JPS59123715A - Production of non-directional electromagnetic steel - Google Patents

Production of non-directional electromagnetic steel

Info

Publication number
JPS59123715A
JPS59123715A JP22972682A JP22972682A JPS59123715A JP S59123715 A JPS59123715 A JP S59123715A JP 22972682 A JP22972682 A JP 22972682A JP 22972682 A JP22972682 A JP 22972682A JP S59123715 A JPS59123715 A JP S59123715A
Authority
JP
Japan
Prior art keywords
hot
rolling
rolled
steel strip
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22972682A
Other languages
Japanese (ja)
Inventor
Yoshio Obata
小畑 良夫
Kazumi Morita
森田 和巳
Motohiro Hirata
平田 基博
Hiroto Nakamura
中村 広登
Katsuo Sadayori
貞頼 捷雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22972682A priority Critical patent/JPS59123715A/en
Publication of JPS59123715A publication Critical patent/JPS59123715A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce inexpensively intra-surface non-directional electromagnetic steel plate having a high magnetic flux density and low iron loss characteristic by subjecting the slab having a specified compsn. of Si, Al and Fe to self-annealing at the specified coiling temp. in a hot rolling stage then subjecting the same to strong cold rolling. CONSTITUTION:A slab consisting of <=4.0wt% Si, <=1.0% Al and the balance Fe and unavoidable impurities is hot-rolled to a steel strip and the steel strip is subjected to self-annealing at the coiling temp. after the hot rolling specified within a range of 700-900 deg.C, whereby the crystal in the hot-rolled steel strip is made <=4 grain size number. The steel strip is further subjected to strong cold rolling at >=85% draft in cold rolling. It is necessary to hot roll the steel strip in such a way that the thickness t1 after the hot rolling attains (t1>=t2/0.15) according to the final thickness t2 by which the non-directional electromagnetic steel sheet having a uniformly high magnetic flux density in each direction of the plate surface and a low iron loss is thus obtd. at a low cost.

Description

【発明の詳細な説明】 この発明はモーターや発電機等の回転機器の鉄芯に適し
た無方向性電磁鋼板の製造方法に関し、特に板面各方向
に一様に磁束密度が高くかつ鉄損の低い無方向性電磁鋼
板を低コストで得る方法を提供するものである。
Detailed Description of the Invention The present invention relates to a method for manufacturing a non-oriented electrical steel sheet suitable for the iron core of rotating equipment such as motors and generators, and in particular to a method for producing a non-oriented electrical steel sheet that has uniformly high magnetic flux density in each direction of the sheet surface and iron loss. The object of the present invention is to provide a method of obtaining a non-oriented electrical steel sheet with a low .

周知のように無方向性電磁鋼板の用途は、変圧器あるい
は安定器等のいわゆる静止機器の鉄芯材料と、家庭用電
気製品あるいは産業機械に使用されるモーターや発電機
等、いわゆる回転機器の鉄芯材料とに大別されるが、近
年のエネルギーコストの上昇に伴い、これらの各用途に
おいて省エネルギー、高能率化の要請が強まり、そのた
め無方向性型vA綱板に対しても磁束密度の向上および
鉄損の低減が強く要求されている。
As is well known, non-oriented electrical steel sheets are used as iron core materials for so-called stationary equipment such as transformers and ballasts, and for so-called rotating equipment such as motors and generators used in household electrical appliances and industrial machinery. With the rise in energy costs in recent years, there has been a growing demand for energy saving and high efficiency in each of these applications, and for this reason, the magnetic flux density has increased even for non-directional vA steel sheets. There is a strong demand for improvement and reduction of iron loss.

ところで無方向性型11鋼板の磁束密度および鉄損の測
定方法としては、J l5−C−2550に規定されて
いるように圧延方向(以下り方向と記す)および圧延方
向に対し直角な方向(以下C方向と記す)のエプスタイ
ン試料を切出して測定する方法が一般的に広く適用され
ており、この方法で高い磁束密度、低い鉄損値を得るた
めには、L方向、C方向の値が重要となる。しかるにモ
ーター等の回転機器に電磁鋼板を使用する場合、し方向
、C方向のみならずあらゆる方向に磁化されるため、板
面各方向に一様に磁束密度が高くがっ鉄損が低いいわゆ
る面内無方向性電磁鋼板が要求される。したがって前述
のようなJISに規定される方法で測定されるL+C方
向の測定値が良好なだけでは必ずしも回転機器に適して
いるとはいえず、そこで回転機器用の電磁鋼板の場合に
は、リング状の試料を打抜き、そのリング状試料に一次
巻線、二次巻線を施して全周方向の平均鉄損、平均磁束
密度を測定するか、あるいは圧延方向と45°をなす方
向のエプスタイン試料を切出して、L方向、C方向およ
び45°方向にそれぞれ磁化した値を測定後、重みをつ
けて平均し、簡略的に全周方向の平均鉄損、平均磁束密
度の高低を判断することが望ましい。
By the way, as a method for measuring the magnetic flux density and iron loss of non-oriented type 11 steel sheet, as specified in J15-C-2550, the method is as follows: The method of cutting out and measuring an Epstein sample in the C direction (hereinafter referred to as the C direction) is generally widely applied, and in order to obtain high magnetic flux density and low iron loss values with this method, the values in the L direction and C direction must be becomes important. However, when electromagnetic steel sheets are used in rotating equipment such as motors, they are magnetized not only in the direction and the C direction, but also in all directions, so the magnetic flux density is uniformly high in each direction of the sheet surface, resulting in a so-called surface with low iron loss. A non-oriented electrical steel sheet is required. Therefore, just because the measurement value in the L+C direction is good as determined by the JIS method as mentioned above, it does not necessarily mean that it is suitable for rotating equipment. A ring-shaped sample is punched out, a primary winding and a secondary winding are applied to the ring-shaped sample, and the average iron loss and average magnetic flux density are measured in the entire circumferential direction, or an Epstein sample in a direction that is 45° to the rolling direction is measured. After cutting out and measuring the magnetized values in the L direction, C direction, and 45° direction, weights are applied and averaged to simply determine the average iron loss and average magnetic flux density in the entire circumferential direction. desirable.

