JPH01119620A - Manufacture of sheet metal of fe-ni magnetic alloy - Google Patents

Manufacture of sheet metal of fe-ni magnetic alloy

Info

Publication number
JPH01119620A
JPH01119620A JP27748587A JP27748587A JPH01119620A JP H01119620 A JPH01119620 A JP H01119620A JP 27748587 A JP27748587 A JP 27748587A JP 27748587 A JP27748587 A JP 27748587A JP H01119620 A JPH01119620 A JP H01119620A
Authority
JP
Japan
Prior art keywords
magnetic
annealing
thickness
cold
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27748587A
Other languages
Japanese (ja)
Inventor
Masatoshi Eto
雅俊 衛藤
Tsugio Ogura
小倉 次夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP27748587A priority Critical patent/JPH01119620A/en
Publication of JPH01119620A publication Critical patent/JPH01119620A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture a material having superior D.C. magnetic properties and reduced in high frequency loss by cold-rolling an Fe-Ni alloy to a specific thickness, applying magnetic annealing to the resulting cold-rolled sheet, and then subjecting the above to cold working and annealing treatment under respectively specified conditions to form a sheet metal of a specific thickness. CONSTITUTION:An Fe-Ni alloy is refined and cast into an ingot, which is cold- rolled to <=100mu thickness and then subjected to magnetic annealing consisting of holding in a nonoxidizing atmosphere of dry oxygen, etc., at >=about 1,000 deg.C for >=about 10min and cooling down to room temp. Subsequently, the above sheet is subjected to slight-degree cold working at <=10% draft and then to annealing treatment consisting of holding in a nonoxidizing atmosphere of dry oxygen, etc., at >=700 deg.C for >=5min and cooling down to room temp. The above slight-degree working and annealing treatment are alternately applied once or plural times, respectively, to form a sheet metal of <50mu thickness. By this method, an extra thin magnetic sheet metal (foil) material increased in average crystalline grain size and remarkably improved in D.C. and A.C. magnetic properties can be obtained.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は、特に高周波磁界の下で用いるのに適した鉄−
ニッケル(Fe−Ni)系磁性合金薄板の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to an iron-clad material particularly suitable for use under high frequency magnetic fields.
The present invention relates to a method for manufacturing a nickel (Fe-Ni) based magnetic alloy thin plate.

(発明の技術的背景と問題点〕 Fe−Ni系合金の代表的な磁性合金としてパーマロイ
がある。パーマロイはA級(70〜80%Ni、残Fe
) 、B級(40〜50%Ni、残Fe)、C級(70
〜80%Niの他に特殊成分を含む、残Fe)、D級(
35〜40%Ni、残Fe)、E級(45〜55%Ni
、残Fe)など各種のものがあり、これらはその特性に
応じて継電器、磁極片、トランス、変成器、磁気シール
ド、磁気ヘッド、磁気増幅器などに使用されている。
(Technical Background and Problems of the Invention) Permalloy is a typical magnetic alloy of Fe-Ni alloys.
), B grade (40-50% Ni, balance Fe), C grade (70
- Contains special components in addition to ~80% Ni, residual Fe), D class (
35-40% Ni, balance Fe), E grade (45-55% Ni
There are various types of ferrite, such as ferrite, residual Fe), and these are used in relays, magnetic pole pieces, transformers, transformers, magnetic shields, magnetic heads, magnetic amplifiers, etc., depending on their characteristics.

上記のようなパーマロイは規則格子変態をもっているの
で熱処理によりその磁性は非常に敏感に変化する性質を
有している。また、結晶粒径によっても磁性は著しく変
化する。
Since permalloy as described above has a regular lattice transformation, its magnetism changes very sensitively by heat treatment. Furthermore, magnetism changes significantly depending on the crystal grain size.

このようなFe−Ni系磁性材料の中で高周波磁界の下
で用いる磁性材料は、実効透磁率が高くてコア損失の小
さいこζが要求される。特に最近の各種エレクトロニク
スデバイスでは、小型化、高性能化、高信頼性が強く要
求されており、その解決法の一つにインダクター及びト
ランスに使用される磁性材料の高周波化(KHz−MH
z)が考えられている。
Among such Fe--Ni magnetic materials, a magnetic material used under a high-frequency magnetic field is required to have high effective magnetic permeability and small core loss. In particular, there is a strong demand for smaller size, higher performance, and higher reliability in various electronic devices these days, and one of the solutions is to increase the frequency of magnetic materials used in inductors and transformers (KHz-MH).
z) is considered.

そこで最近、溶湯急冷法により製造される非晶質金属の
研究開発が行われているが、この製造方法は高製造コス
トであることや非晶質構造の緩和にともなう透磁率の経
時変化などがあるため、実用化に問題がある。
Recently, research and development has been carried out on amorphous metals manufactured by the molten metal quenching method, but this manufacturing method has problems such as high production costs and changes in magnetic permeability over time due to relaxation of the amorphous structure. Therefore, there are problems in practical application.

このようなことから、従来から高周波磁界中で用いられ
る磁心として、圧延による磁性薄板が用いられており、
そしてこの磁性薄板の渦電流損失の低減を図るために板
厚をなるべく薄くする方策がとられてきた。しかし、板
厚をある程度以上薄くすると直流ヒステリシス損失がか
えって増大し、薄板化による渦電流損失低減の効果に問
題を生−じた。この点をさらに詳しく述べると、従来の
圧延材を磁性焼鈍することによって製造された金属磁心
は、その板厚が薄くなるほど、特に50μm以下になる
と保磁力が増大しかつ最大透磁率が低下してきて、直流
磁気特性が、劣化する現象がみられた。一方、圧延され
た薄板の平均結晶粒径は、板厚にほぼ比例している。
For this reason, rolled magnetic thin plates have traditionally been used as magnetic cores used in high-frequency magnetic fields.
In order to reduce the eddy current loss of this magnetic thin plate, measures have been taken to reduce the thickness of the magnetic thin plate as much as possible. However, when the thickness of the plate is reduced beyond a certain level, the DC hysteresis loss increases, which poses a problem in the effectiveness of reducing the eddy current loss by making the plate thinner. To explain this point in more detail, in metal magnetic cores manufactured by magnetically annealing conventional rolled materials, as the plate thickness becomes thinner, particularly when it becomes 50 μm or less, the coercive force increases and the maximum magnetic permeability decreases. , a phenomenon in which the DC magnetic characteristics deteriorated was observed. On the other hand, the average grain size of a rolled thin plate is approximately proportional to the thickness of the plate.

以上のことから、薄板化による直流磁気特性の劣化は、
板厚の減少にともなって結晶粒が微細化し、磁壁の運動
をピンニングする粒界の数が増大するために生じたもの
であると考えられる。したがって、板厚50μm未満の
極薄板(箔)のFe−Ni系合金(パーマロイ)の直流
及び交流磁気特性を改善するためには、結晶粒径を極力
大きくした(できればその板厚以上に大きくした)極薄
板(箔)を作る必要があることが分かった。
From the above, the deterioration of DC magnetic properties due to thinning of the plate is as follows:
This is thought to occur because the crystal grains become finer as the plate thickness decreases, and the number of grain boundaries that pin the motion of the domain wall increases. Therefore, in order to improve the DC and AC magnetic properties of an ultra-thin Fe-Ni alloy (permalloy) with a thickness of less than 50 μm, the crystal grain size should be made as large as possible (preferably larger than the plate thickness). ) It was found that it was necessary to make an ultra-thin plate (foil).

〔発明の構成〕[Structure of the invention]

本発明者らは、かかる点に鑑み本発明に至ったものであ
る。すなわち、本発明は、Fe−Ni系合金を100μ
m以下の板厚に冷間圧延後、磁性焼鈍を行い1次に加工
度10%以下の冷間加工及び非酸化性の雰囲気中で、7
00℃以上の温度に5分間以上保持する焼鈍処理をそれ
ぞれ1回若しくは複数回交互に行って、板厚50μm未
満の薄板とすることを特徴とするFe−Ni系磁性合金
薄板の製造方法及び前記冷間加工及び焼鈍処理をそれぞ
れ1回若しくは複数回交互に行って、板厚20μm以下
とすることを特徴とする前記記載のFe−Ni系磁性合
金薄板の製造方法を提供するものである。
The present inventors have arrived at the present invention in view of this point. That is, in the present invention, a Fe-Ni alloy of 100μ
After cold rolling to a plate thickness of 1.0 m or less, magnetic annealing is performed, and the first cold working is performed with a working degree of 10% or less and in a non-oxidizing atmosphere.
A method for producing a Fe-Ni magnetic alloy thin plate, characterized in that a thin plate having a thickness of less than 50 μm is obtained by performing an annealing treatment at a temperature of 00° C. or higher for 5 minutes or more, one time or a plurality of times, and the above-mentioned method. The present invention provides a method for producing the Fe--Ni magnetic alloy thin plate described above, characterized in that cold working and annealing are performed alternately once or a plurality of times to reduce the plate thickness to 20 μm or less.

〔発明の詳細な説明〕[Detailed description of the invention]

次に本発明における条件の限定理由などを以下に詳細に
述べる。
Next, the reasons for limiting the conditions in the present invention will be described in detail below.

本発明においては、まず素材となるFe−Ni系合金(
パーマロイ)を溶製後インゴットに鋳造し、これを鍛造
、熱間圧延を行った後、酸洗を行い、続いて冷間圧延及
び焼鈍を必要に応じて繰返して必要な板厚寸法に圧延し
ていく、この冷間圧延での目標板厚は、100μm以下
とする。この後、磁性焼鈍を行う。磁性焼鈍は乾燥水素
などの非酸化性の雰囲気中で、1000℃以上の温度に
10分間以上保持した後、適当な冷却速度で室温まで冷
却する。磁性焼鈍後、直流及び交流磁気特性を改善する
ためにさらに軽加工・焼鈍処理を行う。すなわち磁性焼
鈍後の材料に加工度10%以下の軽度の冷間加工を施し
、再結晶焼鈍すると結晶は成長して、組織は粗大結晶粒
によって占められる。粗大結晶粒の成長のための必要条
件は与えられた冷間加工エネルギーが、結晶成長を行う
に十分であって、しかもなるべく核発生が少なくなるよ
う、低加工度にすることである。また、軽加工・焼鈍処
理時の熱処理は、乾燥水素などの非酸化性の雰囲気中で
700℃以上の温度に5分間以上保持し、適当な冷却速
度で室温まで冷却することが望ましい。この熱処理は、
必要に応じて前記磁性焼鈍と同様な条件で行い、補完的
な磁性焼鈍を兼ねることもできる。以上の軽加工・焼鈍
処理をそれぞれ1回若しくは、複数回交互に行うことに
より、平均結晶粒径が大きい、好ましくはその板厚以上
に大きな結晶粒径をもつ極薄板(箔)のFe−Ni系合
金(パーマロイ)を得ることができる。このようにして
直流及び交流磁気特性を著しく改善した極薄板(箔)磁
性材を製造することができる。
In the present invention, first, the material Fe-Ni alloy (
Permalloy) is melted and cast into an ingot, which is then forged, hot rolled, pickled, and then cold rolled and annealed as necessary to achieve the required thickness. The target plate thickness in this cold rolling is 100 μm or less. After this, magnetic annealing is performed. Magnetic annealing is performed by holding the material at a temperature of 1000° C. or higher for 10 minutes or more in a non-oxidizing atmosphere such as dry hydrogen, and then cooling it to room temperature at an appropriate cooling rate. After magnetic annealing, further light processing and annealing treatment is performed to improve the DC and AC magnetic properties. That is, when the material after magnetic annealing is subjected to mild cold working with a working degree of 10% or less and recrystallization annealing is performed, crystals grow and the structure is dominated by coarse crystal grains. The necessary conditions for the growth of coarse grains are that the applied cold working energy is sufficient for crystal growth, and that the degree of working is low so that nucleation is minimized. Further, in the heat treatment during light processing and annealing treatment, it is desirable to maintain the temperature at 700° C. or higher for 5 minutes or more in a non-oxidizing atmosphere such as dry hydrogen, and cool it to room temperature at an appropriate cooling rate. This heat treatment
If necessary, it can be performed under the same conditions as the magnetic annealing described above to serve as complementary magnetic annealing. By performing the above light processing and annealing treatments once or multiple times, the Fe-Ni sheet (foil) can be made into an ultrathin sheet (foil) with a large average crystal grain size, preferably larger than the sheet thickness. system alloy (permalloy) can be obtained. In this way, an ultra-thin sheet (foil) magnetic material with significantly improved DC and AC magnetic properties can be produced.

本発明のFe−Ni系合金は上記のようにパーマロイを
包括するものであるが、磁気特性や耐食性、耐摩耗性等
を改善するために合金成分(例えば、Cr、Mo、W、
Co、Ca、Mn、Cu、V、Nb、Ta、Ti、AI
、Si%Mg、希土類元素等)を総量で10%以下含有
する合金は当然上記Fe−Ni系合金に含まれるもので
ある。
The Fe-Ni alloy of the present invention includes permalloy as described above, but in order to improve magnetic properties, corrosion resistance, wear resistance, etc., alloy components (such as Cr, Mo, W,
Co, Ca, Mn, Cu, V, Nb, Ta, Ti, AI
, Si%Mg, rare earth elements, etc.) in a total amount of 10% or less are naturally included in the above-mentioned Fe-Ni alloys.

なお、本発明において薄板又は極薄板と記載しているも
のは箔を包含し、板厚は箔の厚さをも意味している。そ
れは、板厚100μm以下あるいは20μm以下の記載
から自ずと明らかである。
In addition, in the present invention, what is described as a thin plate or an extremely thin plate includes foil, and the plate thickness also means the thickness of the foil. This is obvious from the description that the plate thickness is 100 μm or less or 20 μm or less.

〔発明の効果〕〔Effect of the invention〕

本発明は、冷間圧延材をそのまま磁性焼鈍するのみの通
常の製造行程では得られない優れた直流磁気特性と高周
波損失の小さい材料が得られ、このような本発明の開発
によって電子機器の小型化及び性能の向上に著しく貢献
することができる。
The present invention makes it possible to obtain a material with excellent DC magnetic properties and low high-frequency loss that cannot be obtained through the normal manufacturing process of magnetically annealing a cold-rolled material as it is. This can significantly contribute to the improvement of optimization and performance.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

冷間圧延によって板厚100μm以下(50μm〜10
0μm、好ましくは20μm超〜1oOμm)としたF
e−Ni系パーマロイ合金に磁性焼鈍を施した後、軽加
工・焼鈍処理をそれぞれ1回若しくは複数回交互に繰返
して、板厚を20μmにした。磁性焼鈍条件は、乾燥水
素雰囲気中で1100℃1時間加熱後炉冷する条件で行
った。
The plate thickness is 100 μm or less (50 μm to 10 μm) by cold rolling.
0 μm, preferably more than 20 μm to 100 μm)
After performing magnetic annealing on the e-Ni-based permalloy alloy, the light working and annealing treatments were each repeated one or more times alternately to obtain a plate thickness of 20 μm. The magnetic annealing conditions were heating at 1100° C. for 1 hour in a dry hydrogen atmosphere, followed by furnace cooling.

軽加工・焼鈍処理の熱処理も磁性焼鈍条件と同様の条件
とした。このようにして作製した材料より、磁気特性測
定用の10φ−6φリング試料をフォトエツチング法に
より作製した。本実施例に用いたFe−Ni系合金は、
45Ni−FeパーマロイB系合金、8ON、i  5
Mo−Fe及び78Ni −4M o −5Cu −F
 eのパーマロイC系合金である。
The heat treatment for light processing and annealing was also carried out under the same conditions as the magnetic annealing conditions. From the material thus produced, a 10φ-6φ ring sample for measuring magnetic properties was fabricated by photoetching. The Fe-Ni alloy used in this example is
45Ni-Fe permalloy B alloy, 8ON, i5
Mo-Fe and 78Ni-4Mo-5Cu-F
It is a permalloy C-based alloy of e.

第1表に本発明による極薄板パーマロイの化学成分と製
造行程を示す。また、それらの磁気特性、平均結晶粒径
、励磁周波数1kHz及びLookHzにおける1周期
当りのコア損失の測定結果も第1表に併記する。また、
本発明例と比較例のコア損失の周波数依存性の一例を第
1図に示す。
Table 1 shows the chemical composition and manufacturing process of the ultra-thin permalloy plate according to the present invention. Table 1 also lists the measurement results of their magnetic properties, average crystal grain size, and core loss per cycle at excitation frequencies of 1 kHz and LookHz. Also,
FIG. 1 shows an example of the frequency dependence of the core loss of the present invention example and the comparative example.

第1表から明らかなように、本発明例のC系パーマロイ
■〜■は、比較例のC系パーマロイ0〜@に対し直流及
び交流磁気特性が優れている。第1図に示したように、
測定周波数全域にわたって、本発明例の方が比較例より
も、低コア損失となっている。同様に本発明例のB系パ
ーマロイ[相]〜0は、比較例のB系パーマロイ[相]
〜[相]に対し、直流及び交流磁気特性が優れている。
As is clear from Table 1, the C-based permalloys 1 to 2 of the examples of the present invention are superior to the C-based permalloys 0 to 2 of the comparative examples in direct current and alternating current magnetic properties. As shown in Figure 1,
The core loss of the example of the present invention is lower than that of the comparative example over the entire measurement frequency range. Similarly, the B-based permalloy [phase] to 0 of the present invention example is the B-based permalloy [phase] of the comparative example.
~[Phase] Excellent DC and AC magnetic properties.

本発明例■、■〜■及び■〜◎は、軽加工・焼鈍処理を
2回繰返したもので、軽加工・焼鈍処理を1回しか行っ
ていない■、■及び[相]よりも、平均結晶粒径が粗大
化しており、直流及び交流磁気特性が優れている。
Inventive examples ■, ■~■, and ■~◎ are those in which the light working and annealing treatment was repeated twice, and the average The crystal grain size is coarse, and the DC and AC magnetic properties are excellent.

したがって、軽加工・焼鈍処理を複数回繰返すことで、
直流及び交流磁気特性の一層の改善効果が得られる。比
較例[相]、O2[相]及び[相]は、加工度が50%
と大きいため、熱処理によって結晶粒の粗大化が起こら
ず、直流及び交流磁気特性の改善効果が得られていない
Therefore, by repeating light processing and annealing multiple times,
Further improvements in DC and AC magnetic properties can be obtained. Comparative examples [phase], O2 [phase] and [phase] have a working degree of 50%
Because of the large size, the crystal grains do not coarsen due to heat treatment, and the effect of improving DC and AC magnetic properties is not obtained.

軽加工・焼鈍処理における加工度の制限について以下に
示す。磁性焼鈍を行った、78Ni−4M o −5C
u −F eのパーマロイC系合金に対し。
The limitations on the degree of processing in light processing and annealing are shown below. 78Ni-4Mo-5C subjected to magnetic annealing
For permalloy C-based alloys of u - Fe.

2〜95%の加工度で冷間圧延を施し、最終板厚を50
μmとした後、磁性焼鈍を行った材料の加工度と平均結
晶粒径の関係を第2図に示す。第2図より加工度が10
%超えた材料では、板厚以上の粗大な結晶粒は得られず
、加工度10%以下の軽度の圧延を行い、焼鈍した材料
にその板厚を超える結晶成長が生じている。
Cold rolling is performed with a working degree of 2 to 95%, and the final thickness is 50%.
FIG. 2 shows the relationship between the working degree and the average grain size of the material which was magnetically annealed after being reduced to μm. From Figure 2, the processing degree is 10.
%, coarse grains larger than the plate thickness cannot be obtained, and crystal growth exceeding the plate thickness occurs in the annealed material after light rolling with a workability of 10% or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明例及び比較例におけるコア損失の周波
数依存性示すグラフであり、第2図は、78 N i 
−4M o −5Cu −F eのパーマロイC系合金
の加工度と焼鈍後の材料の平均結晶粒径の関係を示すグ
ラフである。 0.1    1    10   100   10
00周波数ににHz) 第1図
FIG. 1 is a graph showing frequency dependence of core loss in the present invention example and comparative example, and FIG. 2 is a graph showing the frequency dependence of core loss in the present invention example and comparative example.
It is a graph showing the relationship between the workability of a permalloy C-based alloy of -4Mo-5Cu-Fe and the average grain size of the material after annealing. 0.1 1 10 100 10
00 frequency to Hz) Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)Fe−Ni系合金を100μm以下の板厚に冷間
圧延後、磁性焼鈍を行い、次に加工度10%以下の冷間
加工及び非酸化性の雰囲気中で、700℃以上の温度に
5分間以上保持する焼鈍処理をそれぞれ1回若しくは複
数回交互に行って、板厚50μm未満の薄板とすること
を特徴とするFe−Ni系磁性合金薄板の製造方法。
(1) After cold rolling the Fe-Ni alloy to a thickness of 100 μm or less, magnetic annealing is performed, and then cold working with a workability of 10% or less and a temperature of 700°C or more in a non-oxidizing atmosphere. 1. A method for producing a thin Fe--Ni magnetic alloy sheet, characterized in that a thin sheet having a thickness of less than 50 .mu.m is obtained by performing annealing treatment for 5 minutes or more, one time or a plurality of times.
(2)前記冷間加工及び焼鈍処理をそれぞれ1回若しく
は複数回交互に行って、板厚20μm以下とすることを
特徴とする特許請求の範囲第1項に記載するFe−Ni
系磁性合金薄板の製造方法。
(2) The Fe-Ni film described in claim 1 is characterized in that the cold working and annealing treatments are each performed once or multiple times alternately to reduce the plate thickness to 20 μm or less.
A method for manufacturing a magnetic alloy thin plate.
JP27748587A 1987-11-04 1987-11-04 Manufacture of sheet metal of fe-ni magnetic alloy Pending JPH01119620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27748587A JPH01119620A (en) 1987-11-04 1987-11-04 Manufacture of sheet metal of fe-ni magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27748587A JPH01119620A (en) 1987-11-04 1987-11-04 Manufacture of sheet metal of fe-ni magnetic alloy

Publications (1)

Publication Number Publication Date
JPH01119620A true JPH01119620A (en) 1989-05-11

Family

ID=17584252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27748587A Pending JPH01119620A (en) 1987-11-04 1987-11-04 Manufacture of sheet metal of fe-ni magnetic alloy

Country Status (1)

Country Link
JP (1) JPH01119620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196838A (en) * 2014-03-31 2015-11-09 Dowaメタルテック株式会社 PRODUCTION METHOD OF Fe-Ni ALLOY MATERIAL, METHOD OF MANUFACTURING SOFT MAGNETIC COMPONENT, Fe-Ni ALLOY AND SOFT MAGNETIC COMPONENT MATERIAL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196838A (en) * 2014-03-31 2015-11-09 Dowaメタルテック株式会社 PRODUCTION METHOD OF Fe-Ni ALLOY MATERIAL, METHOD OF MANUFACTURING SOFT MAGNETIC COMPONENT, Fe-Ni ALLOY AND SOFT MAGNETIC COMPONENT MATERIAL

Similar Documents

Publication Publication Date Title
KR910003977B1 (en) Fe-base soft magnetic alloy and method of producing same
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JPH044393B2 (en)
JP5543970B2 (en) Magnetostrictive material and method for preparing the same
US5547520A (en) Wear-resistant high permeability magnetic alloy and method of manufacturing the same
JPH01242755A (en) Fe-based magnetic alloy
JP2535963B2 (en) Silicon steel sheet having excellent magnetic properties and method for producing the same
EP0049141B1 (en) Iron-chromium-base spinodal decomposition-type magnetic (hard or semi-hard) alloy
JP2667402B2 (en) Fe-based soft magnetic alloy
KR920004678B1 (en) METHOD FOR MANUFACTURING Ni-Fe ALLOY SHEET HAVING EXCELLENT DC MAGNETIC PROPERTY AND EXCELLENT AC MAGNETIC PROPERTY
JPH01247557A (en) Manufacture of hyperfine-crystal soft-magnetic alloy
JP2005520931A (en) Iron-based amorphous alloy with linear BH loop
JPS6312936B2 (en)
JP2576621B2 (en) Silicon steel sheet with excellent magnetic properties
JPH01119620A (en) Manufacture of sheet metal of fe-ni magnetic alloy
JP2718261B2 (en) Magnetic alloy and method for producing the same
JPH02213421A (en) Production of soft-magnetic steel stock
JP2812574B2 (en) Low frequency transformer
JPH02274844A (en) Silicon steel sheet excellent in magnetic property and its production
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPS62188756A (en) Grain-oriented foil of high saturation magnetic flux density and its production
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH03199311A (en) Production of thin fe-ni magnetic alloy sheet
JPH08948B2 (en) Fe-based magnetic alloy
JPH02194154A (en) Manufacture of water-resistant high permeability alloy