JPH0450380B2 - - Google Patents

Info

Publication number
JPH0450380B2
JPH0450380B2 JP15922787A JP15922787A JPH0450380B2 JP H0450380 B2 JPH0450380 B2 JP H0450380B2 JP 15922787 A JP15922787 A JP 15922787A JP 15922787 A JP15922787 A JP 15922787A JP H0450380 B2 JPH0450380 B2 JP H0450380B2
Authority
JP
Japan
Prior art keywords
magnetic properties
less
amount
flux density
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15922787A
Other languages
Japanese (ja)
Other versions
JPS644454A (en
Inventor
Teruo Kaneko
Hiroyoshi Yashiki
Takashi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15922787A priority Critical patent/JPS644454A/en
Publication of JPS644454A publication Critical patent/JPS644454A/en
Publication of JPH0450380B2 publication Critical patent/JPH0450380B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、とくに鉄損および磁束密度がとも
にすぐれた無方向性電磁鋼板に関する。 〔従来の技術〕 無方向性電磁鋼板は、主として小型モータや小
型変圧器等の鉄心材料として使用され、その磁気
特性としては鉄損が低いこととともに磁束密度の
高いことが要求される。 ところで、鉄損と磁束密度は、一般に相反する
ものとして位置づけられ、このため両特性を同時
にすぐれたものとすることは、経済性との兼合い
もあつて、きわめて困難なこととして把えられて
いる。 〔発明が解決しようとする問題点〕 無方向性電磁鋼板の特性を向上させるための手
段としては、従来より種々明らかにされている
が、鉄損と磁束密度の両立を図るという意味で有
効な対策となると、十分なものが見当たらないの
が実状である。 一般に鉄損については、SiやAl等の合金元
素を添加すること、および結晶粒の粗大化等
が、その低減に有効であることが明らかにされて
いる。鉄損は主として渦電流損と履歴損とに分け
られる。上記は、このうち渦電流損を低減させ
るもので、は履歴損の方を低減させるものであ
る。 の方法は、SiやAl等の添加によつて鋼の固
有電気抵抗を増大させるのであるが、これらの合
金元素の多量添加は、磁束密度を低下させること
になるのみならず、コストアツプの要因となる。 の方法としては、Alの添加量を増し粒成長
を阻害するAlN析出物を凝集粗大化させる方法
がよく知られている。しかしこの方法でも、析出
物の量が増加するため磁束密度の低下を伴い、コ
ストの点でも好ましくない。 また、製造プロセスの面では、2回冷延法や2
回焼鈍法の採用が、結晶粒の粗大化や集合組織制
御による磁気特性改善に有効であるとされてい
る。しかしこれらの方法は、製造工程が複雑にな
つてコストが著しく上昇する上、高磁束密度が期
待できないという問題がある。 一方、最近になつて、Zrの有効性が確認され、
これを利用して磁気特性の良好な無方向性電磁鋼
板を製造する方法が種々提案されている(特公昭
58−19726号、特開昭58−25426号、同59−83723
号)。AlNやMnSなどの微細析出物は、粒成長性
に関しインヒビターとして作用し有害であるが、
Zrには、この有害な微細析出物の形成を防止す
る効果があるのである。しかしながら、かかる
Zrの効果を利用した方法も、鉄損、磁束密度の
両特性のすぐれたものを工業的に低コストにて得
るという立場からは、未だ満足のゆくものでなか
つた。 本発明は、低鉄損でかつ磁束密度が高く、しか
も低コストな無方向性電磁鋼板の提供を目的とす
る。 〔問題点を解決するための手段〕 本発明者らは、とくに上記Zrの有効性に注目
し、組成面から総合的に実験、研究を行つた結
果、Zrを利用して鉄損、磁束密度を同時に良好
となすに有効な成分組成を知見し、本発明の完成
に至つたものである。 すなわち、本発明は、次のような無方向性電磁
鋼板を要旨とする。 重量%で、C0.004%未満、Si3.5%以下、Mn1.0
%以下、P0.15%以下、Al0.01〜0.10%、Zr0.01〜
0.10%で、更に必要に応じB0.0001〜0.0015%を
含有し、残部Feおよび不可避的不純物からなり、
