JPH05140649A - Manufacture of now-oriented silicon steel sheet excellent in magnetic property - Google Patents

Manufacture of now-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH05140649A
JPH05140649A JP3186615A JP18661591A JPH05140649A JP H05140649 A JPH05140649 A JP H05140649A JP 3186615 A JP3186615 A JP 3186615A JP 18661591 A JP18661591 A JP 18661591A JP H05140649 A JPH05140649 A JP H05140649A
Authority
JP
Japan
Prior art keywords
steel sheet
steel
slab
subjected
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3186615A
Other languages
Japanese (ja)
Inventor
Tomoji Kumano
知二 熊野
Takeshi Kubota
猛 久保田
Masahiro Yamamoto
政広 山本
Makoto Fujino
真 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3186615A priority Critical patent/JPH05140649A/en
Publication of JPH05140649A publication Critical patent/JPH05140649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To stably manufacture a non-oriented silicon steel sheet excellent in magnetic properties by heating a steel slab having a specified compsn. contg. Si, Al, N, S, C, Mn, Ti, Zr, Nb, V and P to a specified temp. and executing hot rolling. CONSTITUTION:Steel constituted of, by weight, 1.0 to 4.O% Si, 0.001 to 2.0% Al, <=0.0020% N, <=0.0020% S, <=0. 0030% C, 0.1 to 2.0% Mn, 0.003 to 0.010% Ti, <=0.0050% Zr, <=0.0050% Nb, <=0.0050% V, <=0.2% P and the balance Fe with inevitable impurities is melted by a converter and is subjected to continuous casting. The obtd. slab is heated at 1125 to 1300 deg.C in the surface temp. soaked, and thereafter, subjected to hot rolling to a prescribed thickness. The obtd. hot rolled steel strip is, as rolled or after annealing at about 900 to 1000 deg.C, subjected to pickling. Next, the steel strip is subjected to cold rolling for one time or >= two times including a process annealing to regulate its sheet thickness into a final one. The cold rolled steel sheet is subjected to finish annealing at about 1000 to 1100 deg.C. In this way, the non-oriented silicon steel sheet of the highest grade can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄損が極めて低い無方
向性電磁鋼板の製造方法に関し、特に、鋼の溶製・鋳造
段階で超高純度のスラブを製造し、これを出発材料とし
て無方向性電磁鋼板を製造する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having an extremely low iron loss, and in particular, it produces an ultra-high purity slab at the stage of melting and casting of steel and uses this as a starting material. The present invention relates to a method for manufacturing a non-oriented electrical steel sheet.

【0002】[0002]

【従来の技術】近年、大型回転機用磁芯材料としての無
方向性電磁鋼板に対する特性向上の要求は、省エネルギ
ーの観点から益々強くなってきている。無方向性電磁鋼
板を製造する鐡鋼メーカーの側においてもこの要求に応
えるべく、無方向性電磁鋼板の特性向上のための研究開
発が進められ、工業的には、JIS 35A230,J
IS 50A270といった高級グレードの無方向性電
磁鋼板が製造されている。無方向性電磁鋼板の特性の向
上、わけても鉄損特性を向上(低鉄損化)させるため
に、鋼中のSi,Alの含有量を多くすることが有効で
あることが知られている。
2. Description of the Related Art In recent years, demands for improving the characteristics of non-oriented electrical steel sheets as magnetic core materials for large rotating machines have become stronger and stronger from the viewpoint of energy saving. In order to meet this requirement, the steel manufacturers that manufacture non-oriented electrical steel sheets are also conducting research and development to improve the properties of non-oriented electrical steel sheets, and industrially, JIS 35A230, J
High grade non-oriented electrical steel sheets such as IS 50A270 are manufactured. It is known that it is effective to increase the Si and Al contents in the steel in order to improve the properties of the non-oriented electrical steel sheet, and especially to improve the iron loss characteristics (reduction of iron loss).

【0003】しかしながら、鋼中のSi,Alの含有量
を多くすると材料が脆くなり、加工性が劣化して製造を
困難なものとするのみならず、製品を需要家において打
ち抜き加工する際にも割れを生じる等の問題を惹起す
る。従って、鋼中のSi,Alの含有量を多くすること
には限界がある。而して同じ鉄損値レベルの製品である
ならば、鋼中のSi,Alの含有量は可及的に少ない方
がよい。また、鋼中のSi,Alの含有量を少なくする
と、製品の磁束密度を高くすることができる。このよう
に、鋼中のSi,Alの含有量を少なくすることによっ
て、無方向性電磁鋼板の製造を容易にし、製品の磁気特
性および加工(打ち抜き等)性を向上せしめることがで
きる。
However, if the contents of Si and Al in steel are increased, the material becomes brittle, the workability deteriorates, and the manufacturing becomes difficult, and also when the product is punched by the customer. It causes problems such as cracking. Therefore, there is a limit in increasing the contents of Si and Al in steel. Therefore, if the products have the same iron loss value level, it is better that the contents of Si and Al in the steel are as low as possible. Further, if the contents of Si and Al in the steel are reduced, the magnetic flux density of the product can be increased. As described above, by reducing the contents of Si and Al in the steel, the production of the non-oriented electrical steel sheet can be facilitated, and the magnetic properties and the workability (punching etc.) of the product can be improved.

【0004】[0004]

【発明が解決しようとする課題】本発明は、鋼中のS
i,Alの含有量を従来のレベルとし、増量させること
なく現在のJISに規定されているグレードレベルを凌
駕する特性(鉄損、磁束密度、加工性)を有する製品を
安定して製造することができる方法を提供することを目
的とする。
DISCLOSURE OF THE INVENTION The present invention relates to S in steel.
Stable production of products with characteristics (iron loss, magnetic flux density, workability) that exceed the grade levels stipulated in the current JIS without increasing the i and Al contents to the conventional levels. The purpose is to provide a method that can.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は、重量%として、 Si:1.0〜4.0%、 Al:0.001〜2.0%、 N :≦0.0020%、 S :≦0.0020%、 C :≦0.0030% Mn:0.1〜2.0%、 Ti:0.003〜0.010%、 Zr:≦0.0050%、 Nb:≦0.0050%、 V:≦0.0050%、 P :≦0.2%、 残部Feおよび不可避的不純物からなるスラブを、表面
温度で1125〜1300℃の温度域に加熱し、熱間圧
延して熱延鋼帯とし、これを酸洗し、次いで、1回或は
中間焼鈍を挟む2回以上の冷間圧延によって最終板厚と
した後、仕上焼鈍することを特徴とする磁気特性が優れ
た無方向性電磁鋼板の製造方法を要旨とする。また、上
記発明において、熱延鋼帯に焼鈍を施した後酸洗し、次
いで、爾後前記発明と同様の冷間圧延、仕上圧延を行う
ことも他の要旨とする。
In order to achieve the above object, the present invention provides, as weight%, Si: 1.0 to 4.0%, Al: 0.001 to 2.0%, N: ≤0. .0020%, S: ≤ 0.0020%, C: ≤ 0.0030% Mn: 0.1-2.0%, Ti: 0.003-0.010%, Zr: ≤ 0.0050%, Nb. : ≤ 0.0050%, V: ≤ 0.0050%, P: ≤ 0.2%, a slab consisting of the balance Fe and unavoidable impurities is heated to a temperature range of 1125 to 1300 ° C at the surface temperature, and hot. A magnetic property characterized by being rolled into a hot rolled steel strip, pickled, then cold-rolled once or twice with intermediate annealing to obtain a final plate thickness, and then finish-annealed. Is a method for manufacturing an excellent non-oriented electrical steel sheet. Further, in the above invention, another aspect is that the hot rolled steel strip is annealed, then pickled, and then cold rolled and finish rolled in the same manner as in the above invention.

【0006】以下、本発明を詳細に説明する。発明者等
は、鋼中のSi,Alの含有量を多くすることなく、無
方向性電磁鋼板の鉄損、磁束密度、加工性といった特性
を向上せしめる技術的手段について、多くの実験を伴う
研究を行った。その結果、鋼中のSi,Alの含有量を
多くすることなく、鉄損値が極めて低い最高級グレード
の無方向性電磁鋼板を製造するには、鋼を高純化するこ
とが極めて有効であることを見出した。
The present invention will be described in detail below. The inventors of the present invention have conducted many experiments on technical means for improving the properties of non-oriented electrical steel sheets such as iron loss, magnetic flux density and workability without increasing the Si and Al contents in the steel. I went. As a result, in order to manufacture the highest grade non-oriented electrical steel sheet having a very low iron loss value without increasing the Si and Al contents in the steel, it is extremely effective to highly refine the steel. I found that.

【0007】発明者等は、その理由を次のように考えて
いる。即ち、無方向性電磁鋼板の鉄損は、方向性電磁鋼
板におけるとは逆に、渦流損よりも履歴損の占める比率
が全鉄損の60〜80%と高く、而して履歴損は、製品
の結晶粒径に反比例する。従って、製造プロセスにおけ
る仕上焼鈍での再結晶過程で、正常粒の成長を促進させ
ることが製品の鉄損値を低下させる上で有効な手段とな
る。
The inventors consider the reason as follows. That is, the iron loss of the non-oriented electrical steel sheet is higher than that of the grain-oriented electrical steel sheet in that the ratio of the hysteresis loss is higher than the eddy current loss, which is 60 to 80% of the total iron loss. It is inversely proportional to the grain size of the product. Therefore, accelerating the growth of normal grains in the recrystallization process in finish annealing in the manufacturing process is an effective means for reducing the iron loss value of the product.

【0008】一方、析出物、介在物となる不純物は、無
方向性電磁鋼板の製造プロセスにおける仕上焼鈍での再
結晶過程で、正常粒の成長を妨げるのみならず、析出
物、介在物それ自体が製品における磁壁の移動をピニン
グ効果によって妨げ、履歴損を低下させる隘路となる。
これらの不純物については、従来、S,NとMn,Al
が結び付いたMnS,AlNに関する知見が知られてい
るが、発明者等は、Mn,Alばかりではなく、Zr,
Ti,Nb,VもN,Sと化合物を形成すること、そし
て、これらの化合物は、主として窒化物として微細に析
出し、これらを核としてSi,Fe,Mg,Al,C
u,Ti等を含複合析出物を生成することを、発明者等
は新たに見出した。
On the other hand, impurities that become precipitates and inclusions not only hinder the growth of normal grains during the recrystallization process in finish annealing in the manufacturing process of non-oriented electrical steel sheets, but also the precipitates and inclusions themselves. Is a bottleneck that reduces the hysteresis loss by hindering the movement of the domain wall in the product by the pinning effect.
As for these impurities, conventionally, S, N and Mn, Al
Although it is known that MnS and AlN are bound to each other, the inventors have found that not only Mn and Al but also Zr and
Ti, Nb, and V also form compounds with N and S, and these compounds are finely deposited mainly as nitrides, and these are used as nuclei for Si, Fe, Mg, Al, and C.
The inventors have newly found that a composite precipitate containing u, Ti, etc. is produced.

【0009】これらの不純物のうち、Zr,Nb,Vに
ついては、製鋼原料としてのスクラップの選別管理を強
化することによってまた、取鍋の耐火材の材質の改善に
よって、これらZr,Nb,Vの鋼中への混入を防止す
ることができる。しかしながら、Tiについては、製鉄
工程における高炉操業の安定化のための砂鉄装入および
製鋼工程での合金鉄にその源があるため、その含有量を
減少させることが容易ではない。
Among these impurities, Zr, Nb, and V can be removed by strengthening the sorting control of scrap as a steelmaking raw material and by improving the material of the refractory material of the ladle. It is possible to prevent mixing into steel. However, it is not easy to reduce the content of Ti because the source is Ti iron charging in the ironmaking process for stabilizing the blast furnace operation and alloy iron in the steelmaking process.

【0010】処で、発明者等は、製造プロセスにおける
仕上焼鈍後に、無方向性電磁鋼板の磁性を圧延方向に連
続的に測定すると、鉄損が劣る部分が周期的に存在する
ことを見出した。その原因について鋭意研究した結果、
鉄損特性が劣る(鉄損値が高い)部位は、スラブ加熱段
階における加熱炉のスキッドの位置に対応していること
(この圧延方向に周期的に現れる鉄損特性不良部を、ス
キッド・マークと呼ぶ。)、そして、この現象が鋼中の
Ti含有量が多いときに生じることを解明した。即ち、
不純物元素としてのTiは、スラブ加熱段階で、スラブ
のうちの加熱炉のスキッドに接する比較的温度が低い部
位ではTiN,TiCの形で微細に析出し、温度が高い
スキッド間では、この析出物は粗大となり無害なものと
なることが分った。
The inventors found that, when the magnetism of the non-oriented electrical steel sheet was continuously measured in the rolling direction after the finish annealing in the manufacturing process, there were periodic portions with poor iron loss. .. As a result of diligent research on the cause,
The parts with inferior iron loss characteristics (high iron loss values) should correspond to the skid position of the heating furnace during the slab heating stage. It was clarified that this phenomenon occurs when the Ti content in steel is high. That is,
Ti as an impurity element is finely precipitated in the form of TiN or TiC in a portion of the slab that is in contact with the skid of the heating furnace and has a relatively low temperature during the slab heating stage. Was found to be coarse and harmless.

【0011】このスキッド・マークはスラブ加熱温度を
高くすると解消した。図1は仕上焼鈍後の連続鉄損測定
記録例であるが、スラブを通常の加熱(1100℃近
傍)を行った(a)図の場合はスキッド・マーク部位の
鉄損は劣化しているが、1200℃で加熱した(b)図
の場合はスキッド・マークが解消している。しかしなが
ら、スラブ加熱温度を高くすると、その他の不純物たと
えばN,Sが多いと、MnS,AlN等が一部再固溶し
て熱間圧延中に微細に析出し、仕上焼鈍時に再結晶粒の
成長を阻害するのみならず、微細な析出物それ自体がピ
ニング効果によって製品における磁壁の移動を妨げ、鉄
損特性を劣化せしめる。
This skid mark disappeared when the slab heating temperature was raised. Fig. 1 shows an example of continuous iron loss measurement recording after finish annealing. In the case of Fig. 1 (a) in which the slab is heated normally (around 1100 ° C), the iron loss at the skid mark portion is deteriorated. In the case of FIG. (B) heated at 1200 ° C., the skid mark disappears. However, when the slab heating temperature is increased, if other impurities such as N and S are large, MnS, AlN, etc. are partially re-dissolved and finely precipitated during hot rolling, and recrystallized grains grow during finish annealing. In addition to the above, the fine precipitates themselves impede the movement of the domain wall in the product due to the pinning effect and deteriorate the iron loss characteristics.

【0012】そこで本発明においては、無方向性電磁鋼
板の製造プロセスにおいて、鋼溶製段階でTi以外の不
純物元素であるC,N,S,Zr,V,Nbを極めて低
い水準まで減少させて、スラブを高温加熱するときの上
記弊害を除去し、Tiが含有されていることによって顕
在化するスキッド・マークを消去するに足る温度までス
ラブを加熱することによってスキッド・マークの問題を
解決するとともに、スラブを高温加熱するときの製品の
磁性劣化の問題を解決するようにしている。
Therefore, in the present invention, in the manufacturing process of the non-oriented electrical steel sheet, the impurity elements other than Ti, such as C, N, S, Zr, V and Nb, are reduced to an extremely low level in the steel melting stage. In addition to solving the problems of skid marks by eliminating the above-mentioned adverse effects when heating the slabs at high temperatures and by heating the slabs to a temperature sufficient to erase the skid marks manifested by the inclusion of Ti. , The problem of magnetic deterioration of the product when the slab is heated at high temperature is solved.

【0013】以下に、本発明における成分限定理由を説
明する。Cは、ZrC,VC,TiC,NbCを形成
し、これらの微細析出物が仕上焼鈍における鋼の再結晶
過程で正常粒の成長を妨げるのみならず、微細析出物そ
れ自体のピニング効果によって製品における磁壁の移動
を妨げ、鉄損特性を損なう。一方、最高級グレードの無
方向性電磁鋼板の用途は発電機等大型回転機の磁芯であ
り、従って、長期の使用に耐えることが要求され、使用
期間中に磁気特性の劣化(磁気時効)を起こさないこと
が必要不可欠となる。そのためおよび上記炭化物を生成
せしめないために、C含有量は、0.0030%以下で
なければならない。この要求を満足せしめるべく、製造
プロセスの途中段階で鋼板(ストリップ)を脱炭処理す
ることが考えられる。鋼板の脱炭処理を熱延板焼鈍工程
で行うと、この段階では鋼板が厚いから処理時間が長く
なり生産性を低下させる。また、冷間圧延における中間
焼鈍工程で鋼板に脱炭処理を施すと、鋼板表面に酸化層
が形成され、続く冷間圧延段階で圧延油を汚染するのみ
ならず、圧延ロールに疵を生じ、延いては鋼板に表面疵
を生じる。中間焼鈍後、鋼板を酸洗して表面の酸化層を
除去することは可能であるけれども、そうすると製造コ
ストを上昇させ現実的ではない。さらに、仕上焼鈍工程
において鋼板を脱炭処理することも可能であり、従来、
実施されている。しかし、この場合も鋼板表面に生成す
る酸化層のために、製品の高磁場における鉄損特性を劣
化せしめることがある。このように、熱間圧延以降の途
中段階で鋼板を脱炭処理してC含有量を低下させること
は、製造コスト、製品品質の点から好ましくない。従っ
て、鋼の溶製段階で、C含有量を0.0030%以下、
好ましくは0.0010%以下とする。Sは、その含有
量が多いと、スラブ加熱段階で一部再固溶し、熱間圧延
中にMnS,CuS等の析出物を形成し、この析出物が
仕上焼鈍時に再結晶粒の成長を妨げまた、析出物による
ピニング効果によって製品における磁壁の移動を妨げ、
鉄損特性を劣化させる。従って、MnS,CuS等の析
出物を形成を可及的に少なくすべく、Sの含有量は、
0.0030%以下としなければならない。S含有量を
0.0010%以下に低減すると、析出物の絶対量が十
分に少なくなり、スラブ加熱温度を1300℃まで高く
することができ、製品品質上からのスラブ加熱温度の制
約がなくなる。
The reasons for limiting the components in the present invention will be explained below. C forms ZrC, VC, TiC, NbC, and these fine precipitates not only hinder the growth of normal grains in the recrystallization process of steel during finish annealing, but also in the product due to the pinning effect of the fine precipitates themselves. It impedes the movement of the domain wall and impairs the iron loss characteristics. On the other hand, the application of the highest grade non-oriented electrical steel sheet is the core of a large rotating machine such as a generator, so it is required to endure long-term use, and the magnetic properties deteriorate during use (magnetic aging). It is indispensable not to cause. Therefore, and in order not to form the above-mentioned carbides, the C content must be 0.0030% or less. In order to satisfy this requirement, it is conceivable to decarburize the steel sheet (strip) in the middle of the manufacturing process. When the decarburization treatment of the steel sheet is performed in the hot-rolled sheet annealing step, the steel sheet is thick at this stage, so that the treatment time becomes long and the productivity is reduced. Further, when the steel sheet is subjected to a decarburizing treatment in the intermediate annealing step in cold rolling, an oxide layer is formed on the steel sheet surface, not only contaminating the rolling oil in the subsequent cold rolling stage, but also a flaw on the rolling roll, As a result, surface defects occur on the steel sheet. After the intermediate annealing, it is possible to pickle the steel sheet to remove the oxide layer on the surface, but this raises the manufacturing cost and is not realistic. Further, it is also possible to decarburize the steel sheet in the finish annealing step,
It has been implemented. However, also in this case, the iron loss characteristics in the high magnetic field of the product may be deteriorated due to the oxide layer formed on the surface of the steel sheet. As described above, it is not preferable to decarburize the steel sheet in the intermediate stage after hot rolling to reduce the C content from the viewpoint of manufacturing cost and product quality. Therefore, in the steel melting stage, the C content is 0.0030% or less,
Preferably it is 0.0010% or less. If the content of S is large, it partially re-dissolves in the slab heating stage and forms precipitates such as MnS and CuS during hot rolling, and these precipitates cause the growth of recrystallized grains during finish annealing. Also, the pinning effect of the precipitate prevents the movement of the domain wall in the product,
Deteriorate iron loss characteristics. Therefore, in order to minimize the formation of precipitates such as MnS and CuS, the S content is
It must be 0.0030% or less. When the S content is reduced to 0.0010% or less, the absolute amount of precipitates is sufficiently reduced, the slab heating temperature can be increased up to 1300 ° C., and there is no restriction on the slab heating temperature in terms of product quality.

【0014】Nは、Sと同様にその含有量が多いと、ス
ラブ加熱段階で一部再固溶し、熱間圧延中にAlN,T
iN,ZrN,Fe4 N,Si34 ,VN等の析出物
を形成し、この析出物が仕上焼鈍時に再結晶粒の成長を
妨げ、また、析出物によるピニング効果によって製品に
おける磁壁の移動を妨げ、鉄損特性を劣化させる。従っ
て、N含有量は0.0030%以下としなければならな
い。さらに、Nの含有量を0.0010%以下とする
と、析出物の絶対量が十分に少なくなって品質面からの
スラブ加熱温度の制約がなくなり、熱間圧延工程におけ
るスラブ加熱温度を1300℃まで高くすることができ
る。スラブ加熱温度を1300℃まで高くすることがで
きると、熱間圧延段階で圧延材の形状(平坦さ)を良好
にすることができる等の利点がある。
Like S, when N is large in content, it partially re-dissolves in the slab heating stage, and AlN and T are added during hot rolling.
Precipitates such as iN, ZrN, Fe 4 N, Si 3 N 4 , and VN are formed, and these precipitates prevent the growth of recrystallized grains during finish annealing, and the pinning effect of the precipitates causes the domain wall movement in the product. And iron loss characteristics are deteriorated. Therefore, the N content must be 0.0030% or less. Furthermore, when the content of N is 0.0010% or less, the absolute amount of precipitates is sufficiently reduced, and there is no restriction on the slab heating temperature from the aspect of quality, and the slab heating temperature in the hot rolling process is up to 1300 ° C. Can be higher. If the slab heating temperature can be raised to 1300 ° C., there are advantages such as that the shape (flatness) of the rolled material can be improved in the hot rolling stage.

【0015】Tiは、高炉の操業を安定させるために砂
鉄の形で添加されるほか、鋼の溶製段階で合金鉄から鋼
中に混入する。Tiは、溶鋼を鋳造する段階およびスラ
ブの加熱段階で、鋼中のN,Cと反応しTiN,TiC
を形成する。Ti含有量が0.0050%を超えると、
通常のスラブ加熱条件で、スラブ加熱炉のスキッドの位
置に対応するスラブの部位に相当する鋼板(ストリッ
プ)の部位が、仕上焼鈍過程で再結晶粒の成長が阻害さ
れ、結果として製品の鉄損値が他の部位よりも劣る所謂
スキッド・マークとなる。しかし、スラブ加熱温度を高
くすると、スキッド・マークを解消することができる。
また、通常の製鋼工程における精錬過程において、不可
避的に鋼中に混入するTiの量は0.010%である。
叙上のスキッド・マークは、Tiの含有量を0.003
%未満にすれば発生しない。従って、好ましくは0.0
03%未満とする。 O(酸素)は、それ自体フリーの
状態で存在するのではなくて、酸化物として存在する。
たとえば、SiO2 ,Al2 3 ,Zr2 3 ,TiO
2 ,V2 3 として存在する。従って、Oの含有量を少
なくすると、酸化物系介在物を減少させることができ
る。前記介在物のうち、SiO2 およびAl2 3 は、
鋼の溶製段階における処理条件を適切にすることによっ
て、十分減少させることができる。また、Zr2 3
TiO2 ,V2 3 等の介在物は、Zr,Ti,Vとい
った元素の含有量を減少させることによって、減少させ
ることができる。
Ti is added in the form of iron sand in order to stabilize the operation of the blast furnace, and is mixed into the steel from the ferroalloy at the melting stage of the steel. Ti reacts with N and C in the steel in the steps of casting molten steel and heating the slab, and TiN, TiC
To form. When the Ti content exceeds 0.0050%,
Under normal slab heating conditions, the steel sheet (strip) part corresponding to the slab part corresponding to the skid position of the slab heating furnace inhibits the growth of recrystallized grains during the finish annealing process, resulting in iron loss of the product. It becomes a so-called skid mark whose value is inferior to other parts. However, increasing the slab heating temperature can eliminate skid marks.
Further, in the refining process in the normal steelmaking process, the amount of Ti inevitably mixed in the steel is 0.010%.
The above skid mark has a Ti content of 0.003
If it is less than%, it will not occur. Therefore, preferably 0.0
It is less than 03%. O (oxygen) does not exist in a free state itself but exists as an oxide.
For example, SiO 2 , Al 2 O 3 , Zr 2 O 3 , TiO
It exists as 2 , V 2 O 3 . Therefore, when the content of O is reduced, oxide-based inclusions can be reduced. Among the inclusions, SiO 2 and Al 2 O 3 are
It can be sufficiently reduced by appropriate treatment conditions in the steel melting stage. In addition, Zr 2 O 3 ,
Inclusions such as TiO 2 and V 2 O 3 can be reduced by reducing the content of elements such as Zr, Ti and V.

【0016】Zrは、鋼の溶製段階で、鋼中のAl含有
量が多い場合、わけても本発明におけるように最高級無
方向性電磁鋼板を製造する場合に、取鍋の塩基性耐火物
ライニングから酸化Zrが還元されてAlと置換されて
鋼中に入る不純物である。こうして鋼中にZrが入るの
を防止する手段として、中性の耐火物を用いることが有
効なものの1つである。Zrは、溶鋼の鋳造段階或はス
ラブ加熱段階において鋼中のN,CとZrN,ZrC等
の析出物を形成し、この析出物が複合析出物の核とな
る。これら析出物の影響を実害のないレベルとするため
に、Zrは0.0050%以下、好ましくは0.003
0%以下でなければならない。
Zr is a basic refractory lining of a ladle when the Al content in the steel is high at the melting stage of the steel, especially when producing the highest grade non-oriented electrical steel sheet as in the present invention. Is an impurity that enters the steel by reducing Zr oxide and replacing it with Al. Thus, using a neutral refractory material is one of the effective means for preventing Zr from entering the steel. Zr forms precipitates of N, C and ZrN, ZrC, etc. in the steel during the casting stage of molten steel or the slab heating stage, and these deposits serve as nuclei for complex precipitates. Zr is 0.0050% or less, preferably 0.003% or less in order to reduce the influence of these precipitates to a level without actual harm.
Must be 0% or less.

【0017】Nb,Vは、鋼中のN,Cと析出物を形成
し、これら析出物が、仕上焼鈍工程における再結晶過程
で正常粒の成長を妨げ、製品における磁壁の移動を妨げ
て鉄損特性を劣化させるから、0.0050%以下、好
ましくは0.0030%以下でなければならない。
Nb and V form precipitates with N and C in the steel, and these precipitates prevent the growth of normal grains in the recrystallization process in the finish annealing step, and prevent the movement of the magnetic domain wall in the product, and Since it deteriorates the loss characteristics, it should be 0.0050% or less, preferably 0.0030% or less.

【0018】Siは、無方向性電磁鋼板の固有抵抗を高
くし渦流損を低減せしめるべく添加する。4.0%を超
えてSiを添加すると、加工性が極端に劣化し冷間圧延
を困難なものとする。一方、2.0%に満たない中低級
品においては、本発明によらなくとも、容易にその等級
品質を満足する特性を有する製品を得ることができる。
本発明においては、Si含有量が2.5〜4.0%のと
きに良好な結果が得られる。
Si is added to increase the specific resistance of the non-oriented electrical steel sheet and reduce eddy current loss. If Si is added in excess of 4.0%, the workability is extremely deteriorated and cold rolling becomes difficult. On the other hand, in the case of a medium to low grade product of less than 2.0%, it is possible to easily obtain a product having characteristics satisfying the grade quality without using the present invention.
In the present invention, good results are obtained when the Si content is 2.5 to 4.0%.

【0019】Alは、Siと同様に、無方向性電磁鋼板
の固有抵抗を増加させ渦流損を低下させる。その含有量
が0.10%に満たない低級品においては、本発明を用
いなくとも容易にその等級品質を満足する特性を有する
製品を得ることができる。一方、Alは、Siと同時に
添加すると、SiとAlの原子半径がFeを挟んでAl
>Fe>Siの順に存在しているため格子の歪が緩和さ
れ、脆性の危険性は極端に減少し、2.0%まで添加し
ても冷間圧延において問題となることはない。Mnは、
その含有量が0.1%に満たないと鋼板の加工性が劣化
する。一方、その含有量が2.0%を超えると、製品の
磁束密度を著しく劣化せしめる。Mn含有量が0.1〜
0.4%のとき、良好な結果が得られる。
Al, like Si, increases the specific resistance of the non-oriented electrical steel sheet and reduces the eddy current loss. In the case of low-grade products whose content is less than 0.10%, it is possible to easily obtain products having characteristics satisfying the grade quality without using the present invention. On the other hand, when Al is added at the same time as Si, the atomic radii of Si and Al are such that Fe is sandwiched between Al and Al.
Since they exist in the order of>Fe> Si, the strain of the lattice is relaxed, the risk of brittleness is extremely reduced, and even if added up to 2.0%, there is no problem in cold rolling. Mn is
If the content is less than 0.1%, the workability of the steel sheet deteriorates. On the other hand, if the content exceeds 2.0%, the magnetic flux density of the product is significantly deteriorated. Mn content is 0.1
At 0.4%, good results are obtained.

【0020】Pは、無方向性電磁鋼板の打ち抜き性を良
好ならしめるために、0.2%以下の範囲内で添加され
る。0.2%を超えて添加すると、製品の磁気特性を損
なう。好ましくは、Pの含有量は0.1%以下である。
P is added within the range of 0.2% or less in order to improve the punching property of the non-oriented electrical steel sheet. If added over 0.2%, the magnetic properties of the product will be impaired. Preferably, the P content is 0.1% or less.

【0021】次に、製造プロセスについて説明する。本
発明の最高級グレードの無方向性電磁鋼板は、転炉で溶
製する。この段階で、C,N,S,Ti,Zr,Nb,
Vの含有量を本発明に規定するレベルまで低減させ、高
純化する。得られた溶鋼を連続鋳造してスラブとするか
或は鋳型に注入して鋼塊とし、これを均熱し分塊圧延し
てスラブとする。スラブは厚さは100〜300mmであ
り、通常、10トン以上の単重である。従って、熱間圧
延に先立ってスラブを加熱するに際しては、スラブの部
位によって温度が異なる。本発明においては、熱間圧延
に必要な1125℃を下限とし、加熱炉の耐火材コス
ト、加熱エネルギーコストの観点から1300℃を上限
とする。
Next, the manufacturing process will be described. The highest grade non-oriented electrical steel sheet of the present invention is melted in a converter. At this stage, C, N, S, Ti, Zr, Nb,
The V content is reduced to the level specified in the present invention to achieve high purity. The obtained molten steel is continuously cast into a slab or is poured into a mold to form a steel ingot, which is soaked and slab-rolled into a slab. The slab has a thickness of 100 to 300 mm, and usually has a unit weight of 10 tons or more. Therefore, when heating the slab prior to hot rolling, the temperature varies depending on the part of the slab. In the present invention, the lower limit is 1125 ° C. necessary for hot rolling, and the upper limit is 1300 ° C. from the viewpoint of refractory material cost of heating furnace and heating energy cost.

【0022】加熱後、スラブを1.5〜2.5mm厚さに
熱間圧延する。尚、本発明で定義するスラブ加熱温度
は、熱間圧延するに十分なだけに均熱して、加熱炉から
抽出されるときの表面平均温度である。
After heating, the slab is hot rolled to a thickness of 1.5 to 2.5 mm. The slab heating temperature defined in the present invention is the average surface temperature when the slab is soaked sufficiently for hot rolling and extracted from the heating furnace.

【0023】次いで、熱延板を圧延まま或は900〜1
000℃の温度域で30秒間〜3分間の焼鈍を施した後
酸洗し次いで、冷間圧延して0.2〜0.7mmの最終板
厚とする。熱延板から1回の冷間圧延によって最終板厚
としてもよいしまた、中間焼鈍を挟む2回以上の冷間圧
延によって最終板厚としてもよい。2回の冷間圧延によ
って最終板厚とする場合、1回目の冷間圧延後の中間板
厚は0.5〜1.0mmである。然る後、1000〜11
00℃の温度域で20〜200秒間の仕上焼鈍を施す。
Then, the hot-rolled sheet is rolled or 900-1.
Annealing is performed for 30 seconds to 3 minutes in a temperature range of 000 ° C., followed by pickling and cold rolling to a final sheet thickness of 0.2 to 0.7 mm. The final sheet thickness may be obtained by performing cold rolling once from the hot rolled sheet, or may be obtained by performing cold rolling twice or more with intermediate annealing. When the final plate thickness is obtained by cold rolling twice, the intermediate plate thickness after the first cold rolling is 0.5 to 1.0 mm. After that, 1000-11
Finish annealing is performed for 20 to 200 seconds in a temperature range of 00 ° C.

【0024】[0024]

【実施例】【Example】

(実施例1)図2は重量%で、Si:2.85〜3.1
5%、Al:0.50〜0.70%、S:0.0005
〜0.0020%、N:0.0005〜0.0020
%、C:0.0005〜0.0025%、V:0.00
20〜0.0040%、Nb:0.0020〜0.00
40%、Zr:0.0010〜0.0040%で、T
i:0.0040〜0.0080%、Mn:0.1〜
0.3%、P:0.01〜0.05%、残部Fe及び不
可避的不純物からなる珪素スラブを表面温度で1200
℃及び1100℃で加熱均熱した場合のスキッド・マー
ク発生の状態を示したものである。スラブは、熱延後、
熱延板焼鈍、酸洗を行い0.35mmに冷間圧延され、そ
の後、ドライ雰囲気で仕上げ焼鈍を施した。
(Embodiment 1) FIG. 2 shows the weight percentage of Si: 2.85 to 3.1.
5%, Al: 0.50 to 0.70%, S: 0.0005
To 0.0020%, N: 0.0005 to 0.0020
%, C: 0.0005 to 0.0025%, V: 0.00
20-0.0040%, Nb: 0.0020-0.00
40%, Zr: 0.0010 to 0.0040%, T
i: 0.0040 to 0.0080%, Mn: 0.1
A silicon slab consisting of 0.3%, P: 0.01 to 0.05%, the balance Fe and unavoidable impurities is 1200 at the surface temperature.
It shows the state of generation of skid marks when heated and soaked at ℃ and 1100 ℃. After hot rolling the slab,
The hot-rolled sheet was annealed, pickled, cold-rolled to 0.35 mm, and then finish-annealed in a dry atmosphere.

【0025】横軸は、スキッド・マークの高さを示して
おり、1200℃加熱の場合は1100℃の場合と比べ
て極端にスキッド・マークの発生が減少している。又、
それぞれの場合の鉄損の平均は1200℃加熱ではW1
0/50=1.001W/kg(n数=81コイル)、1
100℃加熱ではW10/50=0.986W/kg(n
数=71コイル)となり、その差は極めて小さく高純度
化の効果が現れている。
The horizontal axis represents the height of the skid mark, and in the case of heating at 1200 ° C., the generation of skid marks is extremely reduced as compared with the case of heating at 1100 ° C. or,
The average iron loss in each case is W1 at 1200 ° C heating
0/50 = 1.001 W / kg (n number = 81 coils), 1
W100 / 50 = 0.986 W / kg (n
(Number = 71 coils), the difference is extremely small, and the effect of high purification appears.

【0026】[0026]

【発明の効果】本発明によれば、Si,Alといった合
金元素を多量に含有せしめることなく、最高級グレード
の無方向性電磁鋼板を安定して製造することができる。
また、鋼を高純化することによって、不可避的に混入す
るTiの影響により顕在化するスキッド・マークを、ス
ラブ加熱温度の高水準化を可能ならしめて解消できる。
According to the present invention, the highest grade non-oriented electrical steel sheet can be stably manufactured without adding a large amount of alloying elements such as Si and Al.
Further, by refining the steel to a high degree, it is possible to eliminate the skid mark, which is unavoidable due to the influence of Ti mixed in, by increasing the slab heating temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の場合における仕上げ焼鈍後の連続鉄損
測定記録であり、(a)は通常(1100℃)スラブ加
熱、(b)は1200℃加熱の場合における鉄損値(ス
キッド・マーク有無)との関係を示す。
1 is a continuous iron loss measurement record after finish annealing in the case of Example, (a) is a normal (1100 ° C.) slab heating, and (b) is a 1200 ° C. iron loss value (skid mark) Presence / absence).

【図2】本発明の実施例1における成分組成のスラブ
を、1100℃及び1200℃に加熱、均熱したときの
スキッド・マークの発生状況を鉄損との関係で示す図。
FIG. 2 is a diagram showing the occurrence of skid marks when the slab having the component composition in Example 1 of the present invention was heated to 1100 ° C. and 1200 ° C. and soaked in relation to iron loss.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤野 真 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Fujino 1-1, Toibata-cho, Tobata-ku, Kitakyushu, Fukuoka Prefecture New Nippon Steel Corporation Yawata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%として、 Si:1.0〜4.0%、 Al:0.001〜2.0%、 N :≦0.0020%、 S :≦0.0020%、 C :≦0.0030% Mn:0.1〜2.0%、 Ti:0.003〜0.010%、 Zr:≦0.0050%、 Nb:≦0.0050%、 V:≦0.0050%、 P :≦0.2%、 残部Feおよび不可避的不純物からなるスラブを、表面
温度で1125〜1300℃の温度域に加熱し、熱間圧
延して熱延鋼帯とし、これを酸洗し、次いで、1回或は
中間焼鈍を挟む2回以上の冷間圧延によって最終板厚と
した後、仕上焼鈍することを特徴とする磁気特性が優れ
た無方向性電磁鋼板の製造方法。
1. As weight%, Si: 1.0 to 4.0%, Al: 0.001 to 2.0%, N: ≤ 0.0020%, S: ≤ 0.0020%, C: ≤ 0.0030% Mn: 0.1 to 2.0%, Ti: 0.003 to 0.010%, Zr: ≤ 0.0050%, Nb: ≤ 0.0050%, V: ≤ 0.0050%, P: ≤0.2%, the slab consisting of the balance Fe and unavoidable impurities is heated to a temperature range of 1125 to 1300 ° C at the surface temperature, hot rolled into a hot rolled steel strip, and pickled, Next, a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, which comprises performing final annealing after cold rolling one or more times with intermediate annealing sandwiched between them to obtain a final sheet thickness.
【請求項2】 重量%として、 Si:1.0〜4.0%、 Al:0.001〜2.0%、 N :≦0.0020%、 S :≦0.0020%、 C :≦0.0030% Mn:0.1〜2.0%、 Ti:0.003〜0.010%、 Zr:≦0.0050%、 Nb:≦0.0050%、 V:≦0.0050%、 P :≦0.2%、 残部Feおよび不可避的不純物からなるスラブを、表面
温度で1125〜1300℃の温度域に加熱し、熱間圧
延して熱延鋼帯とし、これを焼鈍した後酸洗し、次い
で、1回或は中間焼鈍を挟む2回以上の冷間圧延によっ
て最終板厚とした後、仕上焼鈍することを特徴とする磁
気特性が優れた無方向性電磁鋼板の製造方法。
2. As weight%, Si: 1.0 to 4.0%, Al: 0.001 to 2.0%, N: ≤ 0.0020%, S: ≤ 0.0020%, C: ≤ 0.0030% Mn: 0.1 to 2.0%, Ti: 0.003 to 0.010%, Zr: ≤ 0.0050%, Nb: ≤ 0.0050%, V: ≤ 0.0050%, P: ≦ 0.2%, the slab consisting of the balance Fe and unavoidable impurities is heated to a temperature range of 1125 to 1300 ° C. at the surface temperature and hot rolled into a hot rolled steel strip, which is annealed and then acidified. A method for producing a non-oriented electrical steel sheet having excellent magnetic properties, which comprises washing and then cold rolling one or more times with intermediate annealing to obtain a final sheet thickness, followed by finish annealing.
JP3186615A 1991-07-25 1991-07-25 Manufacture of now-oriented silicon steel sheet excellent in magnetic property Pending JPH05140649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3186615A JPH05140649A (en) 1991-07-25 1991-07-25 Manufacture of now-oriented silicon steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3186615A JPH05140649A (en) 1991-07-25 1991-07-25 Manufacture of now-oriented silicon steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH05140649A true JPH05140649A (en) 1993-06-08

Family

ID=16191682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3186615A Pending JPH05140649A (en) 1991-07-25 1991-07-25 Manufacture of now-oriented silicon steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH05140649A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0704542A1 (en) 1994-09-29 1996-04-03 Kawasaki Steel Corporation Method for making non-oriented magnetic steel sheet
JPH1112699A (en) * 1997-06-20 1999-01-19 Sumitomo Metal Ind Ltd Non-oriented electrical sheet having excellent magnetic characteristic and its manufacture
KR100373871B1 (en) * 1994-04-22 2003-05-09 가와사끼 세이데쓰 가부시키가이샤 Non-oriented electrical steel sheet and core for motor or transformer with low iron loss after stress relief annealing
WO2005100627A1 (en) * 2004-04-16 2005-10-27 Nippon Steel Corporation Nonoriented electromagnetic steel sheet excellent in blankability and magnetic characteristics after strain removal annealing, and method for production thereof
CN102634729A (en) * 2012-04-01 2012-08-15 首钢总公司 Preparation method for low-iron-loss, high-induction and high-mark non-oriented silicon steel
CN103774042A (en) * 2013-12-23 2014-05-07 钢铁研究总院 High-magnetic-induction oriented silicon steel prepared through thin slab continuous casting and rolling and preparation method thereof
CN106119496A (en) * 2016-08-08 2016-11-16 浙江华赢特钢科技有限公司 A kind of production technology of modified model non-oriented silicon steel with high magnetic induction sheet
CN107723591A (en) * 2017-09-28 2018-02-23 马钢(集团)控股有限公司 A kind of new-energy automobile motor cold rolling non-oriented electrical steel and its production method
US20210277492A1 (en) * 2018-11-26 2021-09-09 Baoshan Iron & Steel Co., Ltd. High-magnetic-induction low-iron-loss non-oriented silicon steel sheet and manufacturing method therfor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100373871B1 (en) * 1994-04-22 2003-05-09 가와사끼 세이데쓰 가부시키가이샤 Non-oriented electrical steel sheet and core for motor or transformer with low iron loss after stress relief annealing
EP0704542A1 (en) 1994-09-29 1996-04-03 Kawasaki Steel Corporation Method for making non-oriented magnetic steel sheet
JPH1112699A (en) * 1997-06-20 1999-01-19 Sumitomo Metal Ind Ltd Non-oriented electrical sheet having excellent magnetic characteristic and its manufacture
WO2005100627A1 (en) * 2004-04-16 2005-10-27 Nippon Steel Corporation Nonoriented electromagnetic steel sheet excellent in blankability and magnetic characteristics after strain removal annealing, and method for production thereof
JPWO2005100627A1 (en) * 2004-04-16 2008-03-06 新日本製鐵株式会社 Nondirectional electromagnetic copper plate with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
JP4660474B2 (en) * 2004-04-16 2011-03-30 新日本製鐵株式会社 Non-oriented electrical steel sheet with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
CN102634729A (en) * 2012-04-01 2012-08-15 首钢总公司 Preparation method for low-iron-loss, high-induction and high-mark non-oriented silicon steel
CN103774042A (en) * 2013-12-23 2014-05-07 钢铁研究总院 High-magnetic-induction oriented silicon steel prepared through thin slab continuous casting and rolling and preparation method thereof
CN103774042B (en) * 2013-12-23 2016-05-25 钢铁研究总院 A kind of CSP high magnetic induction grain-oriented silicon steel and preparation method thereof
CN106119496A (en) * 2016-08-08 2016-11-16 浙江华赢特钢科技有限公司 A kind of production technology of modified model non-oriented silicon steel with high magnetic induction sheet
CN107723591A (en) * 2017-09-28 2018-02-23 马钢(集团)控股有限公司 A kind of new-energy automobile motor cold rolling non-oriented electrical steel and its production method
US20210277492A1 (en) * 2018-11-26 2021-09-09 Baoshan Iron & Steel Co., Ltd. High-magnetic-induction low-iron-loss non-oriented silicon steel sheet and manufacturing method therfor

Similar Documents

Publication Publication Date Title
US7377986B2 (en) Method for production of non-oriented electrical steel strip
CA2971682C (en) Non-oriented electrical steel sheet and method for producing the same
US4439251A (en) Non-oriented electric iron sheet and method for producing the same
JP4203238B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH06108149A (en) Production of nonoriented silicon steel sheet extremely excellent in core loss after consumer annealing
JPS5849627B2 (en) Method for producing non-temporal cold-rolled steel sheet
JPH05140649A (en) Manufacture of now-oriented silicon steel sheet excellent in magnetic property
KR100293140B1 (en) Unidirectional Electronic Steel Sheet and Manufacturing Method Thereof
US4280856A (en) Method for producing grain-oriented silicon steel sheets having a very high magnetic induction and a low iron loss
US4702780A (en) Process for producing a grain oriented silicon steel sheet excellent in surface properties and magnetic characteristics
KR101286243B1 (en) Non-oriented electrical steel sheet with excellent magnetic and processing property, and Method for manufacturing the same
JPH05140647A (en) Production of non-oriented silicon steel sheet having excellent magnetic characteristic
KR100414625B1 (en) Manufacturing method of high strength cold rolled enamel steel sheet with excellent fish scale resistance and adhesion
JPH0450380B2 (en)
JP3458682B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same
JPH0967654A (en) Nonoriented silicon steel sheet excellent in core loss characteristics
JPH0317892B2 (en)
JP2001158948A (en) Nonoriented silicon steel sheet low in core loss and producing method therefor
KR102405173B1 (en) Grain oriented electrical steel sheet and method of manufacturing the same
US20230036436A1 (en) Grain-oriented electrical steel sheet and method for producing same
JPS5834531B2 (en) Method for manufacturing non-oriented silicon steel sheet with excellent magnetic properties
JP2666626B2 (en) Low iron loss non-oriented electrical steel sheet and its manufacturing method
KR100363420B1 (en) Manufacturing method of hot annealed cold rolled steel sheet for processing using mini mill process
JPS5855209B2 (en) Method for manufacturing non-oriented silicon steel sheet with little aging deterioration and good surface quality
KR100361753B1 (en) Method for manufacturing hot rolled enamel steel sheet using thin slab direct rolling

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010904