従来から無方向性電磁鋼板の製造方法としては種々の方
法が提案されているが、例えば本発明者等は既に特開昭
57−35628号あるいは特願昭57−18909月
において磁気特性の優れた無方向性電磁鋼板の製造方法
を提案している。前記特開昭57−35628号の発明
は、熱間圧延終了後温度を素材成分に応じて定まるΔr
3変態点直上のγ相領域とし、次いで短時間焼鈍するこ
とが特徴であり、また特願昭57−18909号の発明
は、熱間圧延終了温度を前記と同様にγ相領域とし、し
かも巻取温度を高くするのが特徴であって、これらはい
ずれも冷間圧延前の熱延鋼帯の結晶粒を大きくすること
により磁気特性の向上を図ったものである。またその他
にも、特開昭54−76422号に示されるように、熱
間圧延時の巻取温度を高くして、自己焼鈍にょる熱延鋼
帯の粒成長により磁性を向上させる方法も提案されてい
る。
Various methods have been proposed as methods for producing non-oriented electrical steel sheets. We are proposing a manufacturing method for non-oriented electrical steel sheets. The invention of JP-A No. 57-35628 discloses that the temperature after hot rolling is determined by Δr determined according to the raw material components.
The invention of Japanese Patent Application No. 57-18909 sets the hot rolling end temperature to the γ phase region just above the transformation point, and then annealing for a short time. It is characterized by raising the heating temperature, and all of these are aimed at improving magnetic properties by enlarging the crystal grains of the hot rolled steel strip before cold rolling. In addition, as shown in JP-A-54-76422, a method has also been proposed in which the coiling temperature during hot rolling is increased to improve the magnetic properties of the hot rolled steel strip through grain growth through self-annealing. has been done.

しかしながらこれらの方法では、確かにL+C方向の磁
性は改善されるが、圧延方向から約55℃をなす方向の
磁性は逆に通常の電磁鋼帯よりも低下し、そのため回転
機用の電磁鋼帯としては必ずしも適切ではないことが判
明した。
However, with these methods, although the magnetism in the L+C direction is certainly improved, the magnetism in the direction approximately 55°C from the rolling direction is conversely lower than that of ordinary electromagnetic steel strips, and therefore electromagnetic steel strips for rotating machines It turns out that this is not necessarily appropriate.

一方、回転機用に適した面内無方向性電磁鋼板の製造方
法として、特公昭51−942号には、2.0〜5.O
II+mの熱間圧延材に85%以下の圧下率の1回の強
冷間圧延を施して0.35RI11以下の板厚に仕上げ
た後、脱炭を兼ねた焼鈍を施す方法が提案されている。
On the other hand, Japanese Patent Publication No. Sho 51-942 describes a method for manufacturing an in-plane non-oriented electrical steel sheet suitable for use in rotating machines. O
A method has been proposed in which a hot-rolled material of II+m is subjected to one round of strong cold rolling at a reduction rate of 85% or less to finish it to a thickness of 0.35RI11 or less, and then subjected to annealing that also serves as decarburization. .

しかしながら通常の回転機材料としては0.50mmの
板厚のものが多く使用されることから、この提案の方法
は実用には不向きである。
However, since a plate thickness of 0.50 mm is often used as an ordinary rotating machine material, this proposed method is not suitable for practical use.

またこの提案の方法の場合、熱間圧延を常法にしたがっ
て行って熱延コイルを500〜700℃程度で巻取った
場合には、冷間圧延において上述の如り85%以上の強
圧下を加えても、面内無方向性の程度は改善されるもの
の、平均的な磁気特性の値は従来製品よりも劣ることが
判明した。
In addition, in the case of this proposed method, when hot rolling is performed according to the conventional method and the hot-rolled coil is wound up at about 500 to 700°C, a strong reduction of 85% or more is required in the cold rolling as described above. In addition, although the degree of in-plane non-direction was improved, it was found that the average magnetic properties were inferior to conventional products.

この発明は以上の事情に鑑みてなされたもので、面内各
方向に一様に磁束密度が高くかつ鉄損の低い、特に回転
機用に適した無方向性11a鋼板を安価に提供すること
を目的とするものである。
This invention was made in view of the above circumstances, and an object of the present invention is to provide at a low cost a non-oriented 11a steel plate which has uniformly high magnetic flux density in all directions in the plane and has low iron loss, and is particularly suitable for rotating machines. The purpose is to

すなわち本発明者等は上述の目的を達成するべく鋭意実
験・検問を重ねた結果、面内各方向に磁性が一様で、し
かもその磁性を全体として高いレベルとするためには、
熱間圧延工程における巻取温度を700℃以上として自
己焼鈍させることにより熱延鋼帯の平均結晶粒度をA 
S T M Nα4以下(平均結晶粒径100JJII
+以上)に成長させることと、冷間圧延を圧下率85%
以上の強冷延とすることとの2条件を組合わせることが
必要であることを見出し、この発明の完成に至ったので
ある。
In other words, the inventors of the present invention have carried out extensive experiments and examinations to achieve the above-mentioned purpose, and have found that in order to have uniform magnetism in each direction within the plane and a high level of magnetism as a whole,
By self-annealing at a coiling temperature of 700°C or higher in the hot rolling process, the average grain size of the hot rolled steel strip is increased to A.
S T M Nα4 or less (average grain size 100JJII
+ or more) and cold rolling with a reduction rate of 85%.
It was discovered that it was necessary to combine the above two conditions of intense cold rolling, and this invention was completed.

具体的には、この発明は9i 4.0%以下、へQ1.
0%以下、残部Feおよび不可避的不純物よりなるスラ
ブを熱間圧延して銅帯とし、その熱延鋼帯を1回の冷間
圧延によって最終板厚とし、その後焼鈍によって結晶粒
成長を行う無方向性電磁鋼板の製造方法において、熱間
圧延の板甲tlが最終板厚t2に応じて t1≧j 2 / 0.15 となるように熱間圧延し、かつ熱間圧延後の巻取温度を
700℃以上950℃以下の温度範囲内として自己焼鈍
させることにより熱延鋼帯の結晶を粒度番号4以下とし
、ざらに冷間圧延において85%以上の圧下率で強冷延
することを特徴とするものである。
Specifically, this invention applies to 9i 4.0% or less, to Q1.
A slab consisting of 0% or less Fe and unavoidable impurities is hot-rolled into a copper strip, the hot-rolled steel strip is cold-rolled once to achieve the final thickness, and then annealed to grow grains. In the method for producing a grain-oriented electrical steel sheet, hot rolling is performed so that the hot-rolled plate thickness tl satisfies t1≧j2/0.15 according to the final plate thickness t2, and the coiling temperature after hot rolling is The grain size of the hot rolled steel strip is reduced to 4 or less by self-annealing at a temperature of 700°C or more and 950°C or less, and is roughly cold rolled with a reduction rate of 85% or more. That is.

以下この発明の方法についてさらに詳細に説明する。The method of the present invention will be explained in more detail below.

先ずこの発明の方法で使用される素材スラブの成分限定
理由について説明すると、Siは固有抵抗を高めて渦電
流損を減少させることにより鉄損を低くするに有効な元
素であるが、その含有間が4.0%を越えれば鋼帯が脆
くなって冷開圧M、詩に板割れ等の問題を生じるから、
4.0%以下とする必要がある。なおSiの下限は特に
限定しないが、用途に応じて適宜S1含有邑を定めれば
良い。
First, to explain the reason for limiting the ingredients of the material slab used in the method of this invention, Si is an element effective in lowering iron loss by increasing specific resistance and reducing eddy current loss. If it exceeds 4.0%, the steel strip becomes brittle and problems such as cold opening pressure M and plate cracking occur.
It needs to be 4.0% or less. Note that the lower limit of Si is not particularly limited, but the S1 content may be determined as appropriate depending on the application.

△Qは集合組織を発達させるに有効な元素であるが、 
1.0%を越えればSlと同様に脆くなり、コスト上置
を招くから、1.0%以下とする必要がある。
△Q is an effective element for developing texture,
If it exceeds 1.0%, it becomes brittle like Sl, leading to an increase in cost, so it is necessary to keep it below 1.0%.

なお無方向性珪素鋼板は冷間圧延後の焼鈍によって結晶
粒を成長させ、それにより鉄損成分のうちの曙歴損を下
げることが必要であるから、C1S、○、N等の不純物
元素は可及的に少なくして、介在物や結晶粒成長を抑え
るへ〇N、MnS等の析出物を少なくすることが望まし
い。
In addition, since it is necessary for non-oriented silicon steel sheets to grow crystal grains by annealing after cold rolling, thereby lowering the dawn loss among iron loss components, impurity elements such as C1S, ○, and N are It is desirable to reduce the amount of precipitates such as N and MnS as much as possible to suppress inclusions and grain growth.

上述のような成分の鋼素材は、常法にしたがって転炉や
その後の脱ガス装置等により成分制御を行って溶製され
、造塊−分塊圧延法あるいは連続鋳造法によりスラブと
される。このスラブ段階での結晶粒は、変態の見られる
Si 1.5%以下の場合には余り問題とならないが、
Si 1.5%以上の場合には鋳込み温度を低くしたり
あるいは鋳込み時に超音波撹拌や電磁撹拌を行って結晶
粒を出さくすることが望ましい。
A steel material having the above-mentioned composition is melted according to a conventional method by controlling the composition using a converter, a subsequent degassing device, etc., and is made into a slab by an ingot-blowing method or a continuous casting method. The crystal grains at this slab stage do not pose much of a problem if the Si content is 1.5% or less, where transformation is observed.
When the Si content is 1.5% or more, it is desirable to lower the casting temperature or use ultrasonic stirring or electromagnetic stirring during casting to prevent crystal grains from coming out.