不可避的不純物としてのS,N,Oは、S≦0.01
%,N≦0.005%,O≦0.005%であり、かつZr
(%)/6.5×N(%)の値が1〜3であることを
特徴とする磁気特性の良好な無方向性電磁鋼板。 〔作用〕 本発明の骨子とするところは、 Al含有量を所定のレベル以下に規制した上
で、Zrまたは更にBを適量添加することによ
つて、粒成長を阻害する微細AlNの析出を可
及的に阻止すること、 更に不純物としてのS,N,Oを一定レベル
以下に制限することによつて、析出物の総量を
減じること、 にあり、これによつて鉄損と磁束密度の高いレベ
ルでの両立を可能にするものである。 以下、本発明における鋼成分限定の理由につい
て詳しく述べる。 C:磁気特性、とくに鉄損に影響し、鉄損以下の
観点から少ない方がよい。とくに、0.004以上
になると、磁気時効による鉄損増加が大きくな
ることから、0.004%未満とした。なお下限に
ついては、上記のとおりCは少ないほどよいの
で特に限定しない。 Si:電磁鋼板において最も重要な元素であり、磁
気特性に対し支配的影響を及ぼす。Si量が増す
ほど、鉄損は低くなるが、磁束密度も低下する
傾向となる。 Siの添加量は、実際にはこのような傾向を考
慮し、用途上求められる磁気特性に応じて選定
される。 Si3.5%までは、その量が多いほど、鉄損に
ついてよりすぐれたものが得られるが、3.5%
をこえるとその効果は飽和し、また冷間加工性
の劣化が顕著となる。よつて、3.5%以下とし
た。 なお、Siの下限値については、磁気特性の要
求レベルにより適正量が変化し一概に言えない
ので特に規定しない。 Mn:熱間圧延時のSによる脆化割れを防止する
意味において、また硬度等、機械的性質の改善
のために必要である。しかし1.0%をこえると、
磁気特性を劣化させる。よつて、Mnは1.0%以
下とした。なお、Mnの下限については、一般
に熱間脆性防止の観点から0.05%以上必要とさ
れる場合が多いが、本発明ではZrによるS固
定効果もあるので、それ以下でもよく、特に限
定しない。 P:鋼板の硬度を高め鉄心打抜き時の加工性を改
善するのに有効な元素であるが、0.15%をこえ
ると加工性が劣化する。よつて、0.15%以下に
限定した。なお、下限については不可避的不純
物程度の量でもをとくに問題を生じることはな
いので、規定しない。 Al:脱酸剤として添加される。AlはNとの親和
力が非常につよい。このため、通常無方向性電
磁鋼板で用いられるレベル(0.1〜0.5%程度)
の含有では、鋼中Nと結合して微細なAlNを
多量に析出し、粒成長を妨げる。その結果、と
くに鉄損が上昇することになる。 このような傾向を解消して良好な磁気特性を
実現する意味から、Alは極力少なくする必要
がある。ただし、Al量を余り低くしすぎると、
鋼中Oの固定が不十分となつて、添加ZrのO
との結合量が多くなり、結果ZrによるNの固
定が十分に行われず、磁気特性の劣化を来す。 第1図は、Al量と磁気特性との関係を実験
により調査した結果である。これは、0.003%
C−5.0%Si−0.5%Mn−0.02%P−0.03%Zr−
0.003%S−0.002%N−0.002%O系で、Al含有
量を0.02%以下の範囲で変化させて磁気特性へ
の影響をみせたもので、供試材は後述実施例に
示した製造プロセスによつた0.5mm厚の冷延焼
鈍板である。図の特性は、鉄損、磁束密度とも
単板磁気測定器による測定値である。 図によると、Al量が0.01〜0.10%の範囲にお
いて、鉄損、磁束密度がともにすぐれた値とな
つている。Al量が0.01%未満、あるいは0.10%
をこえるところでは、鉄損、磁束密度ともに急
激に劣化する傾向が認められる。 このようなことから、本発明ではAl0.01〜
0.10%に限定した。 Zr:強力な窒化物形成元素であり、鋼中Nを固
定して微細なAlNの析出を防止することによ
り、粒成長性の改善を通して磁気特性の向上に
有効に寄与する。0.01%未満では、N固定の効
果が十分でなく磁気特性が有効に改善されな
い。一方0.10%をこえると、析出物が増加し磁
束密度が劣化する。したがつて、Zrは0.01〜
0.10%に限定した。 Zr量についてはまた、鋼中N量とのバラン
スを考慮することが重要で、良好な磁気特性を
得るには、N量に対し一定の関係を満たすよう
に添加されなければならない。Nに対するZr
の適正添加量は、Zr(%)/6.5×N(%)の比
(以下、X値とする)によつて規定でき、この
比の値が1〜3となる範囲として表わされる。 第2図に、X値と磁気特性の関係を示す。こ
のデータは、0.003%C−1.5%Si−0.25%Mn−
0.04%P−0.05%Al−0.003%S−0.002%O系
で、0.005%以下のN量に対しZr量を0.01〜0.10
%の範囲で変化させて磁気特性を調査した結果
であり、供試材料は製造プロセスを適用した
0.5mm厚の冷延焼鈍板である。磁気特性の値は、
単板磁気測定器による測定値である。 図によると、X値が1未満、または3をこえ
