JPH03277718A - Production of ni-fe-cr soft-magnetic alloy - Google Patents

Production of ni-fe-cr soft-magnetic alloy

Info

Publication number
JPH03277718A
JPH03277718A JP2078216A JP7821690A JPH03277718A JP H03277718 A JPH03277718 A JP H03277718A JP 2078216 A JP2078216 A JP 2078216A JP 7821690 A JP7821690 A JP 7821690A JP H03277718 A JPH03277718 A JP H03277718A
Authority
JP
Japan
Prior art keywords
magnetic
rolling
cold
alloy
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2078216A
Other languages
Japanese (ja)
Inventor
Takuji Okiyama
沖山 卓司
Takuji Hara
卓司 原
Hisao Yasumura
安村 久雄
Yutaka Kawai
川合 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2078216A priority Critical patent/JPH03277718A/en
Publication of JPH03277718A publication Critical patent/JPH03277718A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To produce a magnetic material having superior magnetic properties by specifying a draft at the time of cold rolling an Ni-Fe-Cr soft magnetic alloy having a specific composition in which respective contents of S, O, and B as impurity elements are reduced. CONSTITUTION:A soft-magnetic alloy having a composition which contains, by weight, 36-52% Ni and 0.5-10% Cr and in which the contents of S, O, and B are limited to <=0.003%, <=0.005%, and <=0.005%, respectively, and also the total content of S, O, and B is limited to <=0.008% is hot rolled and is then cold-rolled at >=60% draft. By this method, the Ni-Fe-Cr soft magnetic alloy having high magnetic permeability and saturation magnetic flux density can be obtained. This alloy is useful for material for magnetic shielding, iron core, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高透磁率が要求される磁気シールド部材や各
種電気機器の鉄心として使用されるNi−Fe−Cr軟
質磁性合金の製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a Ni-Fe-Cr soft magnetic alloy used as a magnetic shield member requiring high magnetic permeability and as an iron core of various electrical devices. .

[従来の技術) Ni−Fe系の高透磁率合金は、磁気ヘッドのケース、
カセットテープの磁気遮蔽板等の磁気シールド部材、時
計のコアやヨーク、小型モータのコア等の鉄心として古
くから知られている。なかでも、Mo、Cr、Cu等を
含有する高Niパーマロイ(JIS−PC)や低Niパ
ーマロイ(JIS−PB)が、広範な分野で使用されて
いる。
[Prior art] Ni-Fe based high magnetic permeability alloys are used for magnetic head cases,
It has long been known as a magnetic shielding member such as magnetic shielding plates for cassette tapes, and as an iron core for clock cores and yokes, small motor cores, etc. Among these, high Ni permalloy (JIS-PC) and low Ni permalloy (JIS-PB) containing Mo, Cr, Cu, etc. are used in a wide range of fields.

たとえば、特公昭50−514号公報では、磁気ヘッド
を対象用途とした高Ni磁性合金が示されている。この
磁性合金では、MO含含有パーマロ金合金Ti及びNb
を複合添加することによって、磁気的性質をあまり低下
させることなく、機械的な固さを向上させている。
For example, Japanese Patent Publication No. 50-514 discloses a high Ni magnetic alloy intended for use in magnetic heads. In this magnetic alloy, MO-containing permallo gold alloy Ti and Nb
By adding , the mechanical hardness is improved without significantly reducing the magnetic properties.

[発明が解決しようとする課題] これらNi−Fe系合金のうち、高N1パーマロイは、
透磁率及び耐食性に優れた材料であるが、Niを70%
以上の高い割合で含有するため、高価なものである。更
に、特性改善元素としてMOも含有しており、−層高価
なものとなっている。
[Problems to be solved by the invention] Among these Ni-Fe alloys, high N1 permalloy has
It is a material with excellent magnetic permeability and corrosion resistance, but it contains 70% Ni.
Since it is contained in such a high proportion, it is expensive. Furthermore, it also contains MO as a property improving element, making the layer expensive.

そのため、この高Niパーマロイは、経済的な面から極
めて限られた用途に使用せざるを得ない。
Therefore, this high Ni permalloy has no choice but to be used in extremely limited applications from an economical point of view.

他方、低Niパーマロイは、Ni含有量が45%程度で
あるため、価格面では高Niパーマロイに比較して十分
に安価な材料である。しかし、透磁率及び耐食性に劣る
欠点がある。
On the other hand, low-Ni permalloy has a Ni content of about 45%, so it is a material that is sufficiently cheaper than high-Ni permalloy in terms of price. However, it has the disadvantage of poor magnetic permeability and corrosion resistance.

このようなことから、透磁率が高Niパーマロイに匹敵
し、飽和磁束密度が高(、しかも安価な磁性合金の提供
が望まれるところである。
For these reasons, it is desired to provide a magnetic alloy that has a magnetic permeability comparable to that of high Ni permalloy, a high saturation magnetic flux density (and is inexpensive).

そこで、本発明は、この要望に応えるべく案出されたも
のであり、JIS−PCに匹敵する最大透磁率μ。が1
00,000以上で、且つ高い飽和磁束密度を有する安
価な軟質磁性合金を提供することを目的とする。
Therefore, the present invention was devised to meet this demand, and has a maximum magnetic permeability μ comparable to JIS-PC. is 1
00,000 or more and has a high saturation magnetic flux density.

[課題を解決するための手段] 本発明の製造方法は、その目的を達成するために、N工
を36〜52重量%及びCrを0.5〜10重量%含有
し、Sを0.003重量%以下、0を0.005重量%
以下、Bを0.005重量%以下で、且つS+O+B≦
0.008重量%に規制した軟質磁性合金を、熱間圧延
した後、60%以上の圧延率で冷間圧延することを特徴
とする。
[Means for Solving the Problems] In order to achieve the object, the manufacturing method of the present invention contains 36 to 52% by weight of N, 0.5 to 10% by weight of Cr, and 0.003% of S. Weight% or less, 0 to 0.005% by weight
Hereinafter, B is 0.005% by weight or less, and S+O+B≦
It is characterized in that a soft magnetic alloy regulated at 0.008% by weight is hot rolled and then cold rolled at a rolling rate of 60% or more.

[作 用] 本発明者等は、低Niパーマロイの磁気特性に及ぼす合
金元素、製造条件等について研究を重ねた結果、Ni含
有量が36〜52%の低Ni−Fe合金において、Cr
を0.5〜10%含有させると共に、O,S、B等の不
純物元素を低減させた材料を熱間圧延した後、大きな加
工量で冷間圧延を施すとき、JIS−PCと同程度の最
大透磁率μ、を示すという注目すべき事実を発見した。
[Function] As a result of repeated research on alloying elements, manufacturing conditions, etc. that affect the magnetic properties of low Ni permalloy, the present inventors found that in a low Ni-Fe alloy with a Ni content of 36 to 52%, Cr
When hot rolling a material containing 0.5 to 10% of impurity elements such as O, S, and B, and then cold rolling with a large processing amount, the We discovered the remarkable fact that it exhibits a maximum magnetic permeability μ.

この冷間圧延による影響は、熱間圧延後に最終冷延製品
に至る間に施される中間焼鈍の有無に拘らず、総加工量
を圧延率で60%以上の大きな値に設定することによっ
て得られる。
This effect of cold rolling can be obtained by setting the total amount of processing to a large value of 60% or more in terms of rolling ratio, regardless of the presence or absence of intermediate annealing performed after hot rolling to reach the final cold rolled product. It will be done.

次いで、本発明で使用する合金材料の成分及び組成につ
いて説明する。
Next, the components and composition of the alloy material used in the present invention will be explained.

Cr:Crは、磁気特性の向上に大きく寄与する元素で
あり、添加量が0.5%未満の微量であると、透磁率及
び保持力の特性向上に及ぼす影響が乏しい。他方、10
%を超える量でCrを添加するとき、最大透磁率μm及
び飽和磁束密度が低下する。これらの点から、Crの含
有量を0.5〜10%の範囲に設定した。
Cr: Cr is an element that greatly contributes to improving magnetic properties, and when added in a trace amount of less than 0.5%, it has little effect on improving properties of magnetic permeability and coercive force. On the other hand, 10
%, the maximum magnetic permeability μm and the saturation magnetic flux density decrease. From these points, the Cr content was set in the range of 0.5 to 10%.

Ni:0.5〜10%のCr含有による透磁率の向上効
果は、Ni含有量が36%以上のときである。しかし、
Ni含有量が多すぎると、逆に最大透磁率μ、が低下す
ると共に、合金材料の価格が上昇して不利になる。そこ
で、N1含有量の上限を52%に設定した。
Ni: The effect of improving magnetic permeability due to 0.5 to 10% Cr content occurs when the Ni content is 36% or more. but,
If the Ni content is too large, the maximum magnetic permeability μ decreases and the price of the alloy material increases, which is disadvantageous. Therefore, the upper limit of the N1 content was set at 52%.

S、O,B:不純物元素であるS、O,B等は、磁気焼
鈍によって結晶粒を粗大化させるときに粗大化阻害元素
として作用し、最大透磁率μユを低下させる。そこで、
磁気特性を向上させる上から、これら不純物元素の含有
量を可能な限り低く押さえることが必要である。この点
、最大透磁率μ。を向上させるためには、S≦0.00
3%。
S, O, B: S, O, B, etc., which are impurity elements, act as coarsening inhibiting elements when coarsening crystal grains by magnetic annealing, and reduce the maximum magnetic permeability μ. Therefore,
In order to improve magnetic properties, it is necessary to keep the content of these impurity elements as low as possible. At this point, the maximum permeability μ. In order to improve
3%.

0≦0.005%、B≦0.005%で、且ッs+0+
B≦0.008%であることが必要とされる。
0≦0.005%, B≦0.005%, and s+0+
It is required that B≦0.008%.

更に、十分な磁気特性を得るためには、磁気焼鈍前の加
工量を大きくする必要がある。この点、本発明において
は、磁気焼鈍前の加工として冷間圧延を採用している。
Furthermore, in order to obtain sufficient magnetic properties, it is necessary to increase the amount of processing before magnetic annealing. In this regard, in the present invention, cold rolling is employed as processing before magnetic annealing.

そして、冷間圧延時の圧延率を高(するほど、透磁率の
向上が図られる。この冷間圧延によって高N1パーマロ
イに匹敵する最大透磁率100,00(l上を達成する
ためには、熱間圧延後に行われる中間焼鈍の有無に拘ら
ず冷延製品までの総冷延率を60%以上にすることが必
要である。
The higher the rolling ratio during cold rolling, the higher the magnetic permeability. In order to achieve a maximum magnetic permeability of 100.00 (l), which is comparable to high N1 permalloy, by this cold rolling, Regardless of whether intermediate annealing is performed after hot rolling, the total cold rolling rate up to the cold rolled product must be 60% or more.

[実施例] 次いで、実施例によって本発明を具体的に説明する。[Example] Next, the present invention will be specifically explained with reference to Examples.

第1表に示すインゴットを真空溶解によって製造し、通
常の方法で3.0mm厚さのホットコイルに熱間圧延し
た。その後、中間焼鈍したものも含めて圧延率が0〜8
0%となるように冷開圧延を施し、厚さ3.0〜0.6
mmの冷延板に仕上げた。この冷延板から外径45 m
 m +内径33mmのリングを切削加工し、1100
”Cの水素雰囲気中で1時間の磁気焼鈍を行った後、冷
却した。
The ingots shown in Table 1 were produced by vacuum melting and hot rolled into 3.0 mm thick hot coils in the usual manner. After that, the rolling rate is 0 to 8, including those that have been intermediately annealed.
Cold-open rolling is applied so that the thickness is 0%, and the thickness is 3.0 to 0.6.
It was finished into a cold-rolled sheet of mm. The outer diameter of this cold-rolled plate is 45 m.
m + inner diameter 33mm ring is cut to 1100
After performing magnetic annealing for 1 hour in a hydrogen atmosphere of "C", it was cooled.

得られた各試料の磁気特性を、J I 5−C2531
に準拠して測定した。測定結果を、第2〜4表に示す。
The magnetic properties of each sample obtained were determined according to J I 5-C2531
Measured according to. The measurement results are shown in Tables 2-4.

第2表は、厚さ3.0mmの熱延板を圧延率80%で厚
さ0.6mmまで冷間圧延し、得られた冷延板から前述
の寸法を持つリングに加工した後、磁気焼鈍を行った各
試料について最大透磁率μゆ等を測定した結果を表した
ものである。
Table 2 shows the results of cold-rolling a hot-rolled plate with a thickness of 3.0 mm to a thickness of 0.6 mm at a rolling rate of 80%, processing the obtained cold-rolled plate into a ring having the dimensions described above, and then magnetically This figure shows the results of measuring the maximum magnetic permeability μ, etc. for each annealed sample.

第2表から明らかなように、不純物元素の含有量を低下
させた本発明に従った試料No、1.47.8の最大透
磁率μ6は、他の試料に比較して優れたものであること
が判かる。
As is clear from Table 2, the maximum magnetic permeability μ6 of sample No. 1.47.8 according to the present invention, which has a reduced content of impurity elements, is excellent compared to other samples. I understand that.

第3表は、厚さ3.0mmの熱延板に対して、それぞれ
異なった圧延率で冷間圧延し、得られた冷延板から前述
した寸法のリングを加工して、磁気焼鈍を行った後の各
試料について最大透磁率μ、を測定した結果を表したも
のである。なお、冷間圧延は、冷延後の板厚がそれぞれ
3.0mm(圧延率O%)、2.1mm(圧延率30%
)。
Table 3 shows that hot-rolled sheets with a thickness of 3.0 mm were cold-rolled at different rolling rates, and rings with the dimensions described above were processed from the obtained cold-rolled sheets and then magnetically annealed. This figure shows the results of measuring the maximum magnetic permeability μ for each sample after the test. In addition, in cold rolling, the plate thickness after cold rolling is 3.0 mm (rolling rate 0%) and 2.1 mm (rolling rate 30%), respectively.
).

1.5mm (圧延率50%)、019mm (圧延率
70%)及び0.6mm (圧延率80%)となるよう
に設定した。
They were set to be 1.5 mm (rolling ratio 50%), 0.19 mm (rolling ratio 70%), and 0.6 mm (rolling ratio 80%).

第3表から明らかなように、Crを含有させ且つ不純物
元素を低下させた試料No、1.4.78においては、
圧延率が70%及び80%の場合にioo、oooを越
える最大透磁率LLffiが得られている。
As is clear from Table 3, in sample No. 1.4.78 containing Cr and reducing impurity elements,
Maximum magnetic permeability LLffi exceeding ioo and ooo was obtained when the rolling ratio was 70% and 80%.

第4表は、中間焼鈍による影響を調べたものである。本
発明に従った試料No、1.7と比較例の試料N013
について、厚さ3.0mmの熱延板から中間焼鈍を行う
ことなく熱延板をそのままで厚さ0.6mmまでに冷間
圧延したもの、及び冷間圧延の途中で焼鈍した後、0.
6mmの厚さまで冷間圧延したものを用意した。そして
、それぞれの冷延板から表中に示す種々の圧延率の中間
試料をサンプリングし、リングに加工した後、磁気焼鈍
を行って最大透磁率μ、を測定した。
Table 4 examines the influence of intermediate annealing. Sample No. 1.7 according to the present invention and comparative sample No. 013
As for the hot-rolled sheet with a thickness of 3.0 mm, the hot-rolled sheet is cold-rolled as it is to a thickness of 0.6 mm without performing intermediate annealing, and the hot-rolled sheet is cold-rolled to a thickness of 0.6 mm after being annealed in the middle of cold rolling.
A piece cold-rolled to a thickness of 6 mm was prepared. Then, intermediate samples of various rolling ratios shown in the table were sampled from each cold-rolled sheet, processed into rings, and then subjected to magnetic annealing to measure the maximum magnetic permeability μ.

第4表から明らかなように、本発明に従った試料No、
1及び7では、70%及び80%の圧延率によって10
0,000を超える最大透磁率μmが得られている。
As is clear from Table 4, sample No. according to the present invention,
1 and 7, 10 by rolling ratio of 70% and 80%
Maximum magnetic permeabilities of more than 0,000 μm have been obtained.

第4表に示した試料No、1及び3について、最大透磁
率μmの如何を冷間圧延時の圧延率との関係で調べたと
ころ、第1図に示すような関係が得られた。第1図から
明らかなように、最大透磁率μ。は、中間焼鈍に影響さ
れず、冷間圧延時の総圧鉱量によって一義的に定まるこ
とが判かる。
For samples No. 1 and 3 shown in Table 4, the maximum magnetic permeability μm was investigated in relation to the rolling ratio during cold rolling, and the relationship shown in FIG. 1 was obtained. As is clear from FIG. 1, the maximum magnetic permeability μ. It can be seen that is not affected by intermediate annealing and is uniquely determined by the total amount of rolled ore during cold rolling.

また、試料No、1.2,4,5,8.9及びJIS−
PBについて、各圧延率ごとに最大透磁率μゆを測定し
たところ、第2図に示す関係が得られた。第2図から明
らかなように、最大透磁率μつは、本発明に従って不純
物元素S、○、Bの含有量を低下させた試料の方が高く
なっていることが判かる。また、冷間圧延時の圧延率を
60%以上とすることにより、最大透磁率μ、100゜
000以上が達成される。
In addition, sample No. 1.2, 4, 5, 8.9 and JIS-
When the maximum magnetic permeability μ of PB was measured for each rolling rate, the relationship shown in FIG. 2 was obtained. As is clear from FIG. 2, the maximum magnetic permeability μ is higher in the sample in which the content of the impurity elements S, O, and B is reduced according to the present invention. Further, by setting the rolling ratio during cold rolling to 60% or more, a maximum magnetic permeability μ of 100°000 or more can be achieved.

(以下、このページ余白) 第1表二 各種試料のNi−Fe−Cr軟質磁性合金成分及び組成
(重量%) 注:*印は、本発明に従ったNi−Fe−Cr軟質磁性
合金を示す。
(Hereinafter, this page margin) Table 1 Table 2 Ni-Fe-Cr soft magnetic alloy components and compositions of various samples (wt%) Note: *mark indicates the Ni-Fe-Cr soft magnetic alloy according to the present invention. .

また、JIS−PCのCr欄は、MO含有量を示す。Moreover, the Cr column of JIS-PC indicates the MO content.

第2表: 各種試料の磁気特性 第3表: 圧延率が最大透磁率μm に与える影響 注 圧延率は、熱延版からのストレート冷間圧延率で示す。Table 2: Magnetic properties of various samples Table 3: The rolling rate is the maximum permeability μm impact on note The rolling rate is indicated by the straight cold rolling rate from the hot rolled plate.

第4表: 各試料の冷延率及び履歴が最大透磁率μmに与える影響
り 熱延3.〇−冷延09−中間焼鈍一冷延O1ε[発明の
効果] 以上に説明したように、本発明の製造方法においては、
S、O,B等の不純物元素の含有量を低下させたNi−
Fe−Cr軟質磁性合金に対して圧延率60%以上で冷
間圧延を施すことによって、優れた磁気特性を備えた磁
性材料を得ることができる。この磁性材料は、Ni、M
O等の高価な合金成分を多量に含んでいないにも拘らず
、高Niパーマロイに匹敵する最大透磁率を示し、優れ
た特性が要求される磁気シールドや鉄心等の材料として
使用することが出来る。
Table 4: Effects of cold rolling rate and history on maximum magnetic permeability μm of each sample Hot rolled 3. 〇-Cold rolling 09-Intermediate annealing-cold rolling O1ε [Effects of the invention] As explained above, in the manufacturing method of the present invention,
Ni- with reduced content of impurity elements such as S, O, and B
By cold rolling a Fe-Cr soft magnetic alloy at a rolling reduction of 60% or more, a magnetic material with excellent magnetic properties can be obtained. This magnetic material is Ni, M
Although it does not contain large amounts of expensive alloy components such as O, it exhibits a maximum magnetic permeability comparable to high Ni permalloy, and can be used as materials for magnetic shields, iron cores, etc. that require excellent properties. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は中間焼鈍が最大透磁率u1に与える影響の有無
について調べた結果を表したグラフ、第2図は最大透磁
率LLヨと冷間圧延時の冷延率との関係を表したグラフ
である。
Figure 1 is a graph showing the results of investigating whether or not intermediate annealing has an effect on maximum magnetic permeability u1, and Figure 2 is a graph showing the relationship between maximum magnetic permeability LLyo and cold rolling rate during cold rolling. It is.

Claims (1)

【特許請求の範囲】[Claims] Niを36〜52重量%及びCrを0.5〜10重量%
含有し、Sを0.003重量%以下、Oを0.005重
量%以下、Bを0.005重量%以下で、且つS+0+
B≦0.008重量%に規制した軟質磁性合金を、熱間
圧延した後、60%以上の圧延率で冷間圧延することを
特徴とするNi−Fe−Cr軟質磁性合金の製造方法。
36-52% by weight of Ni and 0.5-10% by weight of Cr
contains 0.003% by weight or less of S, 0.005% by weight or less of O, 0.005% by weight or less of B, and S+0+
A method for producing a Ni-Fe-Cr soft magnetic alloy, which comprises hot rolling a soft magnetic alloy regulated to B≦0.008% by weight, and then cold rolling it at a rolling rate of 60% or more.
JP2078216A 1990-03-27 1990-03-27 Production of ni-fe-cr soft-magnetic alloy Pending JPH03277718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2078216A JPH03277718A (en) 1990-03-27 1990-03-27 Production of ni-fe-cr soft-magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2078216A JPH03277718A (en) 1990-03-27 1990-03-27 Production of ni-fe-cr soft-magnetic alloy

Publications (1)

Publication Number Publication Date
JPH03277718A true JPH03277718A (en) 1991-12-09

Family

ID=13655854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2078216A Pending JPH03277718A (en) 1990-03-27 1990-03-27 Production of ni-fe-cr soft-magnetic alloy

Country Status (1)

Country Link
JP (1) JPH03277718A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0694624A1 (en) * 1994-06-30 1996-01-31 Krupp VDM GmbH Iron-nickel alloy with particular soft magnetic properties
EP0818550A1 (en) * 1996-07-12 1998-01-14 Krupp VDM GmbH Corrosion resistant soft magnetic iron-nickel-chrome alloy
JP2005522021A (en) * 2002-02-15 2005-07-21 アンフイ・アロイ Soft magnetic alloys for watchmaking
GB2484568A (en) * 2010-09-10 2012-04-18 Vacuumschmelze Gmbh & Co Kg Electric motor rotor or stator core made from a laminated Fe-Ni-Cr/Mo alloy
CN102732800A (en) * 2012-06-10 2012-10-17 电子科技大学 Fe-Ni-Cr soft magnetic alloy and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0694624A1 (en) * 1994-06-30 1996-01-31 Krupp VDM GmbH Iron-nickel alloy with particular soft magnetic properties
EP0818550A1 (en) * 1996-07-12 1998-01-14 Krupp VDM GmbH Corrosion resistant soft magnetic iron-nickel-chrome alloy
JP2005522021A (en) * 2002-02-15 2005-07-21 アンフイ・アロイ Soft magnetic alloys for watchmaking
GB2484568A (en) * 2010-09-10 2012-04-18 Vacuumschmelze Gmbh & Co Kg Electric motor rotor or stator core made from a laminated Fe-Ni-Cr/Mo alloy
GB2484568B (en) * 2010-09-10 2014-01-01 Vacuumschmelze Gmbh & Co Kg Electric motor and process for manufacturing a rotor or a stator of an electric motor
CN102732800A (en) * 2012-06-10 2012-10-17 电子科技大学 Fe-Ni-Cr soft magnetic alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
US5370749A (en) Amorphous metal alloy strip
JPH11264058A (en) Iron-cobalt alloy
JP2002173745A (en) Fe-Ni BASED PERMALLOY, ITS PRODUCTION METHOD AND CAST SLAB
JP2711574B2 (en) Ni-Fe-Cr soft magnetic alloy for magnetic shield members
CN102787281B (en) High-toughness iron-phosphorus based amorphous alloy thin strip and preparation method thereof
JP2646277B2 (en) Ni-Fe-Cr soft magnetic alloy for iron core members
US4948434A (en) Method for manufacturing Ni-Fe alloy sheet having excellent DC magnetic property and excellent AC magnetic property
JPH03277718A (en) Production of ni-fe-cr soft-magnetic alloy
JPH06228717A (en) Silicon stainless steel
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JP4573918B2 (en) Flat Fe-based alloy powder for magnetic shield
JP2674137B2 (en) High permeability magnetic material
JP3968883B2 (en) Soft magnetic stainless steel sheet and manufacturing method thereof
KR20210008732A (en) Non-magnetic austenitic stainless steel
JP2734035B2 (en) Stainless steel with excellent cold forgeability
JPH08134604A (en) Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production
JPH1081941A (en) Corrosion resistant soft magnetic iron-nickel-chromium alloy
JP3521998B2 (en) Soft magnetic stainless steel for relay iron core
JP3176385B2 (en) Method for producing Ni-Fe-Cr soft magnetic alloy sheet
JPH01263218A (en) Production of high magnetic permeability alloy of ni-fe system
JPH01119642A (en) Soft magnetic material having high saturated magnetic flux density
JPH01252756A (en) Ni-fe-cr soft magnetic alloy
JPS62188756A (en) Grain-oriented foil of high saturation magnetic flux density and its production
JP2001192784A (en) High permeability magnetic alloy
JPH02301544A (en) Soft-magnetic alloy with high electric resistance for cold forging