上述のようにして得られたスラブは、1200℃前後に
加熱した後、粗圧延、仕上圧延によって所望の熱延板厚
まで熱間圧延する。この熱間圧延においては、後の冷間
圧延での圧下率を85%以上とする関係上、熱延仕上厚
さtlが製品板厚(冷延後の板厚)t2に応じて次式を
満足しなければならない。
The slab obtained as described above is heated to around 1200° C. and then hot-rolled to a desired hot-rolled plate thickness by rough rolling and finish rolling. In this hot rolling, in order to keep the rolling reduction ratio in the subsequent cold rolling to 85% or more, the finished hot rolling thickness tl is determined by the following formula according to the product thickness (thickness after cold rolling) t2. Must be satisfied.

t1≧t 2/ (1−0,85) 無方向性珪素鋼板の製品板厚はJISにおいては0.3
5L1m 、  0.50111m 、  0.65m
mの3種が規定されており、またAl5Iにおいては0
.35mm 、  0.471Il11.0.635+
nmの3種が規定されているが、最も多く使用されてい
るのはo、sommの製品を得るためには、上記式から
熱延仕上厚さtlは3.34mrA以上が必要であり、
望ましくは4.5〜5.5+nmとする。なお従来の通
常の工程における熱延性上厚さは後工程の冷間圧延の容
易さや取り扱いの容易さ、あるいは従来の通常の冷延圧
下率等の関係から2.0〜2.6mm程度であり、した
がってこの発明の場合には熱延仕上厚さが従来よりも相
当に厚いことになる。
t1≧t2/ (1-0,85) The product thickness of non-oriented silicon steel plate is 0.3 according to JIS.
5L1m, 0.50111m, 0.65m
Three types of m are defined, and in Al5I, 0
.. 35mm, 0.471Il11.0.635+
Three types of nm are specified, but the most commonly used are o and somm. In order to obtain a product of somm, the finished hot rolling thickness tl must be 3.34 mrA or more from the above formula,
It is preferably 4.5 to 5.5+nm. Note that the hot-rollable thickness in the conventional normal process is about 2.0 to 2.6 mm due to the ease of cold rolling in the subsequent process, ease of handling, or the conventional normal cold rolling reduction rate. Therefore, in the case of the present invention, the finished hot-rolled thickness is considerably thicker than that of the conventional method.

上記熱間圧延における巻取温度は700℃以上、950
℃以下の温度どする。従来の通常の巻取温度は600℃
程度であり、したがってこの発明の場合には熱延巻取温
度が従来よりも高目となっている。このように熱延巻取
温度を700℃以上の高温としたのは次のような理FB
による。すなわち、前述のように熱延板の仕上厚さを厚
くして、冷間圧延での圧下率を高くした場合、面内各方
向の磁性の一様性は増すものの、通常は磁束密度Bs。
The coiling temperature in the above hot rolling is 700°C or higher, 950°C
Temperature below ℃. Conventional normal winding temperature is 600℃
Therefore, in the case of the present invention, the hot rolling winding temperature is higher than that of the conventional method. The reason why we set the hot rolling coiling temperature to a high temperature of 700°C or higher is as follows.
by. That is, when the finished thickness of the hot-rolled sheet is increased and the reduction ratio during cold rolling is increased as described above, although the uniformity of magnetism in each in-plane direction increases, the magnetic flux density Bs usually increases.

(磁化力5000A/mにおける磁束密度)が低下して
しまう。特に冷間圧延における圧下率が80%以上では
B50が顕著に低下してしまう。これに対し巻取温度を
特に700℃以上の高温として、巻取後の自己焼鈍によ
り熱延鋼帯の平均結晶粒度をASTM粒度番号にして4
以下、すなわち平均結晶粒径にして100JJI以上に
成長させれば、前述のように冷延圧下率を85%以上と
しても製品の850値の低下を防止できるのである。
(Magnetic flux density at a magnetizing force of 5000 A/m) will decrease. In particular, when the rolling reduction in cold rolling is 80% or more, B50 decreases significantly. On the other hand, by setting the coiling temperature to a particularly high temperature of 700°C or higher and self-annealing after coiling, the average grain size of the hot rolled steel strip is changed to ASTM grain size number 4.
If the grain size is grown to an average grain size of 100 JJI or more, it is possible to prevent the 850 value of the product from decreasing even if the cold rolling reduction is 85% or more as described above.

熱間圧延の巻取温度が700℃未満の場合には、熱延鋼
帯の結晶粒が小さく、Bso値が低下する。
If the coiling temperature during hot rolling is less than 700°C, the crystal grains of the hot rolled steel strip will be small and the Bso value will decrease.

特にこの発明のように冷延圧下率を85%以上の値とす
れば、磁束密度低下の程度が著しく大きくなり、回転機
用としてステーターのティース部の設計磁束が不充分と
なってしまう。これは、平均結晶粒度が4以上の細粒の
場合には、粒界から発生すると言われている磁化しにく
い(111)方位の結晶が強冷間圧延によってさらに増
加するためと考えら4Nる。一方巻取温度が950℃を
越えれば、自己焼鈍により熱延鋼帯中の結晶粒が大きく
なり過ぎて、冷延時に板割れや板切れ等のトラブルが発
生し、また製品において凹凸のある表面外観を呈してし
まって商品価値を損ねてしまい、さらには熱延鋼帯の表
面に形成されるスケールの厚みが厚くなり過ぎて冷間圧
延前における脱スケールが困難となるおそれがある。し
たがってこの発明においては熱間圧延の巻取温度を70
0〜950′Cの範囲に規定した。
In particular, if the cold rolling reduction ratio is set to a value of 85% or more as in the present invention, the degree of decrease in magnetic flux density becomes significant, and the designed magnetic flux of the stator teeth portion becomes insufficient for use in a rotating machine. This is thought to be because in the case of fine grains with an average grain size of 4 or more, the number of crystals with the (111) orientation, which is said to be generated from grain boundaries and is difficult to magnetize, is further increased by intense cold rolling. . On the other hand, if the coiling temperature exceeds 950°C, the crystal grains in the hot rolled steel strip will become too large due to self-annealing, causing problems such as cracks and breaks during cold rolling, and the uneven surface of the product. There is a risk that the scale formed on the surface of the hot-rolled steel strip may become too thick, making it difficult to remove the scale before cold rolling. Therefore, in this invention, the coiling temperature of hot rolling is set to 70
It was defined in the range of 0 to 950'C.

なお熱間圧延巻取温度の最適値は鋼成分、特にSi含有
量によって箕なり、Si含有量が約2.5%以上でγ変
態のない場合には巻取温度は800〜950℃程度が望
ましく、Si含有量がこれよりも少ない場合には750
〜800℃程度が望ましい。
The optimum value for the hot rolling coiling temperature depends on the steel components, especially the Si content; if the Si content is approximately 2.5% or more and there is no γ transformation, the coiling temperature is approximately 800 to 950°C. Desirably, if the Si content is less than this, 750
The temperature is preferably about 800°C.

上述のように熱間圧延を行った後には、通常は冷間圧延
前に塩酸あるいは硫酸等により脱スケール処理を行う。
After hot rolling as described above, descaling treatment is usually performed using hydrochloric acid, sulfuric acid, etc. before cold rolling.

この発明の場合前述のように熱延鋼帯の板厚が厚いため
、相対的にコイル長さが短くなり、その結果脱スケール
処理すべき表面積が小さくなるから、脱スケール処理の
工程の能率は良好となる。
In the case of this invention, as mentioned above, the thickness of the hot-rolled steel strip is thick, so the coil length is relatively short, and as a result, the surface area to be descaled is reduced, so the efficiency of the descaling process is Becomes good.

脱スケール処理後の冷間圧延においては、その圧下率を
85%以上とする。このように強冷間圧延を施すことに
よって、製品の面内異方性が小さくなり、面内各方向に
一様に磁性が向上する。したがってこの発明の方法では
熱間圧延の巻取温度を700℃以上の高温として自己焼
鈍により熱延鋼帯中の結晶を粒度番号4以下の大きな粒
に成長させること、冷間圧延を圧下率85%以上の強冷
延とすることとの2条件が組合されてはじめて面内各方
向に磁性が一様でしかも全体的に磁束密度が高く鉄損が
低い、回転機に適した無方向性電磁鋼板が得られるので
ある。なお冷延圧下率は、85%以上の範囲内でも特に
87%以上95%以下が好ましい。
In the cold rolling after the descaling treatment, the rolling reduction is 85% or more. By performing strong cold rolling in this manner, the in-plane anisotropy of the product is reduced, and the magnetism is uniformly improved in each in-plane direction. Therefore, in the method of this invention, the coiling temperature during hot rolling is set to a high temperature of 700°C or higher, the crystals in the hot rolled steel strip are grown into large grains with a grain size number of 4 or less by self-annealing, and the cold rolling is performed at a rolling reduction rate of 85°C. It is only when these two conditions are combined, that is, hard rolling of % or more, that magnetism is uniform in all directions within the plane, and overall magnetic flux density is high and iron loss is low, making it suitable for rotating machines. A steel plate is obtained. Note that the cold rolling reduction ratio is preferably 87% or more and 95% or less, even within the range of 85% or more.

次にこの発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例1 Co、oos%、Si 1.05%、八90.2%を含
む溶鋼を連続鋳造によりスラブとなし、1250℃に加
熱後A材は熱間圧延により 4.8mm厚さとなし、8
00℃で巻取後自然放冷させて自己焼鈍させた。
Example 1 Molten steel containing Co, oos%, Si 1.05%, and 90.2% Si was made into a slab by continuous casting, and after heating to 1250°C, material A was hot rolled to a thickness of 4.8 mm.
After being rolled up at 00°C, it was allowed to cool naturally and was self-annealed.

一方B材は前記同様に熱間圧延により4.8mm厚さに
仕上げたが、仕上圧延後水冷して680℃で巻取った。
On the other hand, material B was hot rolled to a thickness of 4.8 mm in the same manner as described above, but after finish rolling, it was water cooled and wound at 680°C.

