JP2017183323A - Iron nitride-based magnetic powder and bond magnet arranged by use thereof - Google Patents

Iron nitride-based magnetic powder and bond magnet arranged by use thereof Download PDF

Info

Publication number
JP2017183323A
JP2017183323A JP2016063486A JP2016063486A JP2017183323A JP 2017183323 A JP2017183323 A JP 2017183323A JP 2016063486 A JP2016063486 A JP 2016063486A JP 2016063486 A JP2016063486 A JP 2016063486A JP 2017183323 A JP2017183323 A JP 2017183323A
Authority
JP
Japan
Prior art keywords
magnetic powder
iron
iron nitride
bonded magnet
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016063486A
Other languages
Japanese (ja)
Inventor
茂樹 柳田
Shigeki Yanagida
茂樹 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2016063486A priority Critical patent/JP2017183323A/en
Publication of JP2017183323A publication Critical patent/JP2017183323A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: iron nitride-based magnetic powder which enables the achievement of a high orientation degree and a high density; and an iron nitride-based bond magnet which enables the achievement of a high residual magnetic flux density (Br).SOLUTION: Iron nitride-based magnetic powder has an FeNcompound phase as a main phase 2. The iron nitride-based magnetic powder comprises: iron nitride-based particles 1; and a layer 3 formed on a surface layer part of each iron nitride-based particle, and including an iron sulfide having a main phase of FeS. The iron sulfide-containing layer 3 has an average thickness of 1.2-12 nm; and the rate of the average thickness of the iron sulfide-containing layer 3 to an average particle diameter of the magnetic powder is 2.4-13%.SELECTED DRAWING: Figure 1

Description

本発明は、Fe16化合物相を主相とした窒化鉄系磁性粉末に関する。さらに、前記窒化鉄系磁性粉末を用いて、高い残留磁束密度が得られるボンド磁石を提供する。 The present invention relates to an iron nitride magnetic powder having a Fe 16 N 2 compound phase as a main phase. Furthermore, the present invention provides a bonded magnet that can obtain a high residual magnetic flux density using the iron nitride magnetic powder.

近年、電気自動車やハイブリッド自動車などのモーター用磁石として、Nd−Fe−B系の磁石が広く使われている。しかしながら、Ndに代表されるレアアースは、産業分野を支える高付加価値な部材の原料であり、近年需要が拡大しているため、資源の枯渇や原料価格が不安定であることが懸念されている。さらには、途上国においても著しく需要が拡大していることや、その偏在性ゆえに特定の産出国への依存度が高いことから、安定供給確保に対する問題が生じている。   In recent years, Nd-Fe-B magnets have been widely used as motor magnets for electric vehicles and hybrid vehicles. However, rare earths typified by Nd are raw materials for high-value-added members that support the industrial field, and since demand is increasing in recent years, there are concerns that resource depletion and raw material prices are unstable. . Furthermore, there is a problem in securing a stable supply because the demand is growing significantly in developing countries and the dependence on specific producing countries is high due to its uneven distribution.

前記問題を回避するため、レアアースを使用しない、自然界に無尽蔵に存在する元素(鉄、窒素)から高性能磁石を開発することが求められている。   In order to avoid the above problems, it is required to develop a high-performance magnet from elements (iron, nitrogen) which do not use rare earths and exist infinitely in nature.

Fe−N系の化合物、特にFe16は、Feよりも巨大な飽和磁化を示す材料のひとつとして注目されている。 Fe-N-based compounds, particularly Fe 16 N 2, are attracting attention as one of materials exhibiting a larger saturation magnetization than Fe.

特許文献1では、オキシ水酸化鉄に対して還元処理及び窒化処理を施すことで、Fe16相を含む窒化鉄系磁性粉末を作製することが記載されている、しかし、前記磁性粉末を用いてボンド磁石を得る例示はなく、Fe16相の高い飽和磁化を生かして、高い残留磁束密度(Br)を有するボンド磁石を得る技術としては不十分である。 Patent Document 1 describes that iron oxyhydroxide is subjected to reduction treatment and nitriding treatment to produce an iron nitride-based magnetic powder containing an Fe 16 N 2 phase. There is no exemplification to obtain a bonded magnet by using it, and it is insufficient as a technique for obtaining a bonded magnet having a high residual magnetic flux density (Br) by utilizing the high saturation magnetization of the Fe 16 N 2 phase.

高い残留磁束密度(Br)を有するボンド磁石を得るには、高い配向度且つ高い密度が必要である。ボンド磁石で高い配向度を得る場合、樹脂で磁性粉末を覆う必要があるが、その場合、樹脂量が増加して密度が低くなる。一方、樹脂量を減らすと粒子間摩擦が大きくなるため、外部磁界による粒子の回転が妨げられ、高い配向度が得られない。よって、高い配向度且つ高い密度を有するボンド磁石を得るのは困難である。   In order to obtain a bonded magnet having a high residual magnetic flux density (Br), a high degree of orientation and a high density are required. In order to obtain a high degree of orientation with a bonded magnet, it is necessary to cover the magnetic powder with a resin. In this case, the amount of resin increases and the density decreases. On the other hand, if the amount of resin is reduced, the interparticle friction increases, so that rotation of the particles by an external magnetic field is hindered, and a high degree of orientation cannot be obtained. Therefore, it is difficult to obtain a