon steel sheet
KR20210079491A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR100516458B1 (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR100544584B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR20000039855A (en) Method for producing non-oriented electric steel plate having excellent magnetism
KR100345701B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
Kohler Production and Properties of Grain‐Oriented Commercially Pure Iron
KR100544612B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Superior Magnetic Property
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR100514790B1 (en) A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method
KR100435480B1 (en) A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
KR100240984B1 (en) The manufacturing method for 0.5mm oriented electric steelsheet
KR20050064414A (en) Non-oriented electrical metal sheets with improved magnetic property and method for manufacturing the same
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
KR20040057215A (en) A method for manufacturing grain-oriented electrical steel sheet without hot band annealing
KR100530047B1 (en) A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
KR100321035B1 (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment
KR20030053769A (en) A method for manufacturing non-oriented electrical steel sheet with excellent magnetic property
KR100825560B1 (en) Method for Manufacturing Nonoriented Electrical Steel Sheet
KR19980052510A (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating
KR940007496B1 (en) Method of manufacturing non-oriented electromagnetic steel plates with excellent magnetic characteristic
KR100460046B1 (en) A method for manufacturing grain-oriented electrical steel sheet
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120903

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130902

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140915

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150908

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160912

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170912

Year of fee payment: 13