またC材は熱間圧延により2.3IllIll厚さに仕
上げ、780℃で巻取って自己焼鈍させた。さらにD材
は熱間圧延により2.30IIIl厚さに仕上げ、60
0′Cで巻取った。これらA−D材の各熱延コイルに対
し、酸洗により脱スケール処理を施した後、冷間圧延に
より板厚0,50nu+とじた。したがってA材、B材
については冷延圧下率90%、C材、D材については冷
延圧下率78%である。次いで850℃で30秒間の連
続仕上焼鈍を施し、コイル長さ方向中央部での磁気特性
を測定した。第1表に各試料のL+Cの磁気特性を示し
、また第1図に各試料の圧延方向からの角度と850と
の関係を示し、さらに第2図(A)にA材の、第2図(
B)にC材の(201極点図を示す。
Material C was hot rolled to a thickness of 2.3IllIll, wound at 780°C, and self-annealed. Furthermore, material D was finished to a thickness of 2.30III by hot rolling, and
It was wound at 0'C. Each hot-rolled coil of these A-D materials was subjected to descaling treatment by pickling, and then cold-rolled to form a plate having a thickness of 0.50 nu+. Therefore, the cold rolling reduction ratio for materials A and B is 90%, and the cold rolling reduction ratio for materials C and D is 78%. Next, continuous finish annealing was performed at 850° C. for 30 seconds, and the magnetic properties at the central portion in the longitudinal direction of the coil were measured. Table 1 shows the L+C magnetic properties of each sample, and Fig. 1 shows the relationship between the angle from the rolling direction of each sample and 850. (
B) shows the (201 pole figure) of material C.

第1表から、L+Cの磁気特性は巻取温度が高いAI、
C材の場合に巻取温度が低いB材、D材よりも格段に優
れ、特に磁束密度B50が高いことが明らかである。一
方第1図から、冷延圧下率が78%と低いC材、DIの
場合にはB50の角度依存性が強く、55°近辺に85
0の極端に低い点が見られ、特にC材でその傾向が強く
、異方性が強いのに対し、冷延圧下率が90%と高いA
材、B材の場合には異方性が小さく、一様に磁化される
ことが明らかである。これらの磁気I11定結果から、
面内異方性が小さく、しかも全体として優れた磁性を示
すのはこの発明の方法により得られたA材のみであるこ
とが明らかである。なお第2図に示す極点図からも、A
材の場合にはC材の場合と比較して磁化容易軸[200
]が円周方向に一様に強く集積して、回転機に適したも
のとなっていることが明らかである。
From Table 1, the magnetic properties of L+C are AI, which has a high winding temperature,
It is clear that material C is much superior to materials B and D, which have a lower winding temperature, and that the magnetic flux density B50 is particularly high. On the other hand, from Figure 1, in the case of C and DI materials with a low cold rolling reduction of 78%, the angle dependence of B50 is strong, with 85° around 55°.
An extremely low point of 0 can be seen, and this tendency is particularly strong in C material, which has strong anisotropy, whereas A material has a high cold rolling reduction of 90%.
It is clear that materials B and B have small anisotropy and are uniformly magnetized. From these magnetic I11 constant results,
It is clear that only material A obtained by the method of the present invention has small in-plane anisotropy and exhibits excellent overall magnetism. Furthermore, from the pole figure shown in Figure 2, A
In the case of C material, the axis of easy magnetization [200
] is clearly uniformly and strongly accumulated in the circumferential direction, making it suitable for rotating machines.

実施例2 CO,011%、Si O,27%、Mn 0.25%
、ΔQ0.0005%を含有する連鋳スラブを1200
℃に加熱して、スラブaについては4.0mmの板厚に
熱間圧延して770℃で巻取り、またスラブbについて
は3.Ommに熱間圧延して740℃で巻取り、スラブ
Cについては2.5mmに熱間圧延して730℃で巻取
ってそれぞれ自然放冷により自己焼鈍させた。
Example 2 CO, 011%, SiO, 27%, Mn 0.25%
, 1200 continuous cast slabs containing ΔQ 0.0005%
℃, hot rolled to a thickness of 4.0 mm for slab a and coiled at 770 ℃, and 3.0 mm for slab b. Slab C was hot rolled to 2.5 mm and wound at 730°C, and self-annealed by natural cooling.

一方スラブd、e、fについてはそれぞれ4.OmI!
l。
On the other hand, slabs d, e, and f are each 4. OmI!
l.

3.0mm、  2.5mmに熱間圧延して水冷し、6
50 ’Cで巻取った。各熱延鋼帯を酸洗により脱スケ
ール処理後、0.5n+m厚さに冷間圧延し、冷延オイ
ルをクリーニングした後、800℃で30秒間の仕上焼
鈍を行った。その後内径55mm、外径85mmのリン
グ試料を打抜き、12枚を重ねてリング試料での磁気特
性を測定した。但し一般に小型モーターのステーターは
歪取り焼鈍されることが多いから、この場合も750 
’CX 2時間の歪取り焼鈍を施した後、磁気特定を行
った。その結果を第2表に示す。また各試料のBsoの
値と、冷延圧下率および熱延仕上厚ざとの関係を第3図
に示づ一0第2表に示す結果から、この発明の方法によ
り得られた製品はリング試料での磁性が極めて優れてい
ることが明らかである。また第3図から、冷延圧下率が
85%以上の場合、巻取温度が700℃未満ではB50
が著しく低下するが、巻取濃度が700℃以上では逆に
850が向上することが明らかである。
Hot rolled to 3.0mm, 2.5mm, water cooled, 6
It was wound at 50'C. After descaling each hot rolled steel strip by pickling, it was cold rolled to a thickness of 0.5n+m, and after cleaning the cold rolling oil, final annealing was performed at 800° C. for 30 seconds. Thereafter, ring samples having an inner diameter of 55 mm and an outer diameter of 85 mm were punched out, 12 pieces were stacked, and the magnetic properties of the ring samples were measured. However, since the stators of small motors are generally annealed to remove strain, 750
'CX After 2 hours of strain relief annealing, magnetic characteristics were performed. The results are shown in Table 2. Furthermore, from the results shown in Figure 3 and Table 2, which show the relationship between the Bso value, cold rolling reduction and hot rolling finish thickness of each sample, the ring sample It is clear that the magnetism is extremely excellent. Also, from Figure 3, when the cold rolling reduction is 85% or more, the winding temperature is less than 700°C, B50
It is clear that 850 decreases markedly, but conversely 850 increases when the winding density is 700° C. or higher.

実施例3 CO,005%、Si 2.85%、△Q O,35%
、So、002%を含むスラブを1230℃に加熱し、
板厚3.5Iおよび2.0IIIIIIの熱延鋼帯に仕
上げた。ここで、3、5n+n厚さの熱延鋼帯は、本来
6スタンドで熱延すべきところを5スタドで熱延し、最
終スタンド直後で910℃で巻取り、一方2.0III
I11厚さの熱延鋼帯は水冷しながら570℃で巻取っ
た。各熱延鋼帯に脱スケール処理を施した後、0.35
+amに冷間圧延し、脱脂後950℃で2分間の仕上焼
鈍を行った。そして通常のエプスタイン試料に切断して
磁気特性を測定したところ、第3表に示す結果が得られ
た。但し第3表においてC/Lの値は、W 150のC
方向、L方向の値の比をあられす。
Example 3 CO, 005%, Si 2.85%, ΔQ O, 35%
, So, a slab containing 002% was heated to 1230°C,
Hot-rolled steel strips with plate thicknesses of 3.5I and 2.0III were produced. Here, the hot-rolled steel strip with a thickness of 3.5n+n was hot-rolled in 5 stands where it should originally be hot-rolled in 6 stands, and coiled at 910°C immediately after the final stand, while 2.0III
A hot-rolled steel strip having a thickness of I11 was coiled at 570° C. while being water-cooled. After descaling each hot rolled steel strip, 0.35
+am, and after degreasing, finish annealing was performed at 950° C. for 2 minutes. When a normal Epstein sample was cut and its magnetic properties were measured, the results shown in Table 3 were obtained. However, in Table 3, the value of C/L is C of W 150.
The ratio of the values in the direction and L direction.

第3表から、本発明材の磁性が優れており、特にL/C
が比が非常に小さく、L、C両方向に一様に磁化され易
いことが明らかである。
From Table 3, the magnetic properties of the present invention material are excellent, especially L/C
It is clear that the ratio is very small and that it is easy to be uniformly magnetized in both the L and C directions.

以上の説明で明らかなようにこの発明の方法によれば、
面内各方向に一様に磁束密度が高く、かつ鉄損が低い、
回転機に適した無方向性電磁鋼板を実際的かつ低コスト
で製造することができる顕著な効果が得られる。
As is clear from the above explanation, according to the method of this invention,
Magnetic flux density is uniformly high in all directions within the plane, and iron loss is low.
A remarkable effect is obtained in that a non-oriented electrical steel sheet suitable for rotating machines can be produced practically and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1において熱延巻取温度および冷延圧下
率を変えた場合の圧延方向からの一角度と磁束密度B5
0との関係を示すグラフ、第2図は実施例1により得ら
れた各村の(200)極点図を示すもので、(A)は本
発明材Aの極点図、(B)は比較材Bの極点図を示し、
第3図は実施例2により得られた各試料の冷延圧下率お
よび熱延仕上板厚と磁束密度B50との関係を熱延巻取
温度の高低ごとに示すグラフである。 出願人  川崎製鉄株式会社 代理人  弁理士 豊田武久 (ばか1名) 第2図 (A)       (B) □2×≦ [z1]  IX企、く2× □1×〉 第3図 汚之玩千竿(%)
Figure 1 shows an angle from the rolling direction and magnetic flux density B5 when the hot rolling winding temperature and cold rolling reduction ratio are changed in Example 1.
Figure 2 shows the (200) pole figure of each village obtained in Example 1, where (A) is the pole figure of the invention material A, and (B) is the pole figure of the comparative material. Showing the pole figure of B,
FIG. 3 is a graph showing the relationship between the cold rolling reduction ratio, the finished hot rolled plate thickness, and the magnetic flux density B50 of each sample obtained in Example 2 at different hot rolling winding temperatures. Applicant Kawasaki Steel Co., Ltd. agent Patent attorney Takehisa Toyota (one idiot) Figure 2 (A) (B) □2×≦ [z1] IX plan, Ku2× □1×> Figure 3 A thousand dirty toys rod(%)

Claims (1)

【特許請求の範囲】 Si 4.0%(重量%、以下同じ)以下、△Q1.0
%以下、残部Feおよび不可避的不純物よりなるスラブ
を熱間圧延して銅帯とし、その熱延鋼帯を1回の冷間圧
延によって最終板厚とし、その後焼鈍によって結晶粒成
長を行う無方向性電磁鋼板の製造方法において、 熱間圧延後の板厚t1が最終板厚t2に応じて[I≧t
 2 / 0.15 となるように熱間圧延し、かつ熱間圧延後の巻取温度を
700℃以上950℃以下の範囲内の温度として自己焼
鈍させることにより熱延鋼帯中の結晶を粒度番号4以下
とし、ざらに冷間圧延において圧下率85%以上の強冷
延を施すことを特徴とする無方向性電磁鋼板の製造方法
[Claims] Si 4.0% (weight %, same hereinafter) or less, △Q1.0
% or less, the balance Fe and unavoidable impurities are hot-rolled into a copper strip, the hot-rolled steel strip is cold-rolled once to achieve the final thickness, and then annealed to grow grains. In the method for manufacturing a magnetic steel sheet, the sheet thickness t1 after hot rolling is determined according to the final sheet thickness t2 [I≧t
2 / 0.15, and by self-annealing the coiling temperature after hot rolling within the range of 700°C to 950°C, the grain size of the crystals in the hot rolled steel strip is reduced. A method for producing a non-oriented electrical steel sheet, characterized in that the number is 4 or less, and heavy cold rolling is performed at a reduction rate of 85% or more in rough cold rolling.
JP22972682A 1982-12-29 1982-12-29 Production of non-directional electromagnetic steel Pending JPS59123715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22972682A JPS59123715A (en) 1982-12-29 1982-12-29 Production of non-directional electromagnetic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22972682A JPS59123715A (en) 1982-12-29 1982-12-29 Production of non-directional electromagnetic steel

Publications (1)

Publication Number Publication Date
JPS59123715A true JPS59123715A (en) 1984-07-17

Family

ID=16896728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22972682A Pending JPS59123715A (en) 1982-12-29 1982-12-29 Production of non-directional electromagnetic steel

Country Status (1)

Country Link
JP (1) JPS59123715A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02310316A (en) * 1989-05-24 1990-12-26 Kobe Steel Ltd Production of nonoriented silicon steel sheet having developed (100)<uvw> aggregate structure
JPH032323A (en) * 1989-05-26 1991-01-08 Kobe Steel Ltd Manufacture of nonoriented silicon steel sheet having high magnetic flux density
US4986341A (en) * 1987-03-11 1991-01-22 Nippon Kokan Kabushiki Kaisha Process for making non-oriented high silicon steel sheet
US5062906A (en) * 1988-03-07 1991-11-05 Nkk Corporation Method of making non-oriented electrical steel sheets
JPH04325629A (en) * 1991-04-25 1992-11-16 Nippon Steel Corp Production of nonoriented silicon steel sheet excellent in magnetic property

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986341A (en) * 1987-03-11 1991-01-22 Nippon Kokan Kabushiki Kaisha Process for making non-oriented high silicon steel sheet
US5062906A (en) * 1988-03-07 1991-11-05 Nkk Corporation Method of making non-oriented electrical steel sheets
JPH02310316A (en) * 1989-05-24 1990-12-26 Kobe Steel Ltd Production of nonoriented silicon steel sheet having developed (100)<uvw> aggregate structure
JPH032323A (en) * 1989-05-26 1991-01-08 Kobe Steel Ltd Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JPH04325629A (en) * 1991-04-25 1992-11-16 Nippon Steel Corp Production of nonoriented silicon steel sheet excellent in magnetic property
JPH086135B2 (en) * 1991-04-25 1996-01-24 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Similar Documents

Publication Publication Date Title
CA2525742C (en) Improved method for production of non-oriented electrical steel strip
JP4218077B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPS59123715A (en) Production of non-directional electromagnetic steel
JPH0742501B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing
JP4337146B2 (en) Method for producing non-oriented electrical steel sheet
JP2006241554A (en) Method for manufacturing non-oriented electromagnetic steel sheet having high magnetic flux density
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
JPH0832927B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPS60125325A (en) Production of non-directionally oriented electrical steel strip
JP4258854B2 (en) Manufacturing method of electrical steel sheet
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH06192731A (en) Production of non-oriented electrical steel sheet high in magnetic flux density and low in core loss
JPH04224624A (en) Manufacture of silicon steel sheet excellent in magnetic property
JPH0273919A (en) Manufacture of nonoriented electrical steel sheet having excellent magnetic characteristics
JPS5831367B2 (en) Method for manufacturing non-oriented electrical steel strip with excellent magnetic properties
JPH0860247A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP4320793B2 (en) Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JPH11350032A (en) Production of silicon steel sheet
JPH021893B2 (en)
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPS5970722A (en) Production of electrical sheet having small anisotropy
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss