JPS5831367B2 - Method for manufacturing non-oriented electrical steel strip with excellent magnetic properties - Google Patents

Method for manufacturing non-oriented electrical steel strip with excellent magnetic properties

Info

Publication number
JPS5831367B2
JPS5831367B2 JP55110314A JP11031480A JPS5831367B2 JP S5831367 B2 JPS5831367 B2 JP S5831367B2 JP 55110314 A JP55110314 A JP 55110314A JP 11031480 A JP11031480 A JP 11031480A JP S5831367 B2 JPS5831367 B2 JP S5831367B2
Authority
JP
Japan
Prior art keywords
hot
steel strip
annealing
temperature
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55110314A
Other languages
Japanese (ja)
Other versions
JPS5735628A (en
Inventor
和巳 森田
伊三夫 的場
繁雄 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP55110314A priority Critical patent/JPS5831367B2/en
Publication of JPS5735628A publication Critical patent/JPS5735628A/en
Publication of JPS5831367B2 publication Critical patent/JPS5831367B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Description

【発明の詳細な説明】 本発明は、磁気特性の優れた無方向性電磁鋼帯の製造方
法に関し、特に本発明は、磁束密度が極めて高く、鉄損
の低いフルプロセスあるいはセミプロセス無方向性電磁
鋼帯の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a non-oriented electrical steel strip with excellent magnetic properties, and in particular, the present invention relates to a method for manufacturing a non-oriented electrical steel strip with excellent magnetic properties, and particularly relates to a full process or semi-process non-oriented electrical steel strip with extremely high magnetic flux density and low iron loss. The present invention relates to a method for manufacturing electromagnetic steel strip.

無方向性電磁鋼帯には磁気特性レベルによって各種のグ
レードがあり、それらの磁気特性に応じて、大型、中型
回転機、汎用モーター、家電用モーター、変圧器、安定
器等の鉄心材料として用いられる。
There are various grades of non-oriented electrical steel strips depending on their magnetic properties, and depending on their magnetic properties, they are used as core materials for large- and medium-sized rotating machines, general-purpose motors, home appliance motors, transformers, ballasts, etc. It will be done.

近年エネルギー節減のため各種電気機器の効率向上ある
いは小型化のため使用される電磁鋼帯の磁性の向上が益
々必要となってきた。
In recent years, it has become increasingly necessary to improve the magnetic properties of electromagnetic steel strips used to improve the efficiency or downsize various electrical devices in order to save energy.

とくに小型モーター安定器等家電用電気機器鉄心材料で
は銅損の低減のため磁束密度が高く、かつ鉄損も低い電
磁鋼帯の開発が強く要求されている。
In particular, for iron core materials for home appliances such as small motor ballasts, there is a strong demand for the development of electromagnetic steel strips that have high magnetic flux density and low iron loss in order to reduce copper loss.

ところで古くから電磁鋼板の鉄損を低くするためには冷
間圧延前の素材の結晶粒径を大きくすることが有利とさ
れている。
Incidentally, it has long been considered advantageous to increase the crystal grain size of the material before cold rolling in order to lower the core loss of electrical steel sheets.

このために従来より、熱間圧延された熱延鋼帯を箱焼鈍
する方法がとられることがあった。
For this purpose, a method of box annealing a hot rolled steel strip has conventionally been used.

たとえば米国特許第2、3 5 8,7 8 8号によ
れば、熱間圧延された珪素鋼板(帯)に臨界歪の導入を
はかる冷間加工を施し、ついで箱焼鈍を行なって、結晶
粒を粗大化させ、ついで通常の冷間圧延、焼鈍により鉄
損の低い製品を得る方法が開示されている。
For example, according to U.S. Pat. A method is disclosed in which a product with low core loss is obtained by coarsening the steel, followed by conventional cold rolling and annealing.

また特公昭40−4139号によれば、添加珪素を含ま
すC0.15%以下、Mn0.75%以下、PO、07
5%乃至0.50%以下、SO.025%以下、NO.
004%以下、残部鉄から成る鋼を熱間圧延し、この熱
間圧延板を732゜C以上で焼鈍することを含む鉄損の
低い電気鋼板を製造する方法が開示されている。
Also, according to Japanese Patent Publication No. 40-4139, containing added silicon, C 0.15% or less, Mn 0.75% or less, PO, 07
5% to 0.50% or less, SO. 025% or less, NO.
A method for producing an electrical steel sheet with low iron loss is disclosed, which comprises hot rolling a steel consisting of 0.004% or less, the balance being iron, and annealing the hot rolled sheet at a temperature of 732°C or higher.

また特公昭42−11139号によればPo.15多以
下、SiO.1%以下の鋼にC0.05%乃至o.i斜
、Mn 0. 1 5φ乃至1%を含有させ、熱間圧延
して620℃より高くない温度で捲回し、その中に微細
に分散したカーバイドを生じせしめ、酸洗いした熱間圧
延材料を675℃乃至870℃の温度で脱炭焼鈍してそ
の中の炭素を0.005%以下に脱炭し、相の変化によ
り柱状粒子を生成せしめ、ついで40乃至80%の冷間
圧延を行ない鉄損の低い鉄磁性材料を製造する方法が提
案されている。
Also, according to Special Publication No. 42-11139, Po. 15 or less, SiO. C0.05% to o. i oblique, Mn 0. 15φ to 1%, hot-rolled at a temperature not higher than 620°C to form finely dispersed carbides therein, and pickled. A ferromagnetic material with low iron loss is produced by decarburizing annealing at a high temperature to decarburize the carbon in it to 0.005% or less, producing columnar particles by changing the phase, and then cold rolling to a rate of 40 to 80%. A method of manufacturing has been proposed.

上述の米国特許第2,358,788号は熱間圧延した
珪素鋼に、つぎの焼鈍にて結晶粒が粗大化するための臨
界歪を導入する冷間加工を施すことを特徴とする方法で
あり、また前記特公昭40−4139号は添加珪素を含
まない熱間圧延鋼板を焼鈍することを特徴とする方法、
また特公昭42−11139号は珪素の0.1%までの
鋼でCを0.05係乃至0.1りと多く含ませ熱間圧延
した鋼を脱炭焼鈍してCを0.005%以下とすること
を特徴とする方法である。
The above-mentioned U.S. Pat. No. 2,358,788 discloses a method characterized by subjecting hot-rolled silicon steel to cold working to introduce critical strain to coarsen grains in subsequent annealing. Also, the above-mentioned Japanese Patent Publication No. 40-4139 discloses a method characterized by annealing a hot-rolled steel sheet containing no added silicon,
In addition, Japanese Patent Publication No. 11139/1986 discloses steel containing up to 0.1% silicon, hot-rolled steel containing as much as 0.05 to 0.1% of silicon, and then decarburized and annealed to reduce C to 0.005%. This method is characterized by the following.

これら3つの方法はいずれも冷間圧延前の素材の結晶粒
を大きくする方法に関するものであるが、この結晶粒を
粗大化するための焼鈍はいずれも箱焼鈍による長時間の
焼鈍によらなければ目的を達することができなかった。
All of these three methods are related to methods for enlarging the crystal grains of the material before cold rolling, but the annealing for coarsening the crystal grains requires long-term annealing using box annealing. I couldn't reach my goal.

しかもこのような箱焼鈍を実施する場合は、通常数日間
を必要とし、生産能率が悪いばかりでなく高価となる欠
点があった。
Moreover, when carrying out such box annealing, it usually takes several days, which has the disadvantage of not only poor production efficiency but also high cost.

本発明者らは電磁鋼帯の磁化特性に向上に関し、熱延鋼
帯の熱間圧延条件と、その後の製造工程方法について種
々研究してきた。
The present inventors have conducted various studies on hot rolling conditions for hot rolled steel strips and subsequent manufacturing process methods in order to improve the magnetization properties of electrical steel strips.

そして特願昭54−111640号(特開昭56−38
420号)によって熱間圧延した銅帯からいわゆる1回
冷延法によるフルプロセス無方向性電磁鋼帯あるいは2
回冷延法によるセミプロセス無方向性電磁鋼帯の製造方
法において、熱間圧延終了温度をその鋼素材の化学成分
重量係より算出されるAr3変態温度即ち(891−9
00(C幅)+50(Si饅)ss(Mn%)+190
(P%)+380(Az%))℃とArl変態温度即ち
(ss2−5750(C%)+58800(C幅)2+
50(Si係)−82(Mn%)+170(P%)+3
80(Al1))℃の中央値と750℃との間の温度範
囲内となし、かつ熱間圧延終了後の捲取温度を低くとも
680℃とすることにより磁性の優れた無方向性電磁鋼
帯を製造する方法を開示した。
and Japanese Patent Application No. 54-111640 (Japanese Unexamined Patent Publication No. 56-38
No. 420), a full-process non-oriented electrical steel strip or 2
In the method for manufacturing semi-processed non-oriented electrical steel strips using the recurrent cold rolling method, the hot rolling end temperature is the Ar3 transformation temperature calculated from the chemical composition weight of the steel material, that is, (891-9
00 (C width) + 50 (Si bun) ss (Mn%) + 190
(P%)+380(Az%))℃ and Arl transformation temperature, i.e. (ss2-5750(C%)+58800(C width)2+
50 (Si related) - 82 (Mn%) + 170 (P%) + 3
A non-oriented electromagnetic steel with excellent magnetic properties, which is within the temperature range between the median value of 80 (Al1)) °C and 750 °C, and the winding temperature after hot rolling is at least 680 °C. A method of manufacturing a belt is disclosed.

しかしこの方法は無方向性電磁鋼帯の製造において、熱
間圧延終了温度がAr3変態温度以上になると製品の磁
気特性が劣化することを意味しているものであり、この
ような製造方法はあまり有利であるとはいえない。
However, in the production of non-oriented electrical steel strips, this method means that the magnetic properties of the product will deteriorate if the hot rolling end temperature exceeds the Ar3 transformation temperature, so this production method is not used very often. It cannot be said that it is advantageous.

本発明は、主として家庭用電気機器の材料として従来用
いられるいわゆるフルプロセスあるいはセミプロセス無
方向性電磁鋼帯の製造方法によって製造される銅帯より
もさらに磁束密度が高く、かつ鉄損の低いフルプロセス
あるいはセミプロセス無方向性電磁鋼帯を比較的安価に
製造する方法を提供することを目的とするものであり、
特許請求の範囲に記載の方法によって前記目的を達成す
ることができる。
The present invention provides a copper strip that has a higher magnetic flux density and lower core loss than the copper strip produced by the so-called full-process or semi-process non-oriented electrical steel strip manufacturing method, which is conventionally used mainly as a material for household electrical equipment. The purpose is to provide a method for manufacturing process or semi-process non-oriented electrical steel strip at a relatively low cost.
The above object can be achieved by the method described in the claims.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明者らは、先に発明し特許出願した特願昭54−1
11640号についての研究をさらに進めた結果このよ
うなAr3変態温度以上の温度で、すなわち鋼組織がr
相の状態で熱間圧延を終了し、次いで熱延鋼帯をA3変
態点以下の温度で焼鈍するときその焼鈍が箱焼鈍のよう
な長時間焼鈍でなく、15分以下という短時間の連続焼
鈍により安価に熱延鋼帯の結晶粒を異常に粗大化させる
ことができること知見し、さらにこのように粗大化した
結晶粒の銅帯に通常の方法により冷間圧延ならびに焼鈍
を施してフルプロセスあるいはセミプロセス電磁鋼帯と
したとき、極めて磁気特性の優れた電磁鋼帯が得られる
ことを知見して本発明を完成した。
The present inventors previously invented and applied for a patent in the patent application filed in 1984-1.
As a result of further research on No. 11640, it was found that at temperatures above the Ar3 transformation temperature, that is, the steel structure
When hot rolling is completed in a phase state, and then the hot rolled steel strip is annealed at a temperature below the A3 transformation point, the annealing is not a long annealing like box annealing, but a short continuous annealing of 15 minutes or less. They discovered that it is possible to make the crystal grains of a hot rolled steel strip abnormally coarse at low cost, and furthermore, the copper strip with such coarse grains is subjected to cold rolling and annealing using a normal method to complete the full process or process. The present invention was completed based on the finding that an electromagnetic steel strip with extremely excellent magnetic properties can be obtained when made into a semi-processed electromagnetic steel strip.

次に本発明を実験結果に基いて説明する。Next, the present invention will be explained based on experimental results.

第1図、第2図および第3図はC0,010係、SiO
,34%、Mn0.14%、Po、073%、酸可溶性
AJ! 0.0004%の溶鋼から作られた3つのスラ
ブを1250℃に加熱し、熱間圧延終了温度をそれぞれ
915℃、875℃および815℃に制御して、いずれ
も2,3M、厚さとした熱延鋼帯試料A、BおよびCの
結晶組織を示す顕微鏡写真である。
Figures 1, 2 and 3 are C0,010, SiO
, 34%, Mn 0.14%, Po, 073%, acid soluble AJ! Three slabs made from 0.0004% molten steel were heated to 1250°C, and the hot rolling end temperatures were controlled to 915°C, 875°C, and 815°C, respectively, and the thickness was 2.3M. It is a micrograph showing the crystal structure of rolled steel strip samples A, B, and C.

ところで、前掲の特願昭54−111640号でも本発
明者らが示したようにAr3変態温度は化学成分より(
891−900(C幅)+50(Si’%) −88(
Mn%)+190 (P%)+380(A7))℃とし
て表わさ札 またArl変態温度は(882−5750
(Cダ)+58800(C%)2+50(Si咎)−8
2(Mn%)+170(P%)+3 s o (Az%
))℃として表わされるので、上掲のスラブにおいては
Ar3変態温度は901℃、またArl変態温度は84
9℃であり、従って試料A、B、Cの熱間圧延終了温度
をそれぞれ915℃、875℃、815℃としたのはこ
れらの熱延終了時の鋼組織をそれぞれr相、α+r相、
α相としたものである。
By the way, as the inventors showed in the above-mentioned Japanese Patent Application No. 54-111640, the Ar3 transformation temperature is determined by (
891-900 (C width) + 50 (Si'%) -88 (
Mn%) + 190 (P%) + 380 (A7)) ℃ The Arl transformation temperature is (882-5750
(Cda) +58800 (C%) 2 + 50 (Si) -8
2 (Mn%) + 170 (P%) + 3 s o (Az%
)) °C, so in the above slab, the Ar3 transformation temperature is 901 °C, and the Arl transformation temperature is 84 °C.
Therefore, the hot rolling end temperatures of Samples A, B, and C were set to 915°C, 875°C, and 815°C, respectively, because the steel structures at the end of hot rolling were r phase, α+r phase, and
It is in the α phase.

これらの熱延鋼帯試料A、B、CについてA3変態温度
以下の840℃で5分間の焼鈍を行なった後の熱延鋼帯
試料(以下それぞれり、EおよびFで表わす)の結晶組
織の顕微鏡写真を第4図、第5図および第6図に示す。
These hot rolled steel strip samples A, B, and C were annealed at 840°C below the A3 transformation temperature for 5 minutes. Micrographs are shown in FIGS. 4, 5, and 6.

また各熱延鋼帯試料A、B、CについてA3変態温度以
上の930℃で5分間の熱延鋼帯焼鈍を行なった後の熱
延鋼帯試料(以下それぞれG、Hおよび■で表わす)の
結晶組織の顕微鏡写真を第7図、第8図および第9図に
示した。
In addition, hot-rolled steel strip samples A, B, and C were annealed for 5 minutes at 930°C above the A3 transformation temperature (hereinafter represented by G, H, and ■, respectively). Microscopic photographs of the crystal structure of the sample are shown in FIGS. 7, 8, and 9.

これらの図から分るように熱間圧延終了温度を915℃
、すなわちr相組織で熱間圧延を終了した試料Aは、つ
いでA3変態温度以下の840℃で5分間の短時間の熱
延鋼帯焼鈍を行なうことにより第4図に示したように結
晶粒が異常に粗大化していることが明らかである。
As can be seen from these figures, the hot rolling end temperature is 915°C.
In other words, sample A that had been hot rolled with an r-phase structure was then annealed for a short time of 5 minutes at 840°C below the A3 transformation temperature to form crystal grains as shown in Figure 4. It is clear that the area has become abnormally coarse.

なおこの焼鈍後のC含有量はo、o1o%でまったく脱
炭していないことが分った。
It was found that the C content after this annealing was o, o1o%, indicating that there was no decarburization at all.

また熱間圧延をr相で終了しても**930℃のA3変
態点以上で焼鈍したものは第7図に示したように銅帯の
表面付近の結晶粒がいくらか粗大化しているのみで板厚
方向の内部は微細な結晶粒のままであった。
Furthermore, even if the hot rolling is completed in the r phase, the crystal grains near the surface of the copper strip are only somewhat coarsened as shown in Figure 7 in the case of those annealed above the A3 transformation point of 930°C. The inside of the plate in the thickness direction remained fine crystal grains.

次に熱間圧延終了温度を875℃、815℃、すなわち
それぞれα+r相、α相で熱間圧延を終了した試料Bお
よびCについては、A3変態温度以下の840℃で熱延
鋼帯焼鈍を行なって得た試料E、F(第5図、第6図参
照)においても、またA3変態温度以上の930℃で熱
延鋼帯焼鈍して得た試料H,I(第8図、第9図参照)
においてもいずれも銅帯の表面付近にわずかの粗大結晶
粒がみられる程度で板厚方向の内部は微細な結晶粒のま
まである。
Next, for samples B and C, which finished hot rolling at 875°C and 815°C, that is, α+r phase and α phase, respectively, hot rolled steel strips were annealed at 840°C, which is below the A3 transformation temperature. Samples E and F (see Figs. 5 and 6) obtained by hot-rolled steel strip annealing at 930°C above the A3 transformation temperature, and samples H and I (Figs. 8 and 9) obtained by annealing the hot rolled steel strip at 930°C above the A3 transformation temperature reference)
In both cases, only a few coarse grains can be seen near the surface of the copper strip, and the interior in the thickness direction remains fine grains.

すなわち、本発明者は電磁鋼素材を熱間圧延をするに際
し、熱延終了温度をr相組織の温度とし、ついで熱延鋼
帯をA3変態温度以下の温度で15分間以下の短時間焼
鈍する簡単な処理により脱炭を行なわずとも熱延銅帯の
結晶粒を異常に粗大化できることを新たに知見したので
ある。
That is, when hot rolling an electromagnetic steel material, the present inventor sets the hot rolling end temperature to the temperature of the r-phase structure, and then anneales the hot rolled steel strip for a short time of 15 minutes or less at a temperature below the A3 transformation temperature. We have newly found that it is possible to make the crystal grains of a hot-rolled copper strip abnormally coarse through simple processing without decarburization.

次に第4図〜第6図に示したような結晶組織をもつ鋼帯
り、EおよびFを通常の方法で酸洗し、0.507’#
!厚さに冷間圧延し、800℃、2分間の光輝焼鈍を行
なった後の磁気特性を第1表に示す。
Next, steel strips E and F having crystal structures as shown in FIGS. 4 to 6 were pickled in the usual manner, and
! Table 1 shows the magnetic properties after cold rolling to a thickness and bright annealing at 800° C. for 2 minutes.

第1表に示したように、熱間圧延終了時の組織をr相と
し、A3変態温度以下の840℃で5分間の熱延鋼帯焼
鈍を行ない結晶粒を異常に粗大化した試料りは、磁束密
度B50が1.80Tと極めて高く、また鉄損値も5.
61 W/ Kyと低く、熱間圧延終了時の組織をα+
r相、およびα相とした試料EおよびFより優れている
ことが明らかである。
As shown in Table 1, the sample has an r-phase structure at the end of hot rolling and has been annealed at 840°C below the A3 transformation temperature for 5 minutes, resulting in abnormally coarse grains. , the magnetic flux density B50 is extremely high at 1.80T, and the iron loss value is also 5.
As low as 61 W/Ky, the structure at the end of hot rolling is α+
It is clear that this is superior to Samples E and F, which have r-phase and α-phase.

以上述べてきたように、熱間圧延終了温度をその鋼のr
相組織である温度とし、ついで熱延鋼帯をA3変態点以
下の温度で熱延鋼帯焼鈍を焼鈍するときEその焼鈍時間
が15分間以下という短時間で、しかも従来技術とちが
って実質的に脱炭をともなわなくても、容易に結晶粒を
粗大化させることができ、従来技術のような高価な箱焼
鈍によらず、安価な連続焼鈍により前記結晶粒の粗大化
を実現することができることが本発明の特徴である。
As mentioned above, the end temperature of hot rolling is determined by the r
When the hot-rolled steel strip is annealed at a temperature that is equal to the phase structure, and then the hot-rolled steel strip is annealed at a temperature below the A3 transformation point, the annealing time is as short as 15 minutes or less, and unlike the conventional technology, it is substantially The crystal grains can be easily coarsened without decarburization, and the crystal grains can be coarsened by inexpensive continuous annealing instead of expensive box annealing as in the conventional technology. This is a feature of the present invention.

このようにSi含有鋼でも15分以下という短時間で容
易に結晶粒が異常成長できる理由は明らかではないが、
現象的にみて、r相で熱間圧延したものの結晶組織が第
1図に示したように非常に微細で均一なことが挙げられ
る。
Although it is not clear why crystal grains can easily grow abnormally in a short period of 15 minutes or less even in Si-containing steel,
In terms of phenomena, the crystal structure of the product hot-rolled in the r phase is extremely fine and uniform, as shown in FIG.

このようにマトリックス結晶組織が微細であると、つぎ
の熱延板焼鈍をA3変態点以下の温度で行なうときは、
どこかでやや粗大になった結晶粒が発生すると、容易に
微細なマトリックス結晶を食って成長できるためと考え
られる。
When the matrix crystal structure is fine in this way, when the next hot-rolled sheet is annealed at a temperature below the A3 transformation point,
This is thought to be because if slightly coarse crystal grains are generated somewhere, they can easily eat up fine matrix crystals and grow.

つぎに本発明において素材の化学成分を限定した理由に
ついて説明する。
Next, the reason why the chemical components of the material are limited in the present invention will be explained.

本発明によればr相組織の温度で熱間圧延を終了し、つ
いでA3変態温度以下の温度で熱延鋼帯焼鈍を行ない結
晶粒を粗大化させるが、素材のC量が0.02%以上と
高いときは、熱延鋼帯焼鈍での結晶粒の粗大化が困難と
なる。
According to the present invention, hot rolling is completed at the temperature of the r-phase structure, and then the hot rolled steel strip is annealed at a temperature below the A3 transformation temperature to coarsen the grains, but the C content of the material is 0.02%. When it is as high as above, it becomes difficult to coarsen the grains during annealing of the hot rolled steel strip.

また無方向性電磁鋼帯では成品の磁気特性および磁気時
効による劣化による観点から最終成品ではCは0.00
4以下と低くする必要がある。
In addition, in the case of non-oriented electrical steel strips, C is 0.00 in the final product from the viewpoint of the magnetic properties of the product and deterioration due to magnetic aging.
It needs to be as low as 4 or less.

このため出発材料のC量が高いと連続焼鈍により所望の
値まで脱炭することが必要となる。
Therefore, if the starting material has a high C content, it is necessary to decarburize it to a desired value by continuous annealing.

これは鋼帯表面に有害な酸化層を生成するため望ましい
方法ではない。
This is not a desirable method because it creates a harmful oxide layer on the surface of the steel strip.

これらの理由から本発明では素材のC量を0.02%以
下とする必要がある。
For these reasons, in the present invention, the amount of C in the material must be 0.02% or less.

本発明は、熱間圧延終了温度において、r相が存在しな
ければならないが、Siまたは(Si+AA )が1.
5%以上になるとr相が存在する温度が高くなり、熱延
終了温度を高くする必要があり、熱間圧延上困難をとも
なう。
In the present invention, an r-phase must exist at the end hot rolling temperature, but Si or (Si+AA) is 1.
If it exceeds 5%, the temperature at which the r-phase exists becomes high, making it necessary to increase the hot rolling end temperature, which causes difficulties in hot rolling.

したがってSiまたは(Si+At)量を15%以下に
する必要がある。
Therefore, it is necessary to reduce the amount of Si or (Si+At) to 15% or less.

Mnは脱酸剤として、またSによる熱間脆性を抑制する
ため添加されるが、1.0%より多いと磁気的に有害と
なるので1%以下とする必要がある。
Mn is added as a deoxidizing agent and to suppress hot embrittlement caused by S, but if it exceeds 1.0%, it becomes magnetically harmful, so it must be kept at 1% or less.

Pは無方向性電磁鋼帯の硬度を上昇させ、また打抜性を
向上させるために添加されることがあるが、0.2%よ
り多いと板が脆くなり冷間圧延が**困難となるので0
.2%以下とする必要がある。
P is sometimes added to increase the hardness of non-oriented electrical steel strips and improve punchability, but if it exceeds 0.2%, the plate becomes brittle and cold rolling becomes difficult. So 0
.. It needs to be 2% or less.

つぎに本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

実施例 1 転炉で溶製しRH減圧処理した溶鋼を連続鋳造して22
0M厚スラブを作った。
Example 1 Molten steel produced in a converter and subjected to RH depressurization treatment was continuously cast to 22
I made a 0M thick slab.

その化学成分はC0,003%、Si0.28%、Mn
o、3o%、PO,021咎、酸可溶性AA0.000
5%であった。
Its chemical composition is C0,003%, Si0.28%, Mn
o, 3o%, PO, 021g, acid soluble AA 0.000
It was 5%.

本素材の化学成分より特許請求の範囲に記載の計算式に
て求めたAr3変態温度は880℃である。
The Ar3 transformation temperature determined from the chemical composition of this material using the calculation formula described in the claims is 880°C.

これらのスラブを1250’Cに加熱し、比較材として
は熱延終了温度を従来法で最適と考えられる860°C
と、本発明による熱延終了温度をAr3変態温度以上の
920℃とし、2.3w/l厚さに熱延した。
These slabs were heated to 1250'C, and as a comparison material, the hot rolling finish temperature was set at 860°C, which is considered to be the optimum temperature using the conventional method.
According to the present invention, the hot rolling end temperature was set to 920° C., which is higher than the Ar3 transformation temperature, and hot rolling was carried out to a thickness of 2.3 w/l.

熱間圧延後の捲取温度は650±20℃とした。The winding temperature after hot rolling was 650±20°C.

ついで熱延鋼帯の比較材は通常の1回冷延法によるフル
プロセス成品として、熱延鋼帯を酸洗後0.50w/l
に冷延し、連続炉にて800 °C:2分間の光輝焼鈍
を行ない成品とした。
Next, the comparison material of hot-rolled steel strip is a full process product made by the normal one-time cold rolling method, and the hot-rolled steel strip is pickled and then processed at 0.50 w/l.
It was cold rolled and bright annealed in a continuous furnace at 800°C for 2 minutes to obtain a finished product.

熱延終了温度をAr3変態点以上とした熱延鋼帯は、つ
いで850℃、5分間の連続焼鈍にて熱延鋼帯焼鈍を行
なう本発明法と、熱延鋼帯焼鈍を行なわない参考付工程
に分けた。
Hot-rolled steel strips with a hot-rolling end temperature equal to or higher than the Ar3 transformation point are then subjected to continuous annealing at 850°C for 5 minutes using the present invention method, and a reference method in which hot-rolled steel strips are not annealed. Divided into steps.

ついでこれらはいずれも酸洗後上記比較材と同じ処理に
より1回冷延法によりフルプロセス成品とした。
All of these were then subjected to the same treatment as the above-mentioned comparative material after pickling, and were made into full-processed products by one-time cold rolling.

これらの成品および需要家での再焼鈍を想定した750
℃2時間焼鈍後の磁気特性を第2表に示す。
750, which assumes re-annealing of these products and customers.
Table 2 shows the magnetic properties after annealing for 2 hours at °C.

第2表にて明らかなように、比較材の成品の鉄損W1.
5150値および磁束密度B50値に比し、本発明材は
鉄損値が低く、磁束密度が特に高い優れた値であり、ま
た再焼鈍後においてはさらに本発明材の磁性が優れてい
ることが分る。
As is clear from Table 2, the iron loss W1.
5150 value and magnetic flux density B50 value, the present invention material has a low iron loss value and a particularly high magnetic flux density, which is an excellent value, and the magnetism of the present invention material is even more excellent after reannealing. I understand.

また熱間圧延仕上温度を本発明の特許請求の範囲内の条
件としても熱延鋼帯焼鈍を行なわなかった参考材は磁性
がもつとも悪い。
Further, even if the hot rolling finishing temperature is within the claimed range of the present invention, the reference material which was not subjected to hot rolled steel strip annealing has poor magnetism.

すなわち、熱延仕上温度を本発明の特許請求の範囲内の
条件にしただけでは磁性が悪く、本発明にて限定した熱
延鋼帯焼鈍を組合わせることによって極めて優れた磁性
の無方向性電磁鋼帯が得られることが明らかである。
In other words, just setting the hot-rolling finishing temperature within the claimed range of the present invention results in poor magnetism, but by combining the hot-rolled steel strip annealing specified in the present invention, extremely excellent non-directional electromagnetic properties can be obtained. It is clear that a steel strip is obtained.

実施例 2 実施例1と同様な方法でC0,004%、Si0.40
%、Mn 0.27%、Po、068%、酸可溶性Az
o、ooo3%を含むスラブを製作した。
Example 2 C0,004%, Si0.40 by the same method as Example 1
%, Mn 0.27%, Po, 068%, acid soluble Az
A slab containing 3% o, ooo was produced.

これらの化学成分より特許請求の範囲の計算式にて求め
たAr3変態温度は897℃である。
The Ar3 transformation temperature determined from these chemical components using the calculation formula in the claims is 897°C.

該スラブを1250℃に加熱し、熱延仕上温度を比較材
として従来法で適正な860℃とし、本発明材としては
930℃とし、2.371gl1厚さの熱延鋼帯とした
The slab was heated to 1250° C., and the hot-rolled finishing temperature was set to 860° C., which is appropriate for the conventional method as a comparison material, and 930° C. for the present invention material, and a hot-rolled steel strip having a thickness of 2.371 gl1 was obtained.

熱延後捲取温度はいずれも650±20℃とした。The winding temperature after hot rolling was 650±20°C in all cases.

比較材の熱延鋼帯はついで通常の2回診延法セミプロセ
ス材の製造方法により成品とした。
The comparative hot-rolled steel strip was then made into a finished product using the usual two-step rolling method for manufacturing semi-processed materials.

すなわち熱延鋼帯を酸洗し、第1回の冷間圧延を行ない
、ついで中間焼鈍として750℃2分間の連続焼鈍を行
ない、さらに圧下率8係の第2回診間圧延を行なった。
That is, the hot rolled steel strip was pickled, subjected to a first cold rolling, then continuous annealing at 750° C. for 2 minutes as intermediate annealing, and then a second inter-rolling at a rolling reduction of 8 parts.

本発明材は熱延後860℃、5分間の熱延鋼帯焼鈍を連
続焼鈍炉で行ない、以下比較材と同一工程にて、酸洗、
第1回診間圧延、中間焼鈍、第2回診間圧延を行なった
After hot rolling, the inventive steel strip was annealed at 860°C for 5 minutes in a continuous annealing furnace.
First inter-examination rolling, intermediate annealing, and second inter-examination rolling were performed.

これらの比較材および本発明材成品の試材をN2中75
0℃、2時間の歪取焼鈍を行ない磁性を測定した。
Test samples of these comparative materials and the products of the present invention were heated in N2 at 75%
Strain relief annealing was performed at 0°C for 2 hours, and the magnetism was measured.

これらの実施結果を第3表に示す。第3表の結果からみ
て、熱延終了温度を本発明の特許請求の範囲に記載の計
算式より求めたA r 3変態源度以上とし、ついで熱
延鋼帯焼鈍をA3変態点以下の温度で行なう本発明の処
理を実施した場合は従来法の比較材に比し、鉄損Wl
5150値、磁束密度B50値が極めて優れたセミプロ
セス無方向性電磁鋼帯が得られることが明らかである。
The results of these implementations are shown in Table 3. In view of the results in Table 3, the hot rolling end temperature is set to be higher than the A r 3 transformation source degree determined from the calculation formula described in the claims of the present invention, and then the hot rolled steel strip is annealed at a temperature lower than the A3 transformation point. When the treatment of the present invention is carried out, compared to the conventional comparative material, the iron loss Wl
It is clear that a semi-processed non-oriented electrical steel strip having extremely excellent B50 value and magnetic flux density B50 value can be obtained.

実施例 3 実施例1.2と同様な方法で、C01008%。Example 3 C01008% in a similar manner to Example 1.2.

Si1.04%、Mno、27%、Po、056%、酸
可溶性kl O,0007%を含むスラブを製作した。
A slab containing 1.04% Si, 27% Mno, 056% Po, and 7% acid-soluble klO was fabricated.

これらの化学成分より特許請求の範囲に記載の計算式に
て求めたAr3変態温度は923°Cである。
The Ar3 transformation temperature determined from these chemical components using the formula described in the claims is 923°C.

該スラブを1250℃に加熱し、熱延仕上温度を従来法
として870℃とし、本発明材としては950℃として
2.31/g/l厚さの熱延鋼帯を作った。
The slab was heated to 1250°C, and the hot rolling finishing temperature was set to 870°C for the conventional method and 950°C for the material of the present invention to produce a hot rolled steel strip having a thickness of 2.31/g/l.

熱延後捲取温度はいずれも650±20℃とした。The winding temperature after hot rolling was 650±20°C in all cases.

従来法による熱延鋼帯はフルプロセス成品製造の通常の
1回冷延法による工程、すなわち酸洗、冷間圧延により
0.50M厚さとし、連続焼鈍炉にて850℃2分間の
光輝焼鈍を行なった。
The hot-rolled steel strip manufactured by the conventional method was made into a thickness of 0.50M by the usual one-step cold rolling process for full-process product manufacturing, that is, pickling and cold rolling, and bright annealed at 850°C for 2 minutes in a continuous annealing furnace. I did it.

本発明法による熱延鋼帯はついで連続焼鈍炉にて870
℃5分間の熱延鋼帯焼鈍を行ない、その後は従来法材と
同じ1回冷延法によりフルプロセス成品とした。
The hot-rolled steel strip produced by the method of the present invention is then subjected to a continuous annealing furnace at 870°C.
The hot-rolled steel strip was annealed for 5 minutes at ℃, and then subjected to the same one-time cold rolling process as conventionally rolled steel to produce a fully processed product.

第4表に本実施例の成品の磁気特性を示す。Table 4 shows the magnetic properties of the products of this example.

第4表からみて、鉄損Wl 5150値および磁束密度
B50値が従来法材に比し、本発明材が極めて優れてい
ることが明らかである。
From Table 4, it is clear that the material of the present invention is extremely superior to the conventional material in terms of iron loss Wl 5150 value and magnetic flux density B50 value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は熱間圧延終了温度をそれ
ぞれ915℃(r相)、875℃(α+r相)および8
15℃(α相)にしたときの熱延鋼帯試料A、Bおよび
Cの結晶組織の顕微鏡写真(倍率50倍)、第4図、第
5図および第6図はそれぞれ熱延鋼帯試料A、B、Cに
ついてA3変態温度以下の840℃で5分間の焼鈍を行
なった後の結晶組織の顕微鏡写真(倍率50倍)、また
第7図、第8図および第9図はそれぞれ熱延鋼帯試料A
、B、Cについて、A3変態温度以上の930℃で5分
間の焼鈍を行なった後の結晶組織の顕微鏡写真(倍率5
0倍)である。
Figures 1, 2, and 3 show the hot rolling finishing temperatures of 915°C (r phase), 875°C (α+r phase), and 875°C (α+r phase), respectively.
Micrographs (50x magnification) of the crystal structures of hot-rolled steel strip samples A, B, and C when heated to 15°C (α phase), Figures 4, 5, and 6 are hot-rolled steel strip samples, respectively. Micrographs (50x magnification) of the crystal structures of A, B, and C after annealing for 5 minutes at 840°C below the A3 transformation temperature, and Figures 7, 8, and 9 are hot-rolled specimens, respectively. Steel strip sample A
, B, and C, micrographs of crystal structures after annealing for 5 minutes at 930°C above the A3 transformation temperature (magnification: 5
0 times).

Claims (1)

【特許請求の範囲】 1 低炭素鋼塊またはスラブの倒れかを加熱し引続いて
熱間圧延して熱延鋼帯となし、この銅帯に焼鈍を施し、
次に酸洗し、さらに1回の冷間圧延後焼鈍を施す力\あ
るいは中間焼鈍を挾む2回の冷間圧延後さらに焼鈍を施
す無方向性電磁鋼帯の製造方法において、 重量幅でC0,02饅以下、SiまたはSiとAfの合
計の倒れかi、 5 %以下、Mnt、o%以下、PO
020φ以下、残部Feおよび不可避的不純物よりなる
鋼塊またはスラブの何れかを加熱し、次いで熱間圧延し
て熱延鋼帯となす際に、熱間圧延終了温度をその鋼の化
学成分に応じて次式で表わされる温度、(891−90
0(C咎)+50(Si%)−88(Mn%)+190
(P%) +380(At%))’C以上となし、つ
いで熱延鋼帯をその鋼のA3変態温度以下で30秒以上
15分以下の時間焼鈍することを特徴とする特許の優れ
た無方向性電磁鋼帯の製造方法。
[Claims] 1. A low carbon steel ingot or fallen slab is heated and subsequently hot rolled into a hot rolled steel strip, and this copper strip is annealed,
In the manufacturing method of non-oriented electrical steel strip, which is then pickled, followed by one cold rolling and then annealing, or two cold rolling with intermediate annealing and then further annealing. C0,02 or less, total fall of Si or Si and Af, 5% or less, Mnt, o% or less, PO
When heating either a steel ingot or a slab with a diameter of 020φ or less, the balance being Fe and unavoidable impurities, and then hot rolling it into a hot rolled steel strip, the hot rolling end temperature is set according to the chemical composition of the steel. The temperature is expressed by the following formula, (891-90
0 (C) + 50 (Si%) - 88 (Mn%) + 190
(P%) +380(At%)'C or above, and then annealing the hot rolled steel strip at a temperature below the A3 transformation temperature of the steel for a period of 30 seconds to 15 minutes. Method for manufacturing grain-oriented electrical steel strip.
JP55110314A 1980-08-13 1980-08-13 Method for manufacturing non-oriented electrical steel strip with excellent magnetic properties Expired JPS5831367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55110314A JPS5831367B2 (en) 1980-08-13 1980-08-13 Method for manufacturing non-oriented electrical steel strip with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55110314A JPS5831367B2 (en) 1980-08-13 1980-08-13 Method for manufacturing non-oriented electrical steel strip with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPS5735628A JPS5735628A (en) 1982-02-26
JPS5831367B2 true JPS5831367B2 (en) 1983-07-05

Family

ID=14532565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55110314A Expired JPS5831367B2 (en) 1980-08-13 1980-08-13 Method for manufacturing non-oriented electrical steel strip with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JPS5831367B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013372A (en) * 1987-06-18 1991-05-07 Kawasaki Steel Corporation Semi-process non-oriented electromagnetic steel strip having low core loss and high magnetic permeability, and method of making
JPS63317627A (en) * 1987-06-18 1988-12-26 Kawasaki Steel Corp Semiprocessing non-oriented silicon steel sheet combining low iron loss with high magnetic permeability and its production
JPH0757888B2 (en) * 1989-05-26 1995-06-21 株式会社神戸製鋼所 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP6110097B2 (en) * 2012-03-30 2017-04-05 日新製鋼株式会社 High power reluctance motor steel core steel plate and manufacturing method thereof, rotor for reluctance motor using the same, stator and reluctance motor

Also Published As

Publication number Publication date
JPS5735628A (en) 1982-02-26

Similar Documents

Publication Publication Date Title
JP2022545027A (en) 600MPa class non-oriented electrical steel sheet and manufacturing method thereof
US3287184A (en) Method of producing low carbon electrical sheet steel
JPH03219020A (en) Production of nonoriented silicon steel sheet
JPH0742501B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing
JPS5831367B2 (en) Method for manufacturing non-oriented electrical steel strip with excellent magnetic properties
JP2002363713A (en) Semiprocess nonoriented silicon steel sheet having extremely excellent core loss and magnetic flux density and production method therefor
JPS60125325A (en) Production of non-directionally oriented electrical steel strip
JPH055126A (en) Production of nonoriented silicon steel sheet
JPH1161257A (en) Production of non-oriented silicon steel sheet having low iron loss and low magnetic anisotropy
JPS60258414A (en) Production of non-oriented electrical iron sheet having high magnetic flux density
JPH0832927B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP4281119B2 (en) Manufacturing method of electrical steel sheet
KR100240993B1 (en) The manufacturing method for non-oriented electric steel sheet with excellent hysterisys loss
JPH0757888B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPH04224624A (en) Manufacture of silicon steel sheet excellent in magnetic property
JPS59123715A (en) Production of non-directional electromagnetic steel
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH0257125B2 (en)
KR20010039572A (en) Non-oriented electrical steel sheet excellent in permeability and method of producing the same
JPH0623411B2 (en) Manufacturing method of electrical steel sheet with small anisotropy
JPS5855209B2 (en) Method for manufacturing non-oriented silicon steel sheet with little aging deterioration and good surface quality
JPH04107216A (en) Production of nonoriented silicon steel sheet
JPS59104429A (en) Preparation of non-directional electromagnetic steel strip