る領域において、鉄損、磁束密度がともに劣化
する傾向が認められ、X値1〜3の領域での
み、鉄損、磁束密度がすぐれた値となることが
理解される。 本発明ではこのようなことから、X値を導入
し、その範囲を1〜3と規定した。 B:Zr同様Nの固定により鉄損、磁束密度の改
善に寄与する元素で、必要に応じ添加される。
0.0001%未満ではN固定の効果が発揮されず、
磁気特性の改善が期待できない。一方0.0015%
をこえると、析出物が増加しかえつて磁気特性
が劣化する。よつて、Bは0.0001〜0.0015%と
した。 N:一般には、Alと結合して微細なAlNを生成
し、磁気特性を劣化させる元素であり、少なけ
れば少ないほど良い。本発明の場合、Zrある
いは更にBと結合してZrNまたはBNとして析
出するが、その量が多いとやはり磁気特性を害
する。このため、0.05%以下に限定した。 S:一般に硫化物系介在物を生成し磁気特性を劣
化させるので、少なければ少ないほど良い。特
に本発明の場合、S量が多いと添加したZrが
ZrSとして消費され、Nの固定に有効なZrが減
少する。このため0.01%以下に限定した。 O:一般に酸化物系介在物を生成し、磁気特性を
劣化させるため、少なければ少ないほど良い。
本発明では、特にO量が多いとやはりZrを消
費するので、0.005%以下に限定した。 本発明電磁鋼板の成分限定理由は以上のとおり
であるが、このような電磁鋼板は、工業的には通
常一回冷延法にて製造される。 すなわち、一般的な製造法では、転炉で成分調
整した溶鋼を連続鋳造法で200mm厚程度の鋼片と
する。Cの調整に関しては、真空精錬法を用いる
場合が多いが、焼鈍工程など次工程で脱Cしても
よい。大型鋼塊に鋳込んだ後分塊圧延する方法も
あるが、経済性および偏析増大の観点から最近は
殆ど使われない。鋳込んだ鋼片は次に熱間圧延に
より2〜3mm圧程度のコイルとされる。加熱温度
は1100〜1300℃程度で十分均熱した後タンデム圧
延機で圧延される。圧延の仕上温度は800〜900
℃、コイルの巻取り温度は500〜700℃が普通であ
る。コイルに巻取つた後は、室温まで放冷され
る。次に鋼表面の酸化スケールを酸洗して除去す
る。必要に応じて酸洗いの前又は後に熱延板の焼
鈍を行う場合もある。これは熱延板の結晶組織を
再結晶させることを目的とするもので、冷間圧延
性や磁気特性の改善に効果がある。酸洗後は、冷
間圧延で0.35〜0.5mm厚の所定の板厚に仕上げる。
最終焼鈍は普通600〜1100℃の範囲で行なう。十
分再結晶させ、さらに結晶粒度を調整する必要が
あり、焼鈍温度は成分系によつても異なる。焼鈍
法は、バツチ式の箱焼鈍で行う場合もあるが、近
年は連続焼鈍が用いられるケースが多い。 電磁鋼板は、この段階で客先に出荷される。フ
ルプロセス材は、打ち抜き加工後、そのまま鉄心
に組み立てられる。セミプロセス材は、打ち抜き
後、鉄心に組み立てられる前又は後に歪取り焼鈍
を施される。本発明鋼はいずれに適用しても良
い。実施例では、フルプロセス材について説明す
るが、セミプロセス材では、打ち抜き歪の解放や
結晶粒成長で磁気特性は更に向上する。 〔実施例〕 次に本発明の実施例について述べる。 第1表に示す、Si量を0.5%、1.5%、2.5%の3
レベルとした種々の組成の鋼を、50Kgの高周波真
空溶解炉を用いて溶製し、これを鋳型に鋳込んで
鋳片となし、この鋳片を熱間鍛造により30mm厚と
し、その後1250℃に再過熱し仕上げ温度850℃で
2.3mm厚まで熱間圧延を行い、圧延後直ちに水ス
プレーで550℃まで冷却し、次いで550℃の炉中に
装入炉冷した。 このようにして得た熱延板を、酸洗後冷間圧延
により0.5mm厚に仕上げ、その後窒素雰囲気中で、
0.5%Si系:700℃×1min、1.5%Si系:800℃×
1min、2.5%Si系:900℃×1minの連続焼鈍パタ
ーン最終焼鈍を行つた。 得られた最終焼鈍材について、磁気特性(鉄損
値、磁束密度)を単板磁気測定器により測定し
た。 結果を第1表右欄に示す。
[Industrial Application Field] The present invention particularly relates to a non-oriented electrical steel sheet that is excellent in both iron loss and magnetic flux density. [Prior Art] Non-oriented electrical steel sheets are mainly used as iron core materials for small motors, small transformers, etc., and their magnetic properties are required to have low core loss and high magnetic flux density. By the way, iron loss and magnetic flux density are generally considered to be contradictory, and for this reason, it is considered extremely difficult to achieve excellent properties of both at the same time, partly due to economic considerations. There is. [Problems to be solved by the invention] Various methods have been disclosed for improving the properties of non-oriented electrical steel sheets, but none are effective in terms of achieving both iron loss and magnetic flux density. When it comes to countermeasures, the reality is that there are not enough. In general, it has been revealed that adding alloying elements such as Si and Al, coarsening crystal grains, etc. are effective in reducing iron loss. Iron loss is mainly divided into eddy current loss and hysteresis loss. The above method reduces eddy current loss, and hysteresis loss. In this method, the specific electrical resistance of steel is increased by adding Si, Al, etc., but adding large amounts of these alloying elements not only reduces the magnetic flux density but also increases costs. Become. A well-known method is to increase the amount of Al added to agglomerate and coarsen AlN precipitates that inhibit grain growth. However, even with this method, the amount of precipitates increases, resulting in a decrease in magnetic flux density, which is also unfavorable in terms of cost. In addition, in terms of manufacturing processes, we have adopted the double cold rolling method and the double cold rolling method.
It is said that the use of the re-annealing method is effective in improving magnetic properties by coarsening crystal grains and controlling texture. However, these methods have problems in that the manufacturing process becomes complicated and costs increase significantly, and high magnetic flux density cannot be expected. On the other hand, the effectiveness of Zr has recently been confirmed,
Various methods have been proposed to utilize this to produce non-oriented electrical steel sheets with good magnetic properties.
No. 58-19726, Japanese Patent Publication No. 58-25426, No. 59-83723
issue). Fine precipitates such as AlN and MnS act as inhibitors to grain growth and are harmful.
Zr has the effect of preventing the formation of these harmful fine precipitates. However, it takes
The method utilizing the effect of Zr has not yet been satisfactory from the standpoint of obtaining excellent properties in both iron loss and magnetic flux density at low cost industrially. An object of the present invention is to provide a non-oriented electrical steel sheet that has low iron loss, high magnetic flux density, and low cost. [Means for Solving the Problems] The present inventors paid particular attention to the effectiveness of Zr, and conducted comprehensive experiments and research from the composition aspect. The present invention has been completed by discovering an effective component composition for simultaneously achieving good properties. That is, the gist of the present invention is the following non-oriented electrical steel sheet. In weight%, C less than 0.004%, Si less than 3.5%, Mn 1.0
% or less, P0.15% or less, Al0.01~0.10%, Zr0.01~
0.10%, further containing 0.0001 to 0.0015% B as necessary, the balance consisting of Fe and unavoidable impurities,
S, N, and O as unavoidable impurities are S≦0.01
%, N≦0.005%, O≦0.005%, and Zr
A non-oriented electrical steel sheet with good magnetic properties, characterized in that the value of (%)/6.5×N (%) is 1 to 3. [Function] The gist of the present invention is to control the Al content to below a predetermined level and then add an appropriate amount of Zr or B to enable the precipitation of fine AlN that inhibits grain growth. Furthermore, by limiting S, N, and O as impurities to below a certain level, the total amount of precipitates can be reduced, thereby reducing iron loss and high magnetic flux density. This makes it possible to achieve both at the same level. The reasons for limiting the steel components in the present invention will be described in detail below. C: Affects magnetic properties, especially iron loss, and from the viewpoint of lower iron loss, the smaller the amount, the better. In particular, if it exceeds 0.004, the increase in iron loss due to magnetic aging becomes large, so it was set to less than 0.004%. Note that the lower limit is not particularly limited because as mentioned above, the smaller the number of C, the better. Si: The most important element in electrical steel sheets and has a dominant effect on magnetic properties. As the amount of Si increases, the iron loss decreases, but the magnetic flux density also tends to decrease. The amount of Si added is actually selected in consideration of this tendency and according to the magnetic properties required for the application. Up to 3.5% Si, the higher the amount, the better the iron loss can be obtained, but 3.5%
If it exceeds this, the effect will be saturated and the deterioration of cold workability will become noticeable. Therefore, it was set at 3.5% or less. Note that the lower limit value of Si is not particularly specified because the appropriate amount changes depending on the required level of magnetic properties and cannot be determined unconditionally. Mn: Necessary for preventing embrittlement cracking caused by S during hot rolling and for improving mechanical properties such as hardness. However, if it exceeds 1.0%,
Degrades magnetic properties. Therefore, Mn was set to 1.0% or less. Regarding the lower limit of Mn, it is generally required to be 0.05% or more from the viewpoint of preventing hot embrittlement, but in the present invention, since Zr also has an S fixing effect, it may be lower than that and is not particularly limited. P: An effective element for increasing the hardness of steel sheets and improving workability during core punching, but if it exceeds 0.15%, workability deteriorates. Therefore, it was limited to 0.15% or less. Note that the lower limit is not stipulated because even the amount of unavoidable impurities does not cause any particular problem. Al: Added as a deoxidizing agent. Al has a very strong affinity with N. For this reason, the level normally used for non-oriented electrical steel sheets (about 0.1 to 0.5%)
When AlN is contained, it combines with N in the steel and precipitates a large amount of fine AlN, which hinders grain growth. As a result, iron loss in particular increases. In order to eliminate this tendency and achieve good magnetic properties, it is necessary to reduce Al as much as possible. However, if the Al amount is too low,
Due to insufficient fixation of O in the steel, O of added Zr
As a result, N is not sufficiently fixed by Zr, resulting in deterioration of magnetic properties. FIG. 1 shows the results of an experimental investigation into the relationship between Al content and magnetic properties. This is 0.003%
C-5.0%Si-0.5%Mn-0.02%P-0.03%Zr-
It is a 0.003% S-0.002% N-0.002% O system, and the influence on magnetic properties was shown by changing the Al content within a range of 0.02% or less.The test material was manufactured using the manufacturing process shown in the example below. This is a cold-rolled annealed sheet with a thickness of 0.5 mm. The characteristics shown in the figure are both iron loss and magnetic flux density measured using a single-plate magnetometer. According to the figure, both iron loss and magnetic flux density have excellent values when the Al content is in the range of 0.01 to 0.10%. Al content is less than 0.01% or 0.10%
It is observed that there is a tendency for both iron loss and magnetic flux density to deteriorate rapidly above . For this reason, in the present invention, Al0.01~
Limited to 0.10%. Zr: A strong nitride-forming element that effectively contributes to improving magnetic properties through improving grain growth by fixing N in steel and preventing the precipitation of fine AlN. If it is less than 0.01%, the effect of N fixation will not be sufficient and the magnetic properties will not be effectively improved. On the other hand, when it exceeds 0.10%, precipitates increase and the magnetic flux density deteriorates. Therefore, Zr is 0.01 ~
Limited to 0.10%. Regarding the amount of Zr, it is also important to consider the balance with the amount of N in the steel, and in order to obtain good magnetic properties, Zr must be added so as to satisfy a certain relationship with the amount of N. Zr for N
The appropriate amount of addition can be defined by the ratio of Zr (%)/6.5×N (%) (hereinafter referred to as X value), and is expressed as a range in which the value of this ratio is 1 to 3. FIG. 2 shows the relationship between the X value and magnetic properties. This data is 0.003%C-1.5%Si-0.25%Mn-
In the 0.04%P-0.05%Al-0.003%S-0.002%O system, the Zr amount is 0.01 to 0.10 for the N amount of 0.005% or less.
This is the result of investigating the magnetic properties by changing the magnetic properties in the range of
It is a cold rolled annealed plate with a thickness of 0.5mm. The value of magnetic properties is
This is a measurement value using a single-plate magnetometer. According to the figure, in the region where the X value is less than 1 or more than 3, there is a tendency for both iron loss and magnetic flux density to deteriorate, and only in the region where the X value is 1 to 3, the iron loss and magnetic flux density are excellent. It is understood that For this reason, in the present invention, an X value is introduced and its range is defined as 1 to 3. B: Like Zr, this element contributes to improving iron loss and magnetic flux density by fixing N, and is added as necessary.
If it is less than 0.0001%, the effect of N fixation will not be exhibited.
No improvement in magnetic properties can be expected. On the other hand, 0.0015%
If it exceeds this, the amount of precipitates will increase and the magnetic properties will deteriorate. Therefore, B was set at 0.0001 to 0.0015%. N: Generally, it is an element that combines with Al to produce fine AlN and deteriorates magnetic properties, and the smaller the amount, the better. In the case of the present invention, Zr or even B is combined to precipitate as ZrN or BN, but if the amount is large, the magnetic properties will be impaired. For this reason, it was limited to 0.05% or less. S: generally produces sulfide-based inclusions and deteriorates magnetic properties, so the smaller the amount, the better. Especially in the case of the present invention, when the amount of S is large, the added Zr
Zr, which is consumed as ZrS and is effective for fixing N, decreases. For this reason, it was limited to 0.01% or less. O: generally generates oxide inclusions and deteriorates magnetic properties, so the smaller the content, the better.
In the present invention, especially if the amount of O is large, Zr will be consumed, so it is limited to 0.005% or less. The reasons for limiting the components of the electromagnetic steel sheet of the present invention are as described above, and such electromagnetic steel sheets are usually produced industrially by a single cold rolling method. In other words, in a typical manufacturing method, molten steel whose composition has been adjusted in a converter is continuously cast into steel slabs with a thickness of about 200 mm. Regarding the adjustment of C, a vacuum refining method is often used, but carbon may be removed in a subsequent process such as an annealing process. There is also a method in which the steel is cast into a large steel ingot and then bloomed, but it is rarely used these days from the viewpoint of economy and increased segregation. The cast steel billet is then hot rolled into a coil with a thickness of about 2 to 3 mm. The heating temperature is approximately 1,100 to 1,300°C, and after sufficient soaking, the material is rolled in a tandem rolling mill. Finishing temperature of rolling is 800~900
℃, and the coil winding temperature is normally 500 to 700℃. After being wound into a coil, it is left to cool to room temperature. Next, the oxide scale on the steel surface is removed by pickling. If necessary, the hot rolled sheet may be annealed before or after pickling. This is aimed at recrystallizing the crystal structure of the hot rolled sheet, and is effective in improving cold rolling properties and magnetic properties. After pickling, the plate is cold rolled to a predetermined thickness of 0.35 to 0.5 mm.
Final annealing is usually carried out at a temperature in the range of 600-1100°C. It is necessary to sufficiently recrystallize and further adjust the crystal grain size, and the annealing temperature also differs depending on the component system. The annealing method is sometimes carried out by batch-type box annealing, but in recent years, continuous annealing is often used. At this stage, the electrical steel sheet is shipped to the customer. Full-processed materials are assembled into cores directly after punching. Semi-processed materials are subjected to strain relief annealing after punching and before or after being assembled into an iron core. The steel of the present invention may be applied to either. In the examples, a fully processed material will be explained, but in a semi-processed material, the magnetic properties are further improved by releasing punching strain and growing crystal grains. [Example] Next, an example of the present invention will be described. The three Si amounts shown in Table 1 are 0.5%, 1.5%, and 2.5%.
Steels of various compositions with different levels are melted using a 50Kg high-frequency vacuum melting furnace, cast into molds to make slabs, hot forged to a thickness of 30mm, and then heated to 1250℃. Reheat to a finishing temperature of 850℃
Hot rolling was performed to a thickness of 2.3 mm, and immediately after rolling, the material was cooled to 550°C with water spray, and then charged into a furnace at 550°C and cooled. The hot-rolled sheet obtained in this way was finished to a thickness of 0.5 mm by cold rolling after pickling, and then in a nitrogen atmosphere.
0.5%Si type: 700℃×1min, 1.5%Si type: 800℃×
1 min, 2.5% Si system: Final annealing was performed using a continuous annealing pattern of 900°C x 1 min. The magnetic properties (core loss value, magnetic flux density) of the obtained final annealed material were measured using a single plate magnetometer. The results are shown in the right column of Table 1.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明は無方向
性電磁鋼板において鉄損の低減と磁束密度の向上
を同時にかつ効果的に達成することができ、しか
も製造面では特別の措置をとる必要がないので、
工数の増加がなく、コストの点でも有利であり、
その実用価値はきわめて大きいものである。
As is clear from the above explanation, the present invention can simultaneously and effectively achieve reduction in iron loss and improvement in magnetic flux density in non-oriented electrical steel sheets, and there is no need to take any special measures in terms of manufacturing. So,
There is no increase in man-hours, and it is advantageous in terms of cost.
Its practical value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はAl量と磁気特性との関係を示す実験
結果、第2図はX値(Zr(%)/6.5×N(%))と
磁気特性との関係を示す実験結果である。
FIG. 1 shows the experimental results showing the relationship between Al content and magnetic properties, and FIG. 2 shows the experimental results showing the relationship between the X value (Zr (%)/6.5×N (%)) and magnetic properties.

Claims (1)

【特許請求の範囲】 1 重量%で、C0.004%未満、Si3.5%以下、
Mn1.0%以下、P0.15%以下、Al0.01〜0.10%、
Zr0.01〜0.10%を含み、残部Feおよび不可避的不
純物からなり、不可避的不純物としてのS,N,
Oは、S≦0.01%、N≦0.005%、O≦0.005%で
あり、かつZr(%)/6.5×N(%)の値が1〜3
であることを特徴とする磁気特性の良好な無方向
性電磁鋼板。 2 重量%で、C0.004%未満、Si3.5%以下、
Mn1.0%以下、P0.15%以下、Al0.01〜0.10%、
Zr0.01〜0.10%で、更にB0.0001〜0.0015%を含
み、残部Feおよび不可避的不純物からなり、不
可避的不純物としてのS,N,Oは、S≦0.01
%,N≦0.005%,O≦0.005%であり、かつZr
(%)/6.5×N(%)の値が1〜3であることを
特徴とする磁気特性の良好な無方向性電磁鋼板。
[Claims] 1% by weight, C less than 0.004%, Si 3.5% or less,
Mn 1.0% or less, P 0.15% or less, Al 0.01~0.10%,
Contains 0.01 to 0.10% Zr, the balance consists of Fe and unavoidable impurities, S, N as unavoidable impurities,
O is S≦0.01%, N≦0.005%, O≦0.005%, and the value of Zr (%) / 6.5 × N (%) is 1 to 3.
A non-oriented electrical steel sheet with good magnetic properties. 2 Weight%: C less than 0.004%, Si less than 3.5%,
Mn 1.0% or less, P 0.15% or less, Al 0.01~0.10%,
Contains Zr0.01~0.10%, further contains B0.0001~0.0015%, and the balance consists of Fe and unavoidable impurities, S, N, O as unavoidable impurities are S≦0.01
%, N≦0.005%, O≦0.005%, and Zr
A non-oriented electrical steel sheet with good magnetic properties, characterized in that the value of (%)/6.5×N (%) is 1 to 3.
JP15922787A 1987-06-25 1987-06-25 Isotropic electromagnetic steel plate having good magnetic characteristics Granted JPS644454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15922787A JPS644454A (en) 1987-06-25 1987-06-25 Isotropic electromagnetic steel plate having good magnetic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15922787A JPS644454A (en) 1987-06-25 1987-06-25 Isotropic electromagnetic steel plate having good magnetic characteristics

Publications (2)

Publication Number Publication Date
JPS644454A JPS644454A (en) 1989-01-09
JPH0450380B2 true JPH0450380B2 (en) 1992-08-14

Family

ID=15689115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15922787A Granted JPS644454A (en) 1987-06-25 1987-06-25 Isotropic electromagnetic steel plate having good magnetic characteristics

Country Status (1)

Country Link
JP (1) JPS644454A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870818B2 (en) * 1989-06-29 1999-03-17 新日本製鐵株式会社 Manufacturing method of full process non-oriented electrical steel sheet with excellent magnetic properties
JPH0398811U (en) * 1990-01-30 1991-10-15
JPH03114210U (en) * 1990-03-05 1991-11-22
JP5076510B2 (en) * 2007-01-17 2012-11-21 住友金属工業株式会社 Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP5126788B2 (en) * 2008-07-30 2013-01-23 新日鐵住金株式会社 Non-oriented electrical steel sheet for rotor and manufacturing method thereof
EP2840157B1 (en) * 2013-08-19 2019-04-03 ThyssenKrupp Steel Europe AG Method for producing a non-grain oriented electrical steel strip or sheet and a non-grain oriented electrical steel strip or sheet produced according to this method

Also Published As

Publication number Publication date
JPS644454A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
KR20200076517A (en) Grain oriented electrical steel sheet and method for manufacturing therof
JP3387980B2 (en) Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties
JP3378934B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and surface properties
JPH0450380B2 (en)
JPH05140649A (en) Manufacture of now-oriented silicon steel sheet excellent in magnetic property
JPH0443981B2 (en)
JP7245325B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3386742B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3430833B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties after strain relief annealing and method for producing the same
JP3348802B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JP3169490B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2746631B2 (en) High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same
JP3348811B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH06504324A (en) Method for producing electrical steel sheet with oriented particles of high magnetic flux density and excellent magnetic properties
JPH0564701B2 (en)
JP3148567B2 (en) Non-oriented electrical steel sheet excellent in iron loss after low-temperature short-time strain relief annealing and method for producing the same
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH0617548B2 (en) Non-oriented electrical steel sheet with excellent rust resistance