JPH021893B2 - - Google Patents

Info

Publication number
JPH021893B2
JPH021893B2 JP57210653A JP21065382A JPH021893B2 JP H021893 B2 JPH021893 B2 JP H021893B2 JP 57210653 A JP57210653 A JP 57210653A JP 21065382 A JP21065382 A JP 21065382A JP H021893 B2 JPH021893 B2 JP H021893B2
Authority
JP
Japan
Prior art keywords
hot
rolling
steel strip
rolled steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57210653A
Other languages
Japanese (ja)
Other versions
JPS59104429A (en
Inventor
Kazumi Morita
Hiroshi Matsumura
Isao Matoba
Yozo Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57210653A priority Critical patent/JPS59104429A/en
Publication of JPS59104429A publication Critical patent/JPS59104429A/en
Publication of JPH021893B2 publication Critical patent/JPH021893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明の発電機、電動機等の回転機器に適し
た、優れた磁気特性を示す無方向性電磁鋼帯の製
造方法に関し、特に板面各方向に一様に磁束密度
が高い無方向性電磁鋼帯を低コストで製造する方
法を提供するものである。 一般に無方向性電磁鋼帯の用途は、小型変圧器
や安定器等のいわゆる静止機器の鉄芯材料と、電
動機や発電機等のいわゆる回転機器の鉄芯材料と
に大別されるが、これらの電気機器に対してはい
ずれも近年の省エネルギー化の要請から小型化も
しくは高効率化が益々必要とされており、そのた
め電磁鋼帯としては磁束密度が高く、かつ鉄損が
低いことが要求されている。 ところで無方向性電磁鋼帯のうちでも、静止機
器の鉄芯材料としては磁化の方向が限定されるこ
とから機器の特性向上には磁性に方向性を付与し
た方が有利であるが、回転機器の鉄芯材料として
は板面の各方向に磁化されることから、磁性に方
向性がないいわゆる面内無方向性材料が要求され
る。 周知のように無方向性電磁鋼帯の磁気特性は、
JIS−C−2550に定められている如く圧延方向
(以下Lと記す)と、圧延方向に対し直角な方向
(以下Cと記す)から等量ずつ採取した25cmのエ
プスタイン試料の測定値で評価している。このよ
うにL+Cの25cmエプスタイン試料により評価さ
れる無方向性電磁鋼帯の磁気特性は磁化方向が限
定される静止機器の特性には反映されるが、回転
機器の電磁鋼帯の磁気特性としては、L+Cの25
cmエプスタイン試料により測定される磁気特性よ
りも、回転機器の励磁状態に近いリング試料での
磁気特性が優れていることが要求される。 無方向性電磁鋼帯の製造技術として、冷間圧延
前の母帯粒を大きくすれば最終製品における磁気
特性が向上することが既に知られている。本発明
者等はこの知見に基いて、特開昭57−35628号、
特願昭57−18909号および特願昭57−86281号にお
いて磁気特性の優れた無方向性電磁鋼帯の製造方
法を開示している。特開昭57−35628号の発明は、
熱間圧延終了温度を化学成分に応じて定まるAr3
変態点直上のγ相領域とし、次いで短時間焼鈍す
ることが特徴である。また特願昭57−18909号は、
熱間圧延終了温度を上述の特開昭57−35628号の
発明と同じくγ相領域とし、巻取温度を高くする
ことが特徴であり、さらに特願昭57−86281号の
発明は、熱間圧延終了温度を通常よりも低くし、
次いで短時間焼鈍することが特徴であり、これら
はいずれも冷間圧延前の母帯粒を粗大化させて磁
気特性の向上を図つたものである。またその他に
も特開昭54−76422号に示されるように、熱間圧
延時の巻取温度を高くして、自己焼鈍による母帯
粒の成長により磁性向上を図る方法も提案されて
いる。 しかるにこれらの製造方法によれば、L+Cの
磁性は改善されるが、圧延方向から約55゜の方向
の磁性は逆に通常の電磁鋼帯より劣化しているか
ら、リング試料における磁性は通常材とほぼ同じ
程度であり、このような材料を回転機器の鉄芯に
使用しても特性の向上は図れない。 一方回転機器用に適したいわゆる{100}面内
無方向性材の製造方法としては、特公昭51−942
号に、2.0〜5.0mmの熱間圧延材に85%以上の1回
の強冷間圧延を施して0.35mm以下の板厚に仕上げ
た後、脱炭を兼ねた焼鈍を施す方法が提案されて
いる。しかしながらJIS規格のS−30以下の板厚
は0.50mmと0.65mmであること、また通常の回転機
器材料としては0.50mmが多く使用されていること
から、製品板厚を0.35mm以下とする上記提案の方
法は実用には不向きである。また特公昭48−
19767号には、適切な成分よりなる熱延板を中間
焼鈍を挟む2回の冷間圧延後に高温の長時間焼鈍
を施し、二次再結晶を利用して板面上に{100}
面を有する材料を製造する方法も提案されている
が、この方法は工程が複雑で製造コストが高く、
かつ量産に適当ではない等の欠点がある。 この発明は以上の事情に鑑みてなされたもの
で、リング試料での磁束密度が高い、回転機器に
適した無方向性電磁鋼帯であつてしかも実用に適
した厚みを有する電磁鋼帯を量産的規模で容易か
つ低コストで製造し得る方法を提供することを目
的とするものである。 回転機器用に適したいわゆる{100}面内無方
向性電磁鋼帯を経済的に有利な冷延1回法で造る
には、前述の特公昭51−942号にもあるように冷
延圧下率を高くすればよいことが通説となつてい
る。すなわち冷延圧下率を85%以上にすれば磁性
に有害な{111}面が減少して{100}面が増加し
て磁性が向上する。しかしながらこの方法によれ
ば、例えば{100}面が発生し易い冷延圧下率90
%以上にするには最終仕上板厚が0.50mmの場合、
熱延鋼帯の厚さは5mm以上が必要となり、熱延鋼
帯のハンドリングや冷間圧延に困難が伴うため、
実際には工業的規模の生産には不適当である。 そこで本発明者らは冷延圧下率だけではなく、
熱間圧延条件についても検討し、種々実験・研究
を重ねた結果、熱間圧延における熱延終了温度と
巻取温度をある適正な温度範囲内に制御し、かつ
これに適正な冷延圧下率および素材成分を組合せ
ることによつて上述の目的を達成し得ることを見
出し、この発明を完成させるに至つたのである。 すなわちこの発明の製造方法は、低炭素鋼を熱
間圧延して熱延鋼帯とし、次いで1回の冷間圧延
により最終板厚とし、引続いて焼鈍を行う無方向
性電磁鋼帯の製造方法において、前記低炭素鋼と
して、SiおよびAlの合計含有量が1.5重量%以下、
残部実質的にFeよりなる鋼を用い、かつ前記熱
間圧延における圧延終了温度を600〜700℃の温度
範囲内、また熱間圧延後の巻取温度を500℃以下
の温度とし、さらに1回の冷間圧延における圧下
率を75〜85%の範囲内とすることを特徴とするも
のである。 以下この発明の方法をさらに詳細に説明する。 先ずこの発明の方法に使用される低炭素鋼素材
の成分について説明すると、素材中のSiおよび
Alは固有抵抗を高めて渦電流損を減少せしめる
ことにより製品の鉄損を低くするに有効である
が、合計量で1.5%を越えればこの発明の熱間圧
延条件および冷延圧下率を適用してもその効果が
余り期待できなくなるばかりでなく、非変態鋼に
みられるスラブの柱状晶に起因する冷間圧延後の
形状不良、すなわちいわゆるリジングが発生し、
表面外観を損うから、(Si+Al)の合計含有量を
1.5%以下に規制する必要がある。その他C、S、
N、O等の不純物成分は介在物やMnS、AlN等
の析出物を形成し、冷延後に行う焼鈍において結
晶粒の成長を阻害し、ひいては鉄損を増加させる
ことから、これらの不純物成分は可能なかぎり少
なくすることが望ましい。 上述のような成分の低炭素鋼素材は、電気炉、
平炉、転炉等の公知の方法で溶製し、公知の造塊
−分塊圧延法もしくは連続鋳造法によつてスラブ
とする。そしてそのスラブに対し熱間圧延を施し
て酸洗し、1回の冷間圧延を施す。これらの工程
において、この発明では特に熱間圧延終了温度を
600〜700℃の範囲とし、かつ熱間圧延直後の鋼帯
巻取温度を500℃以下とし、さらに冷間圧延にお
ける圧下率を75〜85%の範囲内とする。 上述のようなこの発明における熱間圧延条件、
特に熱延終了温度および熱延鋼帯巻取温度と、冷
延圧下率の限定理由について、本発明者等の実験
結果に基いて以下に説明する。 Si0.11%、Al0.003%を含む溶鋼から3個のス
ラブA、B、Cを作成し、これらを供試材とし
た。これらのスラブA、B、Cを1250℃に加熱し
た後、第1表に示す熱延条件でそれぞれ熱間圧延
した。
The present invention relates to a method for manufacturing a non-oriented electrical steel strip that exhibits excellent magnetic properties and is suitable for rotating equipment such as generators and electric motors, and in particular, a non-oriented electrical steel strip that has a uniformly high magnetic flux density in each direction of the plate surface. The present invention provides a method for manufacturing a belt at low cost. In general, the applications of non-oriented electrical steel strips are roughly divided into iron core materials for so-called stationary equipment such as small transformers and ballasts, and iron core materials for so-called rotating equipment such as motors and generators. Due to the recent demand for energy conservation, there is an increasing need for electrical equipment to be smaller or more efficient, and for this reason, electrical steel strips are required to have high magnetic flux density and low iron loss. ing. By the way, even among non-oriented magnetic steel strips, the direction of magnetization is limited when used as a core material for stationary equipment, so it is advantageous to impart directionality to the magnetism in order to improve the characteristics of the equipment, but for rotating equipment Since the iron core material is magnetized in each direction of the plate surface, a so-called in-plane non-directional material is required, which has no directionality in magnetism. As is well known, the magnetic properties of non-oriented electrical steel strip are
As specified in JIS-C-2550, evaluation was made using the measured values of 25 cm Epstein samples taken in equal amounts from the rolling direction (hereinafter referred to as L) and the direction perpendicular to the rolling direction (hereinafter referred to as C). ing. In this way, the magnetic properties of non-oriented electrical steel strips evaluated using the L+C 25 cm Epstein sample are reflected in the properties of stationary equipment where the magnetization direction is limited, but the magnetic properties of electrical steel strips for rotating equipment are , L+C 25
It is required that the magnetic properties of the ring sample, which is close to the excitation state of the rotating equipment, be better than the magnetic properties measured with the cm Epstein sample. As a manufacturing technology for non-oriented electrical steel strip, it is already known that increasing the size of the mother strip grains before cold rolling improves the magnetic properties of the final product. Based on this knowledge, the present inventors have published JP-A No. 57-35628,
Japanese Patent Application No. 57-18909 and Japanese Patent Application No. 57-86281 disclose a method for producing a non-oriented electrical steel strip with excellent magnetic properties. The invention of JP-A No. 57-35628 is
Ar 3, which determines the hot rolling end temperature depending on the chemical composition
It is characterized by forming the γ phase region immediately above the transformation point and then annealing for a short time. Also, the patent application No. 18909/1983 is
The hot rolling end temperature is in the γ phase region like the invention of JP-A No. 57-35628 mentioned above, and the coiling temperature is high. The rolling end temperature is lower than normal,
It is characterized in that it is then annealed for a short time, and in both of these methods, the core grains before cold rolling are coarsened to improve magnetic properties. In addition, as shown in JP-A No. 54-76422, a method has been proposed in which the coiling temperature during hot rolling is increased to improve magnetism through the growth of matrix grains through self-annealing. However, according to these manufacturing methods, although the magnetism of L+C is improved, the magnetism in the direction of about 55° from the rolling direction is on the contrary worse than that of ordinary magnetic steel strips, so the magnetism in the ring sample is comparable to that of ordinary magnetic steel strips. The characteristics are almost the same, and even if such a material is used for the iron core of rotating equipment, the characteristics cannot be improved. On the other hand, as a manufacturing method for so-called {100} in-plane non-oriented material suitable for rotating equipment,
No. 1, a method was proposed in which a hot-rolled material of 2.0 to 5.0 mm is subjected to one round of strong cold rolling of 85% or more, finished to a thickness of 0.35 mm or less, and then subjected to annealing that also serves as decarburization. ing. However, the thickness of the JIS standard S-30 and below is 0.50mm and 0.65mm, and 0.50mm is often used as a material for ordinary rotating equipment. The proposed method is not suitable for practical use. Also, special public service in 1977-
No. 19767 discloses that a hot-rolled sheet made of appropriate ingredients is cold-rolled twice with an intermediate annealing in between, and then annealed at high temperature for a long period of time, and secondary recrystallization is used to form {100} on the sheet surface.
A method for manufacturing a material with a surface has also been proposed, but this method requires a complicated process and is expensive to manufacture.
Moreover, it has drawbacks such as not being suitable for mass production. This invention was made in view of the above circumstances, and is intended to mass produce a non-oriented electromagnetic steel strip that has a high magnetic flux density in a ring sample, is suitable for rotating equipment, and has a thickness suitable for practical use. The purpose of this invention is to provide a method that can be manufactured easily and at low cost on a large scale. In order to produce the so-called {100} in-plane non-oriented electrical steel strip suitable for rotating equipment by the economically advantageous one-step cold rolling method, cold rolling rolling as described in the above-mentioned Japanese Patent Publication No. 51-942 is required. It is generally accepted that the higher the rate, the better. That is, if the cold rolling reduction ratio is 85% or more, the {111} planes, which are harmful to magnetism, will decrease and the {100} planes will increase, improving the magnetism. However, according to this method, for example, if the cold rolling reduction rate is 90, where {100} planes are likely to occur,
% or more, if the final plate thickness is 0.50mm,
The thickness of the hot-rolled steel strip must be 5 mm or more, which makes handling and cold rolling of the hot-rolled steel strip difficult.
In fact, it is unsuitable for industrial scale production. Therefore, the present inventors determined not only the cold rolling reduction rate but also
As a result of considering the hot rolling conditions and conducting various experiments and research, we were able to control the hot rolling end temperature and coiling temperature during hot rolling within a certain appropriate temperature range, and to achieve an appropriate cold rolling reduction rate. They discovered that the above-mentioned object could be achieved by combining the materials and ingredients, leading to the completion of this invention. That is, the manufacturing method of the present invention involves manufacturing a non-oriented electrical steel strip by hot rolling low carbon steel into a hot rolled steel strip, then cold rolling once to obtain the final thickness, and subsequently annealing. In the method, the low carbon steel has a total content of Si and Al of 1.5% by weight or less,
Using steel with the remainder substantially consisting of Fe, and setting the rolling end temperature in the hot rolling to within a temperature range of 600 to 700°C, and setting the coiling temperature after hot rolling to a temperature of 500°C or less, and further once. The rolling reduction ratio in cold rolling is within the range of 75 to 85%. The method of the present invention will be explained in more detail below. First, to explain the components of the low carbon steel material used in the method of this invention, Si and
Al is effective in lowering the iron loss of the product by increasing the resistivity and reducing eddy current loss, but if the total amount exceeds 1.5%, the hot rolling conditions and cold rolling reduction ratio of this invention are applied. Not only is the effect not as expected, but shape defects after cold rolling, or so-called ridging, occur due to columnar crystals in the slab found in non-transformed steel.
The total content of (Si+Al) should be
It is necessary to regulate it to 1.5% or less. Other C, S,
Impurity components such as N and O form inclusions and precipitates such as MnS and AlN, inhibit the growth of crystal grains during annealing performed after cold rolling, and increase iron loss. It is desirable to reduce it as much as possible. Low-carbon steel materials with the above-mentioned components can be used in electric furnaces,
It is melted by a known method such as an open hearth or a converter, and is made into a slab by a known ingot-blowing method or continuous casting method. The slab is then hot rolled, pickled, and cold rolled once. In these steps, the present invention particularly focuses on the hot rolling end temperature.
The temperature should be in the range of 600 to 700°C, the coiling temperature of the steel strip immediately after hot rolling should be 500°C or less, and the reduction rate in cold rolling should be in the range of 75 to 85%. Hot rolling conditions in this invention as described above,
In particular, the reasons for limiting the hot rolling end temperature, the hot rolled steel strip winding temperature, and the cold rolling reduction will be explained below based on the experimental results of the present inventors. Three slabs A, B, and C were created from molten steel containing 0.11% Si and 0.003% Al, and these were used as test materials. These slabs A, B, and C were heated to 1250° C. and then hot-rolled under the hot-rolling conditions shown in Table 1.

【表】 第1表に示すようにスラブAは熱間圧延終了温
度および巻取温度ともこの発明より高い条件で熱
延し、スラブBは熱間圧延終了温度はこの発明の
範囲内であるが巻取温度がこの発明より高い条件
で熱延し、スラブCは熱間圧延終了温度、巻取温
度ともにこの発明の範囲内の熱延条件で熱延し
た。 これらの熱延条件で得られた熱延鋼帯A、B、
Cの結晶組織を第1図A,B,Cにそれぞれ対応
して示す。この発明の熱延条件から外れた熱延条
件で熱間圧延した熱延鋼帯A、Bの結晶組織であ
る第1図のA,Bは結晶粒の大きさに差異はある
ものの、いずれも再結晶組織となつている。これ
らに対し、熱延条件がこの発明の範囲内にある熱
延鋼帯Cの結晶組織を示す第1図Cはほぼ板厚全
域にわたつて圧延方向に伸長した結晶粒を有する
圧延集合組織、すなわちいわゆる未再結晶組織と
なつている。このような未再結晶組織を有する熱
延鋼帯を得ることが、後述するようにこの発明の
所期の目的を達成するための必要条件となる。本
発明者等はこの未再結晶組織を得る熱延条件を見
出すために種々実験した結果、熱間圧延の際の熱
延終了温度が700℃を越えれば熱延時の動的再結
晶や水冷巻取までの間に再結晶が起ること、また
600℃未満の熱延終了温度では圧延機の負荷がい
たずらに大きくなり圧延が困難となること、さら
には巻取温度が500℃を越えれば熱延鋼帯の保有
熱による自己焼鈍により再結晶が起こることが判
明した。したがつて熱間圧延の熱延終了温度を
600℃〜700℃の範囲内に、また巻取温度を500℃
以下に限定した。 次に前述の各条件で熱間圧延した熱延鋼帯A、
B、Cについて酸洗を施した後、冷間圧延を施す
に際し、圧下率を70%、75%、80%、85%、90%
に変えて圧延し、次いで750℃、2分間の光輝焼
鈍処理をした後、これらを内径65mm、外径85mmの
リングに打抜き、各リング試料の磁束密度B50
を測定した。その結果を第2図に示す。第2図か
ら、いずれの熱延鋼帯のリングも冷延圧下率が高
くなるほどB50値が高くなつているが、この発明
の熱延条件を満たした熱延鋼帯CのリングのB50
値のレベルが特に高く、この発明の熱延限定条件
を満足しない熱延鋼帯A、BのリングのB50値の
レベルが低いことが明らかである。 ここで、冷延圧下率の下限を75%としたのは、
冷延圧下率が75%より低くなるとB50値のレベル
が低下するばかりでなく、回転機器用に多く用い
られる0.50mmの製品板厚に仕上げるのに必要な熱
延鋼帯の板厚が1.7mmと薄くなり、熱延工程以後
の酸洗効率などの各工程での効率の低下を招来す
るからである。また冷延圧下率の上限を85%にし
たのは、圧下率が85%以上でリングのB50値は若
干高い傾向にあるものの、最終製品板厚を0.50mm
に仕上げるには熱延鋼帯の板厚を3.3mmと厚くす
る必要があるため、熱延鋼帯のハンドリングや冷
延に困難が伴うことからである。 以上のようにこの発明の方法においては、熱間
圧延の際に熱延終了温度を600℃〜700℃とし、か
つ巻取温度を500℃以下とすることと、その熱間
圧延により得られた熱延鋼帯に対する冷間圧延に
おける圧下率を75%〜85%にすることを組合せる
ことにより始めてリングのB50値が高い適当な厚
みの無方向性電磁鋼帯を、生産性の低下を招くこ
となく量産的規模で製造することが可能となつた
のである。 さらに前記実験においてそれぞれの熱延条件で
熱延した後の熱延鋼帯A、B、Cの(200)極点
図を第3図A,B,Cにそれぞれ対応して示す。
第3図から明らかなようにこの発明の熱延条件の
範囲内にある熱延終了温度630℃、巻取温度450℃
の条件で得られた熱延鋼帯Cは、この発明の範囲
外の条件で得られた熱延鋼帯A、Bに比べて
{100}<011>方位のRD軸(圧延方向)回りの回
転が非常に強い、いわゆる圧延集合組織になつて
いる。またこれらの熱延鋼帯A、B、Cに酸洗を
施し、冷延率78%で0.50mm厚に圧延し、次いで
750℃、2分間の光輝焼鈍処理を行つた後の
(200)極点図を第4図A,B,Cにそれぞれ対応
して示す。第4図から、この発明の熱延鋼帯Cの
最終製品の集合組織は回転機器用に適した{100}
<o,v,w>のいわゆる面内無方向性になつて
いることが判る。このように圧延面内においてラ
ンダムな面内無方向性の集合組織が得られる理由
としては、冷延圧下率を80%以上、好ましくは90
%以上に高くすれば(100)面が発達しやすいと
いう通説に従えば、この発明のように熱延条件を
限定して未再結晶組織を有する熱延鋼帯を得、さ
らに冷間圧下率が75%〜85%の冷延を施すことに
より、実質的には85%以上の強冷延を施したと同
じ状態となり、これによりリングのB50値向上に
有利な(100)面成分が増加したものと考えられ
る。 なお冷間圧延後の焼鈍は常法にしたがつて700
℃〜950℃程度で行えば良い。 以下にこの発明の実施例を記す。 実施例 1 C0.006%、Si1.08%、Al0.28%を含む溶鋼を転
炉およびRH真空処理にて溶製し、次いで連続鋳
造で220mm厚さのスラブとした。このスラブを
1260℃に加熱し、熱間圧延をするに際して、本発
明材は熱間圧延終了温度を680℃、巻取温度を490
℃とし、比較材は従来法により熱間圧延終了温度
を850℃、巻取温度を580℃として、いずれも2.3
mm厚さの熱延鋼帯とした。次いで本発明の熱延鋼
帯および比較材の熱延鋼帯ともに酸洗を施し、引
続き冷延圧下率78%で0.50mm厚さに冷間圧延した
後、連続焼鈍炉で830℃、2分間の光輝焼鈍を施
して製品とした。これらの製品を外径85mm、内径
65mmのリングに打抜き、磁気特性を測定した。そ
の結果を第2表に示す。
[Table] As shown in Table 1, slab A was hot-rolled at a higher hot-rolling finish temperature and coiling temperature than the present invention, and slab B had a hot-rolling finish temperature within the range of the present invention. Hot rolling was carried out under conditions where the coiling temperature was higher than that of the present invention, and slab C was hot rolled under hot rolling conditions where both the hot rolling end temperature and coiling temperature were within the range of the present invention. Hot rolled steel strips A, B, obtained under these hot rolling conditions,
The crystal structure of C is shown corresponding to FIG. 1 A, B, and C, respectively. A and B in Fig. 1, which are the crystal structures of hot-rolled steel strips A and B that were hot-rolled under hot-rolling conditions different from those of the present invention, have different crystal grain sizes; It has a recrystallized structure. On the other hand, FIG. 1C, which shows the crystal structure of hot-rolled steel strip C whose hot-rolling conditions are within the range of the present invention, shows a rolled texture with crystal grains extending in the rolling direction over almost the entire thickness of the sheet. In other words, it has a so-called unrecrystallized structure. Obtaining a hot rolled steel strip having such an unrecrystallized structure is a necessary condition for achieving the intended purpose of the present invention, as will be described later. The present inventors conducted various experiments to find hot rolling conditions to obtain this unrecrystallized structure, and found that if the hot rolling end temperature during hot rolling exceeds 700°C, dynamic recrystallization during hot rolling and water cooling rolling will occur. Recrystallization may occur during the time it is taken, and
If the hot-rolling end temperature is less than 600℃, the load on the rolling mill becomes unnecessarily large, making rolling difficult. Furthermore, if the coiling temperature exceeds 500℃, recrystallization will occur due to self-annealing due to the heat retained in the hot-rolled steel strip. Turns out it happens. Therefore, the hot rolling end temperature of hot rolling is
Within the range of 600℃~700℃, and the winding temperature is 500℃
Limited to the following. Next, hot rolled steel strip A hot rolled under each of the above conditions,
After pickling B and C, when performing cold rolling, the rolling reduction ratio is 70%, 75%, 80%, 85%, 90%.
After bright annealing at 750° C. for 2 minutes, these were punched into rings with an inner diameter of 65 mm and an outer diameter of 85 mm, and the magnetic flux density B 50 value of each ring sample was measured. The results are shown in FIG. From FIG. 2, the B50 value of the rings of all hot-rolled steel strips increases as the cold rolling reduction increases, but the B50 value of the rings of hot-rolled steel strip C that satisfies the hot-rolling conditions of the present invention increases.
It is clear that the B 50 values of the rings of hot rolled steel strips A and B, which do not satisfy the hot rolling limiting conditions of the present invention, are particularly high. Here, the lower limit of the cold rolling reduction ratio is set to 75% because
When the cold rolling reduction is lower than 75%, not only does the B50 value decrease, but the thickness of the hot rolled steel strip required to finish the product to the 0.50 mm thickness often used for rotating equipment is 1.7 mm. This is because the thickness becomes as thin as 1 mm, resulting in a decrease in efficiency in each process such as pickling efficiency after the hot rolling process. In addition, the upper limit of the cold rolling reduction rate was set at 85% because the B50 value of the ring tends to be slightly higher when the rolling reduction rate is 85% or more, but the final product thickness is 0.50 mm.
This is because it is necessary to increase the thickness of the hot-rolled steel strip to 3.3 mm in order to finish it, which poses difficulties in handling and cold-rolling the hot-rolled steel strip. As described above, in the method of the present invention, during hot rolling, the hot rolling end temperature is set at 600°C to 700°C, the coiling temperature is set at 500°C or less, and the By combining the cold rolling reduction rate of 75% to 85% with respect to the hot rolled steel strip, it is possible to produce a non-oriented electrical steel strip of an appropriate thickness with a high ring B50 value without reducing productivity. It has now become possible to manufacture on a mass production scale without the need for any damage. Further, (200) pole figures of the hot rolled steel strips A, B and C after hot rolling under the respective hot rolling conditions in the above experiment are shown corresponding to FIGS. 3A, B and C, respectively.
As is clear from Fig. 3, the hot rolling end temperature is 630°C and the coiling temperature is 450°C, which are within the range of the hot rolling conditions of this invention.
Compared to hot rolled steel strips A and B obtained under conditions outside the scope of the present invention, the hot rolled steel strip C obtained under the conditions shown in FIG. It has a so-called rolling texture with very strong rotation. In addition, these hot rolled steel strips A, B, and C were pickled, rolled to a thickness of 0.50 mm at a cold rolling rate of 78%, and then
(200) pole figures after bright annealing at 750° C. for 2 minutes are shown in FIGS. 4A, B, and C, respectively. From FIG. 4, the texture of the final product of the hot-rolled steel strip C of the present invention is {100} suitable for use in rotating equipment.
It can be seen that there is so-called in-plane non-direction of <o, v, w>. The reason why a random in-plane non-directional texture is obtained in the rolling plane is that the cold rolling reduction is 80% or more, preferably 90% or more.
According to the common theory that (100) planes are likely to develop if the rolling reduction rate is higher than By applying cold rolling of 75% to 85%, the condition is essentially the same as that of hard rolling of 85% or more, and this results in a (100) plane component that is advantageous for improving the B50 value of the ring. This is considered to have increased. In addition, annealing after cold rolling is done in accordance with the usual method.
It may be carried out at a temperature of about ℃ to 950℃. Examples of this invention are described below. Example 1 Molten steel containing 0.006% C, 1.08% Si, and 0.28% Al was melted in a converter and RH vacuum treatment, and then continuously cast into a 220 mm thick slab. this slab
When heated to 1260℃ and hot rolled, the material of the present invention has a hot rolling finish temperature of 680℃ and a coiling temperature of 490℃.
℃, and the comparative material was hot-rolled using the conventional method with a finishing temperature of 850℃ and a coiling temperature of 580℃, both of which were 2.3
It was made into a hot-rolled steel strip with a thickness of mm. Next, both the hot-rolled steel strip of the present invention and the comparative hot-rolled steel strip were pickled, followed by cold rolling to a thickness of 0.50 mm at a cold rolling reduction of 78%, and then annealing at 830°C for 2 minutes in a continuous annealing furnace. The product was produced by bright annealing. These products have an outer diameter of 85mm and an inner diameter of
A 65mm ring was punched out and its magnetic properties were measured. The results are shown in Table 2.

【表】 第2表から明らかなように、熱延条件と冷延圧
下率がこの発明の限定条件を満たした本発明材は
比較材よりリングのB50値が高く、回転機器用材
に適していることが分る。 実施例 2 実施例1と同様の方法でC0.005%、Si0.32%、
Al0.0008%を含む溶鋼を溶製し、連続鋳造で220
mm厚さのスラブを得た。このスラブを1250℃に加
熱し、熱間圧延を行うに当つて本発明材は熱間圧
延終了温度620℃、巻取温度を480℃とし、比較材
は従来法により熱間圧延終了温度を780℃、巻取
温度を540℃とし、いずれも2.5mm厚さの熱延鋼帯
とした。次いで本発明材および比較材の熱延鋼帯
を酸洗し、引続き冷延圧下率80%の圧延により
0.50mm厚さにした後、連続焼鈍炉にて800℃、2
分間の光輝焼鈍を施して製品とした。これらの製
品を外径85mm、内径65mmのリングに打抜き、その
磁性を測定した結果を第3表に示す。
[Table] As is clear from Table 2, the material of the present invention whose hot rolling conditions and cold rolling reduction satisfy the limiting conditions of the present invention has a higher ring B50 value than the comparative material, making it suitable for materials for rotating equipment. I know that there is. Example 2 C0.005%, Si0.32%,
Molten steel containing 0.0008% Al is made and continuously cast to 220
A slab of mm thickness was obtained. This slab was heated to 1250°C and hot rolled. The material of the present invention had a hot rolling end temperature of 620°C and a coiling temperature of 480°C, while the comparative material had a hot rolling end temperature of 780°C using the conventional method. ℃, the coiling temperature was 540℃, and both were hot-rolled steel strips with a thickness of 2.5 mm. Next, the hot-rolled steel strips of the present invention material and comparative material were pickled and then cold-rolled at a reduction rate of 80%.
After making it 0.50mm thick, it was heated to 800℃ in a continuous annealing furnace for 2 hours.
The product was made into a product by bright annealing for 1 minute. These products were punched into rings with an outer diameter of 85 mm and an inner diameter of 65 mm, and the magnetic properties of the rings were measured. Table 3 shows the results.

【表】 第3表から、本発明材のリングのB50値は比較
材より優れていることが明らかである。 以上の各実施例より明らかなように、この発明
の方法によれば、SiおよびAlの合計含有量を1.5
重量%以下に規制したスラブを熱間圧延するに当
たり、熱間圧延終了温度を600〜700℃、巻取温度
を500℃以下に規制し、得られた熱延鋼帯に対し
冷延圧下率75%〜85%の冷間圧延を施した後に通
常の焼鈍を施すことによつて、リングでの磁束密
度B50値が高い、いわゆる回転機器用に適した無
方向性電磁鋼帯を得ることができる。そしてまた
この発明の方法によれば、実用に適した厚みの無
方向性電磁鋼帯を、特に生産性を阻害することな
く得ることができ、しかも特に複雑な工程を要し
ない等、低コストで優れた特性の無方向性電磁鋼
帯を量産的規模で製造し得る顕著な効果が得られ
る。
[Table] From Table 3, it is clear that the B 50 value of the ring made of the present invention material is superior to that of the comparative material. As is clear from the above examples, according to the method of the present invention, the total content of Si and Al can be reduced to 1.5
When hot rolling a slab regulated to weight% or less, the hot rolling end temperature is regulated to 600 to 700℃, the coiling temperature is regulated to 500℃ or less, and the cold rolling reduction rate of the obtained hot rolled steel strip is 75. By performing normal annealing after cold rolling to 85% to 85%, it is possible to obtain a non-oriented electrical steel strip with a high magnetic flux density B50 value in the ring, which is suitable for so-called rotating equipment. can. Furthermore, according to the method of the present invention, a non-oriented electrical steel strip having a thickness suitable for practical use can be obtained without particularly hindering productivity, and moreover, it is possible to obtain a non-oriented electrical steel strip with a thickness suitable for practical use, and also at a low cost, such as not requiring particularly complicated processes. A remarkable effect is obtained in which a non-oriented electrical steel strip with excellent properties can be manufactured on a mass production scale.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,B,Cはこの発明の基本実験におけ
る熱延鋼帯の結晶組織を示す30倍の顕微鏡組織写
真で、そのAは第1表の供試材Aの熱延鋼帯、B
は供試材Bの熱延鋼帯、Cは供試材Cの熱延鋼帯
のそれぞれの組織を示し、第2図は供試材A、
B、Cの冷延圧下率と製品のリング試料の磁束密
度B50値との関係を示すグラフ、第3図A,B,
Cは供試材A、B、Cの熱延鋼帯の(200)極点
図で、そのAは供試材Aの、Bは供試材Bの、C
は供試材Cのそれぞれの熱延鋼帯の極点図を示
し、第4図A,B,Cは供試材A、B、Cの製品
の(200)極点図で、そのAは供試材Aの、Bは
供試材Bの、Cは供試材Cのそれぞれの製品の極
点図を示す。
Figures A, B, and C are 30x microscopic photographs showing the crystal structures of hot-rolled steel strips in the basic experiments of this invention, in which A is the hot-rolled steel strip of sample A in Table 1, B
indicates the structure of the hot rolled steel strip of sample material B, C indicates the structure of the hot rolled steel strip of sample material C, and Figure 2 shows the structure of the hot rolled steel strip of sample material A,
Graph showing the relationship between the cold rolling reduction ratio of B and C and the magnetic flux density B50 value of the product ring sample, Figure 3 A, B,
C is the (200) pole figure of hot-rolled steel strips of test materials A, B, and C; A is of test material A, B is of test material B, and C.
Figure 4 shows the pole figures of each hot-rolled steel strip of sample material C, and Figure 4 A, B, and C are the (200) pole figures of the products of sample materials A, B, and C; Pole figures are shown for the products of material A, B for sample material B, and C for sample material C, respectively.

Claims (1)

【特許請求の範囲】 1 低炭素鋼を熱間圧延して熱延鋼帯とし、次い
で1回の冷間圧延により最終板厚とし、引続いて
焼鈍を行う無方向性電磁鋼帯の製造方法におい
て、 前記低炭素鋼として、SiおよびAlの合計含有
量が1.5重量%以下、残部実質的にFeよりなる鋼
を用い、かつ前記熱間圧延における圧延終了温度
を600〜700℃、巻取温度を500℃以下とし、さら
前記1回の冷間圧延における圧下率を75〜85%と
することを特徴とする無方向性電磁鋼帯の製造方
法。
[Claims] 1. A method for producing a non-oriented electrical steel strip, which comprises hot rolling low carbon steel to obtain a hot rolled steel strip, then cold rolling once to obtain the final thickness, and subsequently annealing. In, as the low carbon steel, a steel is used in which the total content of Si and Al is 1.5% by weight or less, and the balance is substantially Fe, and the rolling end temperature in the hot rolling is 600 to 700 ° C., and the coiling temperature is A method for producing a non-oriented electrical steel strip, characterized in that the temperature is 500°C or less, and the rolling reduction in the one cold rolling is 75 to 85%.
JP57210653A 1982-12-02 1982-12-02 Preparation of non-directional electromagnetic steel strip Granted JPS59104429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57210653A JPS59104429A (en) 1982-12-02 1982-12-02 Preparation of non-directional electromagnetic steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57210653A JPS59104429A (en) 1982-12-02 1982-12-02 Preparation of non-directional electromagnetic steel strip

Publications (2)

Publication Number Publication Date
JPS59104429A JPS59104429A (en) 1984-06-16
JPH021893B2 true JPH021893B2 (en) 1990-01-16

Family

ID=16592867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57210653A Granted JPS59104429A (en) 1982-12-02 1982-12-02 Preparation of non-directional electromagnetic steel strip

Country Status (1)

Country Link
JP (1) JPS59104429A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284016A (en) * 1986-05-31 1987-12-09 Nippon Steel Corp Production of non-oriented electrical steel sheet having excellent electromagnetic characteristic
JP4533036B2 (en) * 2004-08-04 2010-08-25 新日本製鐵株式会社 Non-oriented electrical steel sheet with excellent magnetic properties in the 45 ° direction from the rolling direction and method for producing the same
JP4724431B2 (en) * 2005-02-08 2011-07-13 新日本製鐵株式会社 Non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS59104429A (en) 1984-06-16

Similar Documents

Publication Publication Date Title
EP1108794B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
JPS59197520A (en) Manufacture of single-oriented electromagnetic steel sheet having low iron loss
JPS6250529B2 (en)
JP2001158950A (en) Silicon steel sheet for small-size electrical equipment, and its manufacturing method
JPH0567683B2 (en)
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JPS60125325A (en) Production of non-directionally oriented electrical steel strip
JPH021893B2 (en)
JP3994667B2 (en) Method for producing grain-oriented electrical steel sheet
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JPS59123715A (en) Production of non-directional electromagnetic steel
JPH06192731A (en) Production of non-oriented electrical steel sheet high in magnetic flux density and low in core loss
JPS5970722A (en) Production of electrical sheet having small anisotropy
JPH0623411B2 (en) Manufacturing method of electrical steel sheet with small anisotropy
JPS58107417A (en) Method of making unidirectional silicon steel sheet excellent in iron loss
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPS5831367B2 (en) Method for manufacturing non-oriented electrical steel strip with excellent magnetic properties
JPH0733547B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JPH0860247A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP2000309858A (en) Silicon steel sheet and its manufacture
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JPH0257125B2 (en)
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JP2717009B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method