JPH03122237A - Ni-fe serite high permeability magnetic alloy - Google Patents

Ni-fe serite high permeability magnetic alloy

Info

Publication number
JPH03122237A
JPH03122237A JP1260218A JP26021889A JPH03122237A JP H03122237 A JPH03122237 A JP H03122237A JP 1260218 A JP1260218 A JP 1260218A JP 26021889 A JP26021889 A JP 26021889A JP H03122237 A JPH03122237 A JP H03122237A
Authority
JP
Japan
Prior art keywords
magnetic
alloy
present
permeability
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1260218A
Other languages
Japanese (ja)
Other versions
JPH0699767B2 (en
Inventor
Tadashi Inoue
正 井上
Masayuki Kinoshita
木下 正行
Tomoyoshi Okita
大北 智良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1260218A priority Critical patent/JPH0699767B2/en
Publication of JPH03122237A publication Critical patent/JPH03122237A/en
Publication of JPH0699767B2 publication Critical patent/JPH0699767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the DC-AC magnetic chracteristics in the magnetic alloy and to improve its shielding capacity by specifying the amounts of Si, Ni, Mo, Mn, Fe and B to be added under the optimum regulation of inevitable impurities and regulating the componental balance of each amt. into a specified range. CONSTITUTION:The magnetic alloy contains, by weight, 77.5 to 79.5% Ni, 3.8 to 4.6% Mo, 1.8 to 2.5% Cu, 0.1 to 1.10% Mn, 0.2 to 1.0% Si, <=0.010% P, <=0.0020% S, <=0.0030% O, <=0.0010% N and <=0.020% C, furthermore contains B in the range of the inequality I and the balance Fe and contains Ni, Mo, Cu, Mn and Fe in the range satisfying the inequality II. In the inequalities, the ones in [ ] are expressed by wt.%. B is essential for improving the magnetic permeability, and when [B] and [N] lie in the above range, high magnetic permeability can be obtd. P is controlled since the hot workability is deteriorated in the case of >0.010%. Si improves the AC characteristics without deteriorating the DC characteristics, but in the case of >=1.0%, the DC characteristics are deteriorated.

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) 本発明は、Ni−Fe系高透磁率磁性合金に係り、その
磁気特性を改良し、特に優れた直流磁気特性および卓越
した交流磁気特性を合わせ持ち、更に熱間加工性の良好
な磁性合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial Field of Application) The present invention relates to a Ni-Fe based high permeability magnetic alloy, and the present invention relates to a Ni-Fe based high permeability magnetic alloy, which improves the magnetic properties thereof, and achieves especially excellent direct current magnetic properties and outstanding The present invention relates to a magnetic alloy that has excellent AC magnetic properties and also has good hot workability.

(従来の技術) JIS  PC相当のNi−Fe系磁性合金は、現在磁
気へラドケースおよび各種コア、変成磁心、各種磁気シ
ールド材などのようにその利用範囲が極めて広い磁性材
料である。即ちこのようなPCパーマロイは高透磁率で
、低保磁力であることが特徴であり、今日実用化されて
いるものは、80%N+−5%Mo−Fe(スーパーマ
ロイ)や、77%Ni5%Cu−4%Mo−Fe (M
o、 Cuパーマロイ)などであり、それら合金で通常
径られる透磁率のレベルは、直流特性でみると初透磁率
(以下μiという)が150,000、最大透磁率(以
下μmという)が300.000程度である。
(Prior Art) A Ni-Fe based magnetic alloy equivalent to JIS PC is a magnetic material that is currently used in an extremely wide range of applications such as magnetic helad cases, various cores, metamorphic cores, and various magnetic shielding materials. In other words, such PC permalloy is characterized by high magnetic permeability and low coercive force, and those in practical use today include 80%N+-5%Mo-Fe (supermalloy) and 77%Ni5. %Cu-4%Mo-Fe (M
In terms of DC characteristics, the initial magnetic permeability (hereinafter referred to as μi) is 150,000, and the maximum magnetic permeability (hereinafter referred to as μm) is 300. It is about 000.

また、交流特性でみると、たとえば、板厚0.2鶴での
イングクタンス透磁率μiはtoooo程度である。
Furthermore, in terms of AC characteristics, for example, the inductance permeability μi at a plate thickness of 0.2 mm is about too much.

ところが、昨今におけるエレクトロニクスの発達から各
種機器の小型高性能化が進み、上記したような磁性合金
の特性についてもより一層の向上が望まれている。即ち
このような要求に対して上記成分系の磁性合金における
直流磁気特性を不純物元素の低減およびCrの添加によ
り向上させた特開昭62−227053および特開昭6
2−227054が発表されている。
However, with the recent development of electronics, various devices have become smaller and more sophisticated, and there is a desire for further improvements in the properties of magnetic alloys as described above. In other words, in response to such demands, Japanese Patent Application Laid-Open No. 62-227053 and Japanese Patent Application Laid-Open No. 62-62 improved the DC magnetic properties of magnetic alloys with the above-mentioned composition system by reducing impurity elements and adding Cr.
2-227054 has been announced.

又、特開昭63−149361では上記成分系の合金に
製造時の熱間加工性を改善するためBを添加した材料に
おいて、磁性焼鈍時に脱Bを行ない直流磁性特性を改善
することが発表されている。
Furthermore, in JP-A No. 63-149361, it was announced that B was added to the above-mentioned alloy to improve hot workability during manufacturing, and the DC magnetic properties were improved by removing B during magnetic annealing. ing.

一方、上記成分系ではNiが約80wt%程度含まれて
いて高価なため、成分系を根本的に見直し、Niを低減
し、代りにNiより安価なC11% Mnを添加して高
い初透磁率を達成した特公昭62−13420、更には
この特公昭62−13420の技術に加えて適量のへ2
添加を行ない酸化物系介在物を減少し直流磁気特性を高
めるという特開昭63247336および特開昭63−
247339の技術も開発されている。特にこれら特開
昭63−247336および特開昭63−247339
の提案による合金のNiは最高で426,000という
高いレベルである。
On the other hand, the above component system contains approximately 80 wt% Ni and is expensive, so we fundamentally reviewed the component system, reduced the Ni content, and added C11% Mn, which is cheaper than Ni, to achieve a high initial permeability. Tokuko Sho 62-13420, which achieved
Japanese Unexamined Patent Publications No. 63247336 and No. 63-2003 disclose that additives are added to reduce oxide inclusions and improve direct current magnetic properties.
247339 technology has also been developed. In particular, these JP-A-63-247336 and JP-A-63-247339
The Ni content of the alloy proposed by J.D. is as high as 426,000.

更に上記したような磁気特性向上の要望に加え、最近で
は所要の特性をより低コストに製造することも求められ
ており、このような観点からは特開平1−100232
の技術も提案されている。即ちこの技術は通常のMoス
ス−−マロイにStを1〜4wt%添加し、磁気焼鈍温
度を1030 ’C以下といった比較的低い温度によっ
ても充分に満足する50Hzでの透磁率および磁気シー
ルド性を得ることを特徴としている。
Furthermore, in addition to the above-mentioned demand for improved magnetic properties, there is also a recent demand for manufacturing with the required properties at a lower cost, and from this point of view, Japanese Patent Application Laid-Open No. 1-100232
techniques have also been proposed. In other words, this technology adds 1 to 4 wt% of St to ordinary Mo-su-malloy to achieve sufficiently satisfactory magnetic permeability and magnetic shielding properties at a relatively low magnetic annealing temperature of 1030'C or less. It is characterized by obtaining.

(発明が解決しようとする課題) 前記した特開昭62−227053および同22705
4で特徴としている不純物低減、Cr添加によっても最
終の水素雰囲気での熱処理(1100°C×3時間)後
の直流磁気特性は、例えばNiで高々100,000で
あり、それ以上の磁気特性が要求される用途に対しては
不適とならざるを得ない。
(Problem to be solved by the invention) The above-mentioned Japanese Patent Application Laid-open No. 62-227053 and No. 22705
Even with the reduction of impurities and the addition of Cr, which are featured in 4, the DC magnetic properties after the final heat treatment in a hydrogen atmosphere (1100°C x 3 hours) are at most 100,000 for Ni, for example, and even higher magnetic properties are possible. It has no choice but to be unsuitable for the required uses.

また、特開昭62−227054の提案では、通常のN
i −Fe−Mo系またはNi −Fe−Mo−Cu系
の成分に新たにCrを添加するためコスト高となる。
In addition, in the proposal of JP-A-62-227054, the normal N
Since Cr is newly added to the i-Fe-Mo or Ni-Fe-Mo-Cu components, the cost is high.

方特開昭62−227053の提案ではこのCr添加に
よるコスト高に加え、Mnを通常レベルより高(する(
1.2〜10−t%とする)ため熱間加工性が極めて悪
くなるという製造上の問題も有している。
In the proposal of JP-A No. 62-227053, in addition to the high cost due to the addition of Cr, the Mn content was increased (to be higher than the normal level).
1.2 to 10-t%), there is also a manufacturing problem in that hot workability becomes extremely poor.

なお上記した2つの提案では何れもBの添加が行なわれ
ているが、この場合のB添加は熱間加工性および打抜き
性を改善するためのもので、これらの提案で意図するB
の添加だけでは磁気特性の明らかな向上は見られず、逆
に劣化するケースも認められる。
In both of the above two proposals, B is added, but the B addition in this case is to improve hot workability and punchability, and the B intended in these proposals is
No obvious improvement in magnetic properties is observed with just the addition of , and on the contrary, there are cases in which they deteriorate.

更に、特開昭63−149361では、磁気性を脱B処
理により改善するものであるが、この処理の後で得られ
る直流磁気特性はNiで高々75.000であり、この
レベルは通常のNi−Fe−Mo −Cu系合金で得ら
れるレベルである。従ってこの技術ではそれ以上の磁気
特性が要求される用途に対しては不適とならざるを得な
い。
Furthermore, in JP-A-63-149361, the magnetic properties are improved by B removal treatment, but the DC magnetic properties obtained after this treatment are at most 75.000 for Ni, which is a level higher than that of ordinary Ni. -Fe-Mo - This is the level obtained with Cu-based alloys. Therefore, this technique is unsuitable for applications requiring higher magnetic properties.

なお、前記した特開昭62−227053、および同2
27054、特開昭63−149361では、共通して
交流磁気特性の向上は未だ達成されていない。
In addition, the above-mentioned JP-A-62-227053 and JP-A-62-227053
No. 27054 and JP-A No. 63-149361 have not yet achieved improvement in AC magnetic properties in common.

一方、特公昭62−13420、特開昭63−2473
36および同247339の技術によっては高い直流磁
気特性を有するパーマロイを提供し得るが、Mn、 C
uを高めるため製造時の熱間加工性が本質的に低くなる
という製造上の問題点を有している。又この提案で得ら
れる合金の飽和磁束密度は、例えばB、。(10エルス
テツドでの磁束密度)で見ると、高々5000ガウスで
あり、スーパーマロイやMo5Cuパーマロイにおける
B、。の7000〜8000ガウスに比較すると低い。
On the other hand, JP 62-13420, JP 63-2473
36 and 247339 can provide permalloy with high DC magnetic properties, but Mn, C
There is a manufacturing problem in that the hot workability during manufacturing essentially decreases because u is increased. Also, the saturation magnetic flux density of the alloy obtained by this proposal is, for example, B. (Magnetic flux density at 10 oersted) is at most 5000 Gauss, which is B in supermalloy and Mo5Cu permalloy. This is low compared to 7000-8000 Gauss.

このことは、この合金がスーパーマロイやMo、 Cu
パーマロイに比し低い外部磁場で材料内の磁束が飽和し
てしまうことを意味し、シールド材料として用いる場合
において外部磁場が比較的高い場所での使用は不適とな
らざるを得ない。さらには、この合金の交流磁気性質は
、スーパーマロイやMo、Cuパーマロイに比し低いと
いう欠点を有している。
This means that this alloy is supermalloy, Mo, Cu
This means that the magnetic flux within the material is saturated with an external magnetic field that is lower than that of permalloy, and when used as a shielding material, it is unsuitable for use in places where the external magnetic field is relatively high. Furthermore, the AC magnetic properties of this alloy are lower than those of supermalloy, Mo, and Cu permalloy.

なお、上記した特開平1−100232の技術では、S
iを多く添加するため加工性が劣化し、製造性が悪くな
るという不利を有している。またこの技術では50Hz
のシールド性能は所要のレベルに達しているが、直流で
のシールド性能がやや劣るという欠点を有している。
In addition, in the technique of JP-A-1-100232 mentioned above, S
Since a large amount of i is added, processability deteriorates and manufacturability is disadvantageous. Also, with this technology, 50Hz
Although its shielding performance has reached the required level, it has the disadvantage that its shielding performance with direct current is somewhat inferior.

「発明の構成」 (課題を解決するための手段) 本発明は上記したような従来の技術における問題点を解
決するように検討を重ねて創案されたものであって、熱
間加工性が良好で、特に優れた交流磁気特性と共に優れ
た直流磁気特性の両者を合わせて有し、更には従来と同
じレベルの要求磁気特性を得るのに、磁気焼鈍温度を従
来よりも100°C程度低温化することをも可能ならし
めたもので、磁気特性に対するNi、 Mo、 Cu、
 Feなどの主要成分による影響を更に検討し、そこで
得られた特性と成分との関係をB添加系にまで拡大して
実験、研究を行なった結果、本発明を完成した。即ち本
発明は以下の如くである。
"Structure of the Invention" (Means for Solving the Problems) The present invention was created after repeated studies to solve the problems in the conventional technology as described above, and has good hot workability. It has both particularly excellent AC magnetic properties and excellent DC magnetic properties, and furthermore, in order to obtain the same level of required magnetic properties as conventional ones, the magnetic annealing temperature has been lowered by about 100°C than conventional ones. Ni, Mo, Cu,
The present invention was completed by further examining the influence of major components such as Fe, and by expanding the relationship between the characteristics and components obtained thereto to include B-added systems and conducting experiments and research. That is, the present invention is as follows.

(1)  Ni : 77.5〜79゜5wt%、Mo
 : 3.8〜4,6 wt%、Cu : 1.8〜2
.5 wt%、Mn : 0.0020wt%、Si 
: 0.2〜1.0 wt%、P : 0.010 w
t%以下、S : 0.0020wt%以下、O: 0
.0030wt%以下、N : 0.0010wt%以
下、C: 0.020匈t%以下を含有し、かつBを 4 を含有し、残部が基本的にFeからなり、しかもNi、
 Mo、 Cu、 Mn5Feが(但し〔〕内はwt%
) を満たす範囲でそれぞれ含有されたことを特徴とするN
i −Fe系高透磁率磁性合金。
(1) Ni: 77.5-79°5wt%, Mo
: 3.8-4.6 wt%, Cu: 1.8-2
.. 5 wt%, Mn: 0.0020 wt%, Si
: 0.2-1.0 wt%, P: 0.010 w
t% or less, S: 0.0020wt% or less, O: 0
.. 0.0030wt% or less, N: 0.0010wt% or less, C: 0.020wt% or less, and contains 4 B, the balance basically consisting of Fe, and Ni,
Mo, Cu, Mn5Fe (however, the values in brackets are wt%)
) N characterized by being contained within a range that satisfies the following.
i-Fe-based high permeability magnetic alloy.

(2)前項に記載の成分組成を有し、かつ磁気焼鈍後で
オーステナイト粒界およびその近傍でのBilが10〜
50atm%であることを特徴とするNi −Fe系高
透磁率磁性合金。
(2) It has the component composition described in the previous section, and after magnetic annealing, Bi at the austenite grain boundary and its vicinity is 10-10.
A Ni-Fe based high permeability magnetic alloy characterized by having a magnetic content of 50 atm%.

(作用) 本発明によるものは、不純物元素の適正制御のもとで、
熱間加工性を良好ならしめるレベルとして、Si、 N
i、 Mo、 Cu、 Mn、 FeおよびBの各添加
量を適正化し、かつ容量の成分バランスを特定範囲内に
制御することによって従来の同系統によるMo、Cuパ
ーマロイやスーパーマロイで見られなかった優れた直流
磁気特性と、優れた交流磁気特性を合わせ持ち、さらに
は従来と同じレベルの要求磁気特性を得るのに磁気焼鈍
温度を従来よりも100°C程度低温化することを可能
とする。
(Function) The device according to the present invention, under proper control of impurity elements,
As a level that makes hot workability good, Si, N
By optimizing the amounts of i, Mo, Cu, Mn, Fe, and B added, and controlling the component balance of capacity within a specific range, we were able to achieve improvements that could not be seen in conventional Mo, Cu permalloys or supermalloys made from the same system. It has both excellent direct current magnetic properties and excellent alternating current magnetic properties, and furthermore, it is possible to lower the magnetic annealing temperature by about 100°C compared to the conventional method while obtaining the same level of required magnetic properties as the conventional method.

即ち、先ず本発明で意図する磁気特性の向上は合金中不
純物レベルの制御のもとで達成され、Si、S、0、N
、Cの限度理由はwt%(以下単に%という)で以下の
如くである。
That is, first, the improvement in magnetic properties intended in the present invention is achieved by controlling the level of impurities in the alloy.
, C is limited by wt% (hereinafter simply referred to as %) and is as follows.

Sは、熱間加工性に有害であり、かつ硫化物の形成を通
じて最終の水素焼鈍時における粒成長を阻害し、焼鈍後
の粒径が小さくなるため透磁率が向上しないという理由
から磁気特性に対しては極めて有害な元素である。この
slが0.0020%を超えると、以下に示すようなN
is Mo、、Cu、 Fe、 B量の適正化を計って
も本発明で目的とするような磁気特性の向上が計れず、
又熱間加工性が著しく悪くなるため0.0020%を上
限とすることが必要である。なお直流および交流での透
磁率を更に向上するためには0.0005%以下がより
望ましい。
S is harmful to hot workability, inhibits grain growth during final hydrogen annealing through the formation of sulfides, and has a negative effect on magnetic properties because the grain size after annealing becomes small and magnetic permeability does not improve. It is an extremely harmful element. When this sl exceeds 0.0020%, N
Even if we try to optimize the amounts of Mo, Cu, Fe, and B, we cannot improve the magnetic properties as aimed at in the present invention.
Further, since hot workability is significantly deteriorated, it is necessary to set the upper limit to 0.0020%. Note that in order to further improve the magnetic permeability in direct current and alternating current, it is more desirable that the content be 0.0005% or less.

Oは、本発明で対象とする合金の中では酸化物系介在物
として存在し、その量が多いと最終の水素焼鈍時におけ
る粒成長を阻害し、焼鈍後の粒径が小さいためi3磁率
が向上しないことから磁気特性に対し極めて有害な元素
である。即ちこのONが0.0030%を超えると上記
同様にN1% Mo、′Cu、 Fe、B量の適正化を
図っても本発明で意図する磁気特性向上が計れないため
0.0030%を上限とした。なお直流での透磁率向上
のためには0.0010%以下がより好ましい。
O exists as an oxide inclusion in the alloy targeted by the present invention, and if its amount is large, it inhibits grain growth during the final hydrogen annealing, and the grain size after annealing is small, resulting in a decrease in i3 magnetic property. Since it does not improve magnetic properties, it is an extremely harmful element to magnetic properties. That is, if this ON exceeds 0.0030%, the magnetic properties cannot be improved as intended by the present invention even if the amounts of N1% Mo, 'Cu, Fe, and B are optimized as described above, so 0.0030% is the upper limit. And so. Note that in order to improve magnetic permeability in direct current, it is more preferably 0.0010% or less.

Nは、B添加を基本とした合金においては、Bと容易に
結合しBNを形成するため有効Blが低下する。また形
成されたBNにより磁気特性が著しく劣化せしめられる
などの理由より合金中に多く含有されると悪影響を及ぼ
す。即ちこのNが0.0010%を越えると上記のよう
な理由から磁気特性劣化が著しくなるので0.0010
%を上限とした。
In an alloy based on B addition, N easily combines with B to form BN, resulting in a decrease in effective Bl. Furthermore, since the magnetic properties are significantly deteriorated by the formed BN, if it is contained in a large amount in the alloy, it will have an adverse effect. In other words, if this N exceeds 0.0010%, the deterioration of magnetic properties will be significant for the reasons mentioned above.
The upper limit was %.

なお交流での透磁率のさらなる向上のためにはo、oo
os%以下がより好ましい。
In addition, in order to further improve the magnetic permeability in AC, o, oo
More preferably, it is os% or less.

Cは、本発明の対象合金の中では侵入型元素として存在
し、その量が多いと透磁率が低下するので磁気特性に対
して有害な元素であり、0.020%を越えるとこのよ
うな理由により磁気特性劣化が著しくなるため、0.0
20%を上限と定めた。
C exists as an interstitial element in the target alloy of the present invention, and if its amount is large, the magnetic permeability decreases, so it is a harmful element to magnetic properties, and if it exceeds 0.020%, this element For some reason, the deterioration of magnetic properties becomes significant, so 0.0
The upper limit was set at 20%.

さて、本発明では上記のような不純物元素の制御下にお
いて、Ni、 Mo、Cu、 FeおよびBの各添加量
を適正化し、又容量の成分バランスを特性範囲内として
始めてその目的が達成され、これらについては以下の如
くである。
Now, in the present invention, the purpose is achieved by optimizing the amounts of Ni, Mo, Cu, Fe, and B added under the control of impurity elements as described above, and by keeping the component balance of capacity within the characteristic range. These are as follows.

Niは、77.5〜79.5%の範囲で本発明の意図す
るような高い磁気特性および高いシールド特性を得しめ
る。このNiが77.5%未満または79.5%を越え
ると何れの場合においても透磁率が低下するので77.
5%を下限とし、79.5%を上限とした。
When Ni is in the range of 77.5 to 79.5%, high magnetic properties and high shielding properties as intended by the present invention can be obtained. If this Ni content is less than 77.5% or more than 79.5%, magnetic permeability will decrease in either case.
The lower limit was 5% and the upper limit was 79.5%.

Moは、3.8〜4.6%の範囲内のときに本発明の目
的する高い磁気特性および高いシールド特性を達成し得
る。即ちMoが3.8%未満または4.6%を超えると
透磁率向上が達成されないので、3.8〜4.6%とす
ることが必要である。
When Mo is in the range of 3.8 to 4.6%, the high magnetic properties and high shielding properties that are the object of the present invention can be achieved. That is, if Mo is less than 3.8% or more than 4.6%, magnetic permeability cannot be improved, so it is necessary to set it to 3.8 to 4.6%.

Cuは、Ni、 Moや他の成分が本発明の規定範囲内
にある合金において、後述するBの共存のもとで、直流
磁気特性を飛躍的に向上させ、かつ交流の実効透磁率を
も向上せしめ、しかも交流(50Hz)での角型性(B
r/8m)も向上させる効果を有する。
In alloys in which Ni, Mo, and other components are within the specified ranges of the present invention, Cu, in the coexistence of B (described later), dramatically improves the DC magnetic properties and also increases the effective magnetic permeability of AC. Furthermore, the squareness (B
r/8m) also has the effect of improving.

このようなCuの効果は、Niが77.5〜79.5%
、MO:3.8〜4.6%のときにあられれ、最適のC
ulは、1.8〜2.5%である。なおCuが1.8%
未満ではこのようなCuによる特性向上が計れず、一方
Cuが2.5%を越えると逆にこの特性が劣化するので
、Cuの範囲は1.8〜2.5%と定めた。
This effect of Cu is 77.5 to 79.5% of Ni.
, MO: 3.8-4.6%, the optimum C
ul is 1.8-2.5%. Note that Cu is 1.8%
If Cu is less than 2.5%, the characteristics cannot be improved, and if Cu exceeds 2.5%, the characteristics deteriorate, so the range of Cu was set at 1.8 to 2.5%.

Mnは、上記したMO% CLIと同様に本発明対象合
金の磁性に影響を及ぼす元素であり、このMnが1.1
0%以下でも本発明で目的とする高透磁率を達成し得る
が、1.10%を超えると斯うした透磁率向上が達成さ
れないので1.10%を上限とする。一方Mnが0.1
0%未満では熱間加工性が劣化し、好ましくないので0
.10%を下限とした。
Mn is an element that affects the magnetism of the alloy subject to the present invention, similar to the above-mentioned MO% CLI, and when Mn is 1.1
Although it is possible to achieve the high magnetic permeability targeted by the present invention even if the content is less than 0%, if it exceeds 1.10%, such an improvement in magnetic permeability cannot be achieved, so 1.10% is set as the upper limit. On the other hand, Mn is 0.1
If it is less than 0%, hot workability deteriorates and is not preferable.
.. The lower limit was set at 10%.

Bは、本発明で意図する高い透磁率を達成するためには
必須の元素である。
B is an essential element in order to achieve the high magnetic permeability intended in the present invention.

4 (〔B〕、(N)はそれぞれB、Nの合金中添加量、%
)がo、ooos〜0.0070%の範囲では本発明の
目的を有効に達成し得るが、0.0005%未満では透
磁率が向上せず、一方0.0070%を超えると透磁率
が低くなのるで、 4 の下限および上限をそれぞれ0.0005%、0.00
70%と定めた。
4 ([B] and (N) are the amounts of B and N added in the alloy, respectively, %
) is in the range of o,oos to 0.0070%, the object of the present invention can be effectively achieved, but if it is less than 0.0005%, the magnetic permeability will not improve, while if it exceeds 0.0070%, the magnetic permeability will be low. With Nanoru, the lower and upper limits of 4 are 0.0005% and 0.00, respectively.
It was set at 70%.

Pは、本発明の対象とする高Ni−Fe合金の熱間加工
性に有害な元素である。このPが0.010%を越える
と熱間加工性が悪くなるため、上限を0.010%とし
た。なお、下限は溶製上の経済性から好ましくは0.0
010%である。
P is an element harmful to the hot workability of the high Ni-Fe alloy that is the object of the present invention. If P exceeds 0.010%, hot workability deteriorates, so the upper limit was set at 0.010%. Note that the lower limit is preferably 0.0 from the economical point of view of melting.
010%.

Siは、本発明の規定範囲内の成分において、直流磁気
特性を劣化させることなく交流磁気特性、即ち交流での
実効透磁率の向上を達成する元素である。またこのSi
も適量添加により直流および交流の透磁率歪による小さ
くすることを可能とする元素である。
Si is an element that achieves improvement in alternating current magnetic properties, that is, effective magnetic permeability in alternating current, without deteriorating direct current magnetic properties, within the specified range of the present invention. Also, this Si
It is also an element that, when added in an appropriate amount, can reduce the permeability of direct current and alternating current due to distortion.

直流磁気特性を劣化させることなく上記のような交流磁
気特性を向上させるSi量は0.20〜1.00%の範
囲である。即ちSiが0.20%未満では本発明で意図
する交流磁気特性の向上が図れず、一方1.00%を超
えると直流磁気特性が劣化するため上記のような範囲と
した。
The amount of Si that improves the AC magnetic properties as described above without deteriorating the DC magnetic properties is in the range of 0.20 to 1.00%. That is, if the Si content is less than 0.20%, the AC magnetic properties intended by the present invention cannot be improved, while if it exceeds 1.00%, the DC magnetic properties deteriorate, so the above range was set.

なお本発明で意図する透磁率の歪による劣化を小さくす
るSiの添加量としては0.30%以上であることが必
要である。
Note that the amount of Si added to reduce the deterioration of magnetic permeability due to distortion as intended in the present invention needs to be 0.30% or more.

本発明の目的とする磁気特性向上のためには、上記した
S、O1C%Ni、 Mo、 CuSMn、 Bqの適
正化とSiの適量添加のもとで、Ni、 Mo、Cuお
よびFeの成分バランスを適正化することが必要である
In order to improve the magnetic properties as the object of the present invention, the component balance of Ni, Mo, Cu, and Fe must be maintained by optimizing the above-mentioned S, O1C%Ni, Mo, CuSMn, and Bq and adding an appropriate amount of Si. It is necessary to optimize the

即ちこの成分バランスを規定するパラメータXは、にお
いて、3.2〜3.8を、かつ4 4 が0.0005〜0.0070%をあり、磁気焼鈍後に
おける直流の初透磁率、500ミリガウスの直流磁界に
対する磁気遮蔽度、I KHzでの実効透磁率、50H
zでの角型性といった直流および交流の磁気特性を飛躍
的に向上させることができる。
That is, the parameter Magnetic shielding degree against DC magnetic field, effective magnetic permeability at I KHz, 50H
Direct current and alternating current magnetic properties such as squareness in z can be dramatically improved.

即ち上記のような成分規定および成分バランスの規定に
より、後述する実施例に示すように、初透磁率μiは3
00,000以上、500ミリガウスの直流磁界に対す
る磁気遮蔽度を250以上、板厚0.20mにおけるI
KHzでの実効透磁率を15.000以上、5011z
での角型性を0.90以上とそれぞれ向上することがで
きる。
That is, according to the above-mentioned component specifications and component balance specifications, the initial magnetic permeability μi is 3, as shown in the examples described later.
00,000 or more, magnetic shielding degree against a DC magnetic field of 500 milligauss is 250 or more, and I at a plate thickness of 0.20 m.
Effective magnetic permeability at KHz is 15.000 or more, 5011z
The squareness can be improved to 0.90 or more.

本発明合金において磁気特性を更に高めるためには、最
終の磁性を高めるための熱処理後のオーステナイト結晶
粒界およびその近傍でのB量がIO〜50atm%を、
より高い初透磁率とより高い磁気遮蔽度、比較的高い実
効透磁率、比較的高い角型性を合わせ持つことができる
In order to further improve the magnetic properties of the alloy of the present invention, it is necessary to increase the amount of B at the austenite grain boundaries and their vicinity after heat treatment to increase the final magnetism to IO ~ 50 atm%.
It can have higher initial magnetic permeability, higher degree of magnetic shielding, relatively high effective magnetic permeability, and relatively high squareness.

即ち、本発明合金を用いて、磁気焼鈍後のオーステナイ
ト粒界およびその近傍でのB量が上記の範囲であれば後
述する実施例1より優れた磁気特性を付与することがで
きる。つまり後述する実施例2に示すように初透磁率μ
iは400,000以上、500ミリガウスの直流磁界
に対する磁気遮蔽度を350以上、板厚0.20mmに
おけるI K)Izでの実効透磁率を16,000以上
、50Hzでの角型性を0.92以上と、それぞれ高め
ることができる。このような磁気特性の向上原因は必ず
しも明らかでないが、粒界およびその近傍で適量のBが
存在することにより粒界部分の性状を変え、この変化が
磁気特性、特に初透磁率といった磁壁の移動のしやすさ
、又は回転磁化のしやすさが求められる特性値に対して
良い影響を与えているものと推察される。
That is, when the alloy of the present invention is used and the amount of B at the austenite grain boundary and its vicinity after magnetic annealing is within the above range, magnetic properties superior to those of Example 1 described later can be imparted. In other words, as shown in Example 2 described later, the initial magnetic permeability μ
i is 400,000 or more, the degree of magnetic shielding against a DC magnetic field of 500 milligauss is 350 or more, the effective magnetic permeability at IK)Iz at plate thickness 0.20 mm is 16,000 or more, and the squareness at 50Hz is 0. Each can be increased to 92 or higher. The cause of this improvement in magnetic properties is not necessarily clear, but the presence of an appropriate amount of B at and near grain boundaries changes the properties of the grain boundary area, and this change causes magnetic properties, especially the movement of domain walls such as initial magnetic permeability. It is presumed that the ease of handling or the ease of rotational magnetization has a positive effect on the required characteristic values.

なお本発明で対象とするNi−Fe合金では、熱間加工
性が劣っている。この加工性を改良する方法としては微
量のB添加と微量のCa添加を組合せることがしばしば
行なわれるが、斯うしたm1ca添加を行なっても上述
したような本発明の構成要件を満たせば本発明の目的と
する初透磁率の向上は達成される。又本発明においては
上記したような成分組成の他、鉄合金とする場合に不可
避的に含まれるA1についても、詳しく言及しないが、
例えば、/lji!:0.03%以下をの含有が許容さ
れる。
Note that the Ni-Fe alloy targeted by the present invention has poor hot workability. As a method for improving this processability, a combination of adding a small amount of B and a small amount of Ca is often used, but even if such m1ca addition is performed, as long as the constituent requirements of the present invention as described above are met, the present invention can be achieved. The improvement in initial magnetic permeability, which is the objective of the invention, is achieved. Further, in the present invention, in addition to the above-mentioned component composition, A1, which is inevitably included when making an iron alloy, will not be mentioned in detail.
For example, /lji! : Content of 0.03% or less is allowed.

本発明によるものの具体的な実施例について説明すると
、以下の如くである。
Specific embodiments according to the present invention will be described below.

実施例■。Example ■.

次の第1表に示すような化学成分を有する高Ni−Fe
合金の本発明合金および比較合金を真空溶解にて溶製し
、これを熱間加工、脱スケールを施し、冷延素材を準備
した。
High Ni-Fe with chemical composition as shown in Table 1 below
The alloys of the present invention and comparative alloys were melted by vacuum melting, and then hot worked and descaled to prepare cold rolled materials.

上記したような第1表の各素材は次いで冷延加工、焼鈍
して0.5mmの薄板サンプルとし、これらのサンプル
より外径が45amで内径33InIlのJ!Sリング
を打抜き試料とした。又磁気特性をこれらの試料につい
て、パラジウム膜を透過させ精製した高純度水素気流中
雰囲気下において1100°Cで3時間の熱処理を行な
い、1100’C〜650°Cの間は400℃/hrに
て冷却し、その後は炉冷させて測定し、μiを0.00
5エルステツドでの透磁率として求めた結果および遮蔽
度、実効透磁率、50Hzでの角型性、保磁力、磁束密
度および面圧付加時の初透磁率の結果は次の第2表の如
くである。
Each of the materials listed in Table 1 as described above was then cold rolled and annealed to obtain 0.5 mm thin plate samples, and from these samples J! The S ring was used as a punched sample. In addition, the magnetic properties of these samples were heat treated at 1100°C for 3 hours in an atmosphere of purified high-purity hydrogen permeated through a palladium membrane, and at 400°C/hr between 1100'C and 650°C. After that, it was cooled in a furnace and measured, and μi was set to 0.00.
The results obtained as magnetic permeability at 5 oersted, shielding degree, effective magnetic permeability, squareness at 50 Hz, coercive force, magnetic flux density, and initial magnetic permeability when surface pressure is applied are shown in Table 2 below. be.

即ち遮蔽度は、上記と同じ製造履歴を経た板厚0.5圓
の素材を直径50mm、長さ200IIII11の円筒
に加工し、上記と同じ磁気焼鈍条件にて熱処理したサン
プルを用いて、ヘルムホルツコイルにて外部磁場(no
)、500ミリガウスを円筒の軸方向に対して直角方向
にかけた場合の円筒内側中央部での内部磁場(H6)を
測定することにより求めた。
In other words, the degree of shielding is determined by processing a 0.5 mm thick material with the same manufacturing history as above into a cylinder with a diameter of 50 mm and a length of 200III11, and heat-treating it under the same magnetic annealing conditions as above. External magnetic field (no
), was determined by measuring the internal magnetic field (H6) at the center inside the cylinder when 500 milligauss was applied in a direction perpendicular to the axial direction of the cylinder.

遮蔽度の測定に際しては地磁気の影響が十分無視できる
レベルまで磁気シールドしたボックスを用いて行なった
The degree of shielding was measured using a box that was magnetically shielded to a level where the effects of geomagnetism were sufficiently negligible.

1にHzの実効透磁率は、上記と同じに磁気焼鈍を経た
板厚0.2 mmのリングサンプルを用い、5ミリエル
ステツドでのインダクタンス透磁率を測定することによ
り求め、50Hzでの角型性は実効透磁率を測定した場
合と同じリングサンプルを用いて磁場の0.1エルステ
ツドでの残留磁束密度(Br)と磁束密度(BO,+)
の比から求めた。
The effective magnetic permeability at 1 Hz was determined by measuring the inductance permeability at 5 millier steps using a ring sample with a thickness of 0.2 mm that had undergone magnetic annealing in the same manner as above, and the squareness at 50 Hz was Residual magnetic flux density (Br) and magnetic flux density (BO, +) at a magnetic field of 0.1 oersted using the same ring sample as when measuring the effective magnetic permeability.
It was calculated from the ratio of

なお磁束密度および保磁力は、初透磁率を求めた場合と
同じリングサンプルにて測定した。即ち磁束密度B11
1゜。は100OA/mの外部磁界を加えたときの磁束
密度であり、保磁力は100OA/mの外部磁場を加え
、次に反転し、磁束密度を0とする磁界の強さである。
Note that the magnetic flux density and coercive force were measured using the same ring sample as used to determine the initial magnetic permeability. That is, magnetic flux density B11
1°. is the magnetic flux density when an external magnetic field of 100 OA/m is applied, and the coercive force is the strength of the magnetic field when an external magnetic field of 100 OA/m is applied, then reversed, and the magnetic flux density becomes 0.

面圧付加時の初透磁率は、上記の初透磁率を測定したサ
ンプルを用い、リングサンプルの板面に垂直な方向に均
一な荷重(面圧4kgf /mm”)を印加して初透磁
率を測定することにより求めた。
The initial magnetic permeability when surface pressure is applied is determined by applying a uniform load (surface pressure 4 kgf/mm") in the direction perpendicular to the plate surface of the ring sample using the sample whose initial magnetic permeability was measured above. It was determined by measuring.

また熱間加工性ば第1表の合金鋼塊(厚さ70閣)を1
150″Cに加熱し、最終板厚5鵬まで熱間圧延し、そ
の熱延板エッヂ部における割れの発生状態を観察するこ
とにより行なった。一般に熱間加工性の悪い場合にはエ
ッヂ部に割れが発生し易くなることは経験的に知られて
いる。然して上記したような第1.2表の結果について
言うならば、合金Nα1およびNα2の各村はC,S、
O,N。
In addition, for hot workability, the alloy steel ingot (thickness 70 mm) shown in Table 1 is
The hot-rolled sheet was heated to 150"C, hot-rolled to a final thickness of 5mm, and the occurrence of cracks at the edge of the hot-rolled sheet was observed.Generally, when hot workability is poor, the edge portion is It is known from experience that cracks are more likely to occur. However, regarding the results shown in Table 1.2 above, each village of alloys Nα1 and Nα2 has C, S,
O,N.

BSP、’ Si、 Ni、 Mo、 CuおよびMn
量が何れも本発明成分範囲内のもので、μiは350,
000以上、遮蔽度も約250以上、実効透磁率(以下
μeという)も15,000以上、50Hzでの角型性
(以下Br/B+++と略称する・)も0.90以上と
、比較合金Nα4〜Nα19の各村に比較して優れた磁
気特性を示している。また熱延板のエッヂ割れもなく、
熱間加工性が良好である。なおNα2材ではC1S、O
,Nがより好ましいレベルまで低減されており、Ni、
遮蔽度、)t e 、 Br78mはNα1材より更に
高くなっている。又これらNo、 1〜Nα2材の本発
明合金では、面圧4kgf 7mm”付加時の初透磁率
劣化も後述比較合金No、4〜19のものより小さくな
っており、歪に対する特性の劣化も小さい。
BSP, 'Si, Ni, Mo, Cu and Mn
The amounts are all within the range of the components of the present invention, μi is 350,
000 or more, the shielding degree is about 250 or more, the effective magnetic permeability (hereinafter referred to as μe) is more than 15,000, and the squareness at 50Hz (hereinafter abbreviated as Br/B+++) is also more than 0.90, compared to the comparative alloy Nα4. It shows superior magnetic properties compared to each village of ~Nα19. Also, there is no edge cracking of hot rolled sheets.
Good hot workability. In addition, for Nα2 material, C1S, O
, N are reduced to more desirable levels, and Ni,
The degree of shielding, )te, Br78m is even higher than that of the Nα1 material. In addition, in these invention alloys of No. 1 to Nα2 materials, the initial magnetic permeability deterioration when a surface pressure of 4 kgf 7 mm is applied is smaller than that of comparative alloys No. 4 to 19, which will be described later, and the deterioration of characteristics against strain is also small. .

Nα3合金材は、Siが0.25%で、他の成分は何れ
も本発明範囲内のものであり、Ni、遮蔽度、μe、B
r/B11は、上記したNα1およびNα2合金材と略
同じレベルを示している。しかし面圧4kif /mm
2付加時の初透磁率劣化の大きさは約75,000と、
Nα1およびNα2合金材の約50,000に比し大き
い。このように初透磁率の歪に対する劣化を小さくする
ためにはSi量を本発明の規定範囲内でも 0.30%
以上と高くしなければならないことが理解される。
The Nα3 alloy material contains 0.25% Si, and all other components are within the scope of the present invention, including Ni, shielding degree, μe, and B.
r/B11 shows approximately the same level as the above-mentioned Nα1 and Nα2 alloy materials. However, the surface pressure is 4kif/mm
The magnitude of the initial permeability deterioration when 2 is added is approximately 75,000,
This is larger than approximately 50,000 for Nα1 and Nα2 alloy materials. In this way, in order to reduce the deterioration of initial permeability due to strain, the amount of Si should be reduced to 0.30% even within the specified range of the present invention.
It is understood that the value must be higher than that.

比較合金Nα4材は、Pのみが本発明規定を超えるもの
であり、この場合にはμm1遮蔽度、μe1Br/Bm
、歪付加時のNiは本発明合金N(L 1、No、 2
と略同じレベルを示しているが、熱延板のエッヂ割れが
あり、熱間加工性が劣っている。なおNα21材はPの
みが本発明規定範囲を超えるものであるが、Pが0.0
90%と0.080%を超える場合にはNi、遮蔽度、
μe、Br/Bm、歪付加時のNiは本発明合金に比し
低いレベルを示している。又この場合も熱延板のエッヂ
割れがあり、熱間加工性は悪い。このように本発明で意
図する磁気特性を確保するにはPが0.080%以下で
あることが必要である。
In the comparative alloy Nα4 material, only P exceeds the specification of the present invention, and in this case, μm1 shielding degree, μe1Br/Bm
, Ni at the time of strain application is the present invention alloy N (L 1, No, 2
However, there are edge cracks in the hot rolled sheet and the hot workability is inferior. Note that in the Nα21 material, only P exceeds the specified range of the present invention, but P is 0.0
If it exceeds 90% and 0.080%, Ni, shielding degree,
μe, Br/Bm, and Ni when strain is applied are at lower levels than in the alloy of the present invention. Also in this case, edge cracking of the hot rolled sheet occurs and hot workability is poor. As described above, in order to ensure the magnetic properties intended in the present invention, P must be 0.080% or less.

これに対し、合金Nα5およびNα6の各村は、Ni量
がそれぞれ上限を越え、あるいは下限未満のものであり
、又、合金Nα7およびNα8の各村はMoiが上限を
越えたもの、あるいは下限未満のものであって、合金N
α9およびNα19はCu量がそれぞれ上限を越え、あ
るいは下限未満のものである。さらに合金Nα11は、
Mn量が上限を越えたものであり、合金漱12はSi量
が上限を越えたものであって、合金Na13およびN1
14のものは、それぞれB量が上限を越え、あるいは下
限未満のものである。さらに、合金階15〜18の各村
は、それぞれC,S、0、Nの何れかが本発明成分範囲
を超えるもの、又合金71h19およびNα20はそれ
ぞれパラメータXが本発明で規定した下限を超えるもの
と、下限未満のものであるが、これらの供試材隘5〜2
0は何れも本発明例に比べて低いレベルにある。
On the other hand, in each village of alloys Nα5 and Nα6, the Ni amount exceeds the upper limit or less than the lower limit, and in each village of alloys Nα7 and Nα8, the Moi exceeds the upper limit or is less than the lower limit. of alloy N
In α9 and Nα19, the amount of Cu exceeds the upper limit or is less than the lower limit, respectively. Furthermore, alloy Nα11 is
The amount of Mn exceeds the upper limit, and the alloy 12 has an amount of Si that exceeds the upper limit, and the alloys Na13 and N1
In No. 14, the amount of B exceeds the upper limit or is less than the lower limit. Furthermore, each village of alloy levels 15 to 18 has C, S, 0, or N exceeding the composition range of the present invention, and alloys 71h19 and Nα20 each have a parameter X exceeding the lower limit defined by the present invention. However, these test materials are below the lower limit.
0 is at a lower level than the examples of the present invention.

なお、比較合金において、N116、磁7、阻9〜隘1
6.11h18〜11h20の各村は、Pが本発明規定
を超える場合であり、熱延板のエッヂ割れは何れも発生
しており、熱間加工性は劣っている。これに対して、合
金嵐8および合金隘17はPが本発明規定内であり、熱
延板のエッヂ割れはなく、熱間加工性は良好である。又
合金N1122のものはMn量が下限未満のもので、N
i、遮蔽度、μe、Br78m、歪付加時のNiは本発
明合金と略同じレベルにあるが、熱延板のエッヂ割れが
あり、熱間加工性は劣っている。
In addition, in the comparative alloys, N116, magnetic 7, and 9 to 1
6. Each village of 11h18 to 11h20 is a case where P exceeds the specification of the present invention, and edge cracking of the hot rolled sheet has occurred in each case, and the hot workability is poor. On the other hand, Alloy Arashi 8 and Alloy Arashi 17 have P within the specification of the present invention, have no edge cracks in the hot rolled sheets, and have good hot workability. In addition, alloy N1122 has an Mn content below the lower limit, and N
i, shielding degree, μe, Br78m, and Ni at the time of strain application are approximately at the same level as the present invention alloy, but there is edge cracking of the hot rolled sheet and hot workability is poor.

即ち本発明によるものは、c、p、s、0、Nの不純物
元素低減のもとで、N1% N0% CLI、Mns 
B、Si、Feをそれらの単独量およびバランスが厳密
に規定された範囲とすることにより、良好な熱間加工性
を有し、しかも優れた初透磁率、遮蔽度、実効透磁率、
50Hzでの角型性の何れもを適切に得ることができる
。なお本発明において所要の特性を得るためには熱処理
に使用するガスは、この実施例で示したような高純度の
H2ガスでよいが、同様な特性はJISに規定されてい
るような通常の■2雰囲気、すなわち融点−40℃以下
の11□ガス気流中で熱処理を行なうことによっても得
られる。
That is, in the present invention, N1% N0% CLI, Mns
By controlling the individual amounts and balance of B, Si, and Fe within strictly defined ranges, it has good hot workability, as well as excellent initial magnetic permeability, shielding degree, effective magnetic permeability,
Any squareness at 50 Hz can be appropriately obtained. In order to obtain the required characteristics in the present invention, the gas used for heat treatment may be a high-purity H2 gas as shown in this example; (1) It can also be obtained by heat treatment in a 2 atmosphere, that is, in a 11□ gas stream with a melting point of -40°C or lower.

実施例2゜ 前記した実施例1の本発明規定内2について冷延、焼鈍
を経た0、5鰭の薄板サンプルより外径45鶴、内径3
3mのJISリングを打抜きによって作製し、試料とし
た。またオージェ観察用ステージに取付は可能なノツチ
入り試験片も同様のサンプルより切り出した。
Example 2 A thin plate sample of 0 and 5 fins cold-rolled and annealed in accordance with the invention specification 2 of Example 1 described above has an outer diameter of 45 mm and an inner diameter of 3.
A 3 m JIS ring was produced by punching and used as a sample. A notched test piece that could be attached to an Auger observation stage was also cut out from the same sample.

上記のようにして得られたサンプルは、次の第3表(A
)に示すような種々の雰囲気下で、1100”cx3時
間の熱処理を行ない、1100℃〜650℃の間をそれ
ぞれに異なった冷却速度で冷却し、その後は炉冷したサ
ンプルにより磁気特性および遮蔽度を測定した。
The samples obtained as above are shown in Table 3 (A
), heat treatment was carried out at 1100"c x 3 hours under various atmospheres as shown in Figure 3. Cooling was performed at different cooling rates between 1100°C and 650°C. After that, the magnetic properties and shielding degree were determined by the furnace-cooled samples. was measured.

またオーステナイト粒界およびその近傍でのB量は、上
記熱処理の後に、カソード電解法により電解水素を添加
して粒界脆化処理を施し、粒界破壊を真空中で行ない、
顕ねれた粒界破面の成分分析をオージェ分光法により異
なる10点について行ない平均して求めた。これら結果
は第3表(A)(B)に併せて示す如くである。
In addition, the amount of B at the austenite grain boundaries and their vicinity is determined by adding electrolytic hydrogen by cathodic electrolysis to perform grain boundary embrittlement treatment after the above heat treatment, and performing grain boundary fracture in a vacuum.
Component analysis of the exposed grain boundary fracture surface was performed at 10 different points using Auger spectroscopy, and the results were averaged. These results are shown in Table 3 (A) and (B).

即ち本発明の前記した合金No、 2を用いたものにお
いて、供試材N011〜4は、そのオーステナイト粒界
およびその近傍でのB量が本発明規定範囲内であり、μ
m1遮蔽度、μe、Br/Bmはオーステナイト粒界お
よびその近傍でのB量が本発明規定範囲外の供試材N0
16のものより高くなっている。
That is, in those using the above-mentioned alloys No. 2 of the present invention, the amount of B in the austenite grain boundaries and the vicinity thereof is within the range specified by the present invention in sample materials No. 011 to 4, and μ
The m1 shielding degree, μe, and Br/Bm are for the sample No.
It is higher than that of 16.

また、これらの供試材では面圧4kgf 7cm”付加
時の初透磁率劣化も前記した実施例1の比較合金に比較
して小さく、歪による特性劣化が小さいことがわかる。
Furthermore, in these test materials, the initial magnetic permeability deterioration when a surface pressure of 4 kgf 7 cm'' was applied was smaller than that of the comparative alloy of Example 1, indicating that the deterioration of characteristics due to strain was small.

なお第3表における供試材5は1100°CX3hrの
雰囲気保持中におけるH2の露点が一40°Cより高い
場合であり、このような条件で熱処理されたサンプルの
Ni、遮蔽度、μe、Br/BRIは他の発明例に比較
して低い。即ち本発明の効果はJISで規定されている
露点−40°C以下のH2で熱処理を行なうことにより
適切に発揮される。またIX 10−’ Torrとい
うような高真空下の熱処理でも本発明の効果は発揮し得
る。
In addition, sample material 5 in Table 3 is a case where the dew point of H2 is higher than 140°C while the atmosphere is maintained at 1100°C for 3 hours, and the Ni, shielding degree, μe, Br of the sample heat-treated under such conditions are /BRI is low compared to other invention examples. That is, the effects of the present invention can be properly exhibited by performing the heat treatment at H2 with a dew point of -40°C or lower as defined by JIS. Further, the effects of the present invention can also be exhibited by heat treatment under a high vacuum such as IX 10-' Torr.

実施例3゜ 前記した実施例1の本発明合金Nα2および次の第4表
に示すような成分を有する比較合金Nα23について実
施例2と同様の作製条件にてサンプルを作製し、それぞ
れ、第5表に示すような磁気焼鈍条件にて、熱処理を行
ない、磁気特性および遮蔽度を実施例2と同様の方法に
て測定した。結果を次の第6表に示す。
Example 3 Samples of the present invention alloy Nα2 of Example 1 and the comparative alloy Nα23 having the components shown in Table 4 below were prepared under the same manufacturing conditions as Example 2, and samples were prepared using the same conditions as Example 2. Heat treatment was performed under the magnetic annealing conditions shown in the table, and the magnetic properties and degree of shielding were measured in the same manner as in Example 2. The results are shown in Table 6 below.

なお、この比較合金Nα23は、Ni、 Cu、 P、
 Siが本発明規定外であり、その他の成分は、本発明
規定内のものである。
Note that this comparative alloy Nα23 contains Ni, Cu, P,
Si is outside the scope of the present invention, and the other components are within the scope of the present invention.

発明合金Nα2を用いて、1000°CX1時間の磁気
焼鈍後で得られる特性は、比較合金Nα23を用いて、
1100°CX1時間の磁気焼鈍後に得られる磁気性質
、即ちNi、遮蔽度、μe、Br/am、μmおよびH
cと比べて略同じレベルか、稍々高い値を示している。
The properties obtained after magnetic annealing at 1000°C for 1 hour using the invention alloy Nα2 are the same as those obtained using the comparative alloy Nα23,
Magnetic properties obtained after magnetic annealing at 1100°C for 1 hour, namely Ni, shielding degree, μe, Br/am, μm and H
Compared to c, it shows approximately the same level or a slightly higher value.

つまり本発明によれば、比較合金と同じ特性を得るのに
磁気焼鈍温度を約100°C低温化することができるこ
とを理解し得る。
In other words, it can be understood that according to the present invention, the magnetic annealing temperature can be lowered by about 100°C to obtain the same properties as the comparative alloy.

本発明によるものは、上記した実施例の製造方法のみで
なく、溶解・溶製し、薄鋳板に鋳造し、鋳造のまま又は
熱間加工後および又は脱スケールし、冷延加工、焼鈍し
ても良い。
In addition to the manufacturing method of the above-described embodiments, the present invention is also applicable to melting, casting, casting into a thin cast plate, as-cast or after hot working and/or descaling, cold rolling, and annealing. It's okay.

熱間加工に代えて又は冷延加工の高能率化のために温間
加工を施しても良い。
Warm working may be performed instead of hot working or to improve the efficiency of cold rolling.

但し表面性状、板厚形状、寸法精度が要求される場合は
、最終溶製の前に冷延加工を施した方が好ましい。
However, if surface quality, plate thickness shape, and dimensional accuracy are required, it is preferable to perform cold rolling before final melting.

更に、1回の冷延加工に代えて冷延加工、再結晶焼鈍(
例えば800°C以上)、冷延加工を繰りかえしても良
い。
Furthermore, instead of one cold rolling process, cold rolling process and recrystallization annealing (
For example, at 800° C. or higher), the cold rolling process may be repeated.

以上のような製造方法であっても、本発明をあればほぼ
同等のものが得られる。
Even with the manufacturing method described above, substantially the same product can be obtained by using the present invention.

「発明の効果」 以上説明したような本発明によるときは、NiFe系の
高透磁率磁性合金における磁気特性を適切に改善し、特
に直流および低周波域での透磁率などの磁気特性および
シールド性能、更には交流透磁率が従来におけるPCパ
ーマロイの如きに比し飛躍的に優れた高透磁率磁気合金
を提供せしめ、従来におけるより更にシールド特性の要
求される各種磁器シールド材や磁気ヘッドケース、コア
類、あるいは磁器増幅器、パルス変圧器などの非線形応
用に用いられる材料などに広く採用せしめ得、更には従
来と同じレベルの要求特性を得るための磁気焼鈍温度を
相当に低温化することを可能とし、又、歪による特性劣
化も小さく、シールドルームのような構造部材とした際
においても所要の磁気特性を発揮せしめ、加うるに熱間
加工性も良好なことから製造時における歩留まりを高く
することができるなどの効果を有しており、近時におけ
るエレクトロニクス産業の要請に対して適切に即応し得
るものであるから工業的にその効果の大きい発明である
"Effects of the Invention" According to the present invention as described above, the magnetic properties of a NiFe-based high permeability magnetic alloy can be appropriately improved, and the magnetic properties such as magnetic permeability and shielding performance can be improved especially in the direct current and low frequency range. In addition, we have provided a high permeability magnetic alloy whose AC permeability is dramatically superior to that of conventional PC permalloy, and is used in various magnetic shielding materials, magnetic head cases, and cores that require even higher shielding properties than conventional ones. It can be widely used in materials used in nonlinear applications such as ceramic amplifiers, pulse transformers, etc., and furthermore, it makes it possible to considerably lower the magnetic annealing temperature to obtain the same level of required characteristics as conventional methods. In addition, the property deterioration due to distortion is small, and it exhibits the required magnetic properties even when used as a structural member such as a shield room, and in addition, it has good hot workability, so it can increase the yield during manufacturing. This invention has a great industrial effect because it can respond quickly and appropriately to the recent demands of the electronics industry.

Claims (1)

【特許請求の範囲】 (1)Ni:77.5〜79.5wt%、Mo:3.8
〜4.6wt%、Cu:1.8〜2.5wt%、Mn:
0.1〜1.10wt%、Si:0.2〜1.0wt%
、P:0.010wt%以下、S:0.0020wt%
以下、O:0.0030wt%以下、N:0.0010
wt%以下、C:0.020wt%以下を含有し、かつ
Bを 0.0005wt%≦〔B〕−10.8/14〔N〕≦
0.0070wt%の範囲内で含有し、残部が基本的に
Feからなり、しかもNi、Mo、Cu、Mn、Feが 3.2≦2.02×〔Ni〕−11.13×〔Mo〕−
1.25×〔Cu〕−5.03×〔Mn〕/2.13×
〔Fe〕≦3.8(但し〔 〕内はwt%) を満たす範囲でそれぞれ含有されたことを特徴とするN
i−Fe系高透磁率磁性合金。 (2)請求項1に記載の成分組成を有し、かつ磁気焼鈍
後でオーステナイト粒界およびその近傍でのB量が10
〜50atm%であることを特徴とするNi−Fe系高
透磁率磁性合金。
[Claims] (1) Ni: 77.5 to 79.5 wt%, Mo: 3.8
~4.6wt%, Cu:1.8~2.5wt%, Mn:
0.1-1.10wt%, Si: 0.2-1.0wt%
, P: 0.010wt% or less, S: 0.0020wt%
Below, O: 0.0030wt% or less, N: 0.0010
wt% or less, C: 0.020wt% or less, and B: 0.0005wt%≦[B]-10.8/14[N]≦
The content is within the range of 0.0070 wt%, the balance basically consists of Fe, and Ni, Mo, Cu, Mn, and Fe are 3.2≦2.02×[Ni]−11.13×[Mo] −
1.25×[Cu]-5.03×[Mn]/2.13×
[Fe]≦3.8 (however, the values in brackets are wt%).
i-Fe based high permeability magnetic alloy. (2) It has the component composition according to claim 1, and after magnetic annealing, the amount of B at the austenite grain boundary and its vicinity is 10
A Ni-Fe based high permeability magnetic alloy characterized by having a magnetic permeability of 50 atm%.
JP1260218A 1989-10-06 1989-10-06 Ni-Fe system high permeability magnetic alloy Expired - Fee Related JPH0699767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1260218A JPH0699767B2 (en) 1989-10-06 1989-10-06 Ni-Fe system high permeability magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1260218A JPH0699767B2 (en) 1989-10-06 1989-10-06 Ni-Fe system high permeability magnetic alloy

Publications (2)

Publication Number Publication Date
JPH03122237A true JPH03122237A (en) 1991-05-24
JPH0699767B2 JPH0699767B2 (en) 1994-12-07

Family

ID=17344991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1260218A Expired - Fee Related JPH0699767B2 (en) 1989-10-06 1989-10-06 Ni-Fe system high permeability magnetic alloy

Country Status (1)

Country Link
JP (1) JPH0699767B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099812A1 (en) 2007-02-13 2008-08-21 Hitachi Metals, Ltd. Magnetic shielding material, magnetic shielding component, and magnetic shielding room
JP2014218694A (en) * 2013-05-08 2014-11-20 日本冶金工業株式会社 Ni-Fe BASED PERMALLOY ALLOY HAVING EXCELLENT HOT WORKABILITY AND AC MAGNETIC PROPERTY

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4795900B2 (en) * 2000-09-29 2011-10-19 日本冶金工業株式会社 Fe-Ni permalloy alloy
JP2011068998A (en) * 2000-09-29 2011-04-07 Nippon Yakin Kogyo Co Ltd Fe-Ni BASED PERMALLOY

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260217A (en) * 1988-04-11 1989-10-17 Yoshiaki Iinuma Hot plate and plate built in foot warmer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260217A (en) * 1988-04-11 1989-10-17 Yoshiaki Iinuma Hot plate and plate built in foot warmer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099812A1 (en) 2007-02-13 2008-08-21 Hitachi Metals, Ltd. Magnetic shielding material, magnetic shielding component, and magnetic shielding room
EP2123783A1 (en) * 2007-02-13 2009-11-25 Hitachi Metals, Ltd. Magnetic shielding material, magnetic shielding component, and magnetic shielding room
EP2123783A4 (en) * 2007-02-13 2010-11-03 Hitachi Metals Ltd Magnetic shielding material, magnetic shielding component, and magnetic shielding room
US8157929B2 (en) 2007-02-13 2012-04-17 Hitachi Metals, Ltd. Magnetic shielding material, magnetic shielding component, and magnetic shielding room
JP2014218694A (en) * 2013-05-08 2014-11-20 日本冶金工業株式会社 Ni-Fe BASED PERMALLOY ALLOY HAVING EXCELLENT HOT WORKABILITY AND AC MAGNETIC PROPERTY

Also Published As

Publication number Publication date
JPH0699767B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
RU2725240C2 (en) Vibration damping material of ferrite stainless steel with high content of al and production method
RU2725239C2 (en) Damping material of ferritic stainless steel and production method
CN113897558B (en) High-saturation-magnetic-induction high-permeability iron-based soft magnetic material and preparation method thereof
JP4360349B2 (en) Soft magnetic steel bar
JP2803522B2 (en) Ni-Fe-based magnetic alloy excellent in magnetic properties and manufacturability and method for producing the same
JP4438687B2 (en) Soft magnetic strip
JPH03122237A (en) Ni-fe serite high permeability magnetic alloy
JPH03122236A (en) Ni-fe serite high permeability magnetic alloy
JP2803550B2 (en) Ni-Fe-based magnetic alloy excellent in magnetic properties and manufacturability and method for producing the same
JP2003226945A (en) Soft magnetic steel having excellent cold forgeability and magnetic permeability, soft magnetic steel parts having excellent magnetic permeability and production method therefor
JPH0375327A (en) Ni-fe series high permeability magnetic alloy
JP2022509676A (en) Non-oriented electrical steel sheet and its manufacturing method
JPH08134604A (en) Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production
JP2005187846A (en) Non-oriented electromagnetic steel sheet and manufacturing method therefor
JPH0230743A (en) Manufacture of ni-fe alloy plate having excellent magnetic characteristics
JP3952762B2 (en) Non-oriented electrical steel sheet with excellent iron loss and caulking properties
JP4852804B2 (en) Non-oriented electrical steel sheet
US20230257859A1 (en) Soft magnetic member and intermediate therefor, methods respectively for producing said member and said intermediate, and alloy for soft magnetic member
KR102483636B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
JPH01263218A (en) Production of high magnetic permeability alloy of ni-fe system
JP4360347B2 (en) Soft magnetic steel
JPH04154940A (en) Fe-ni series high permeability magnet alloy and its manufacture
CN113897559A (en) High-saturation-magnetic-induction low-loss soft magnetic alloy and production method thereof
JPS62222022A (en) Manufacture of nonoriented electrical sheet having good brittleness resistance and magnetic characteristic after stress relief annealing
JP2003247052A (en) Nonoriented silicon steel sheet having excellent high frequency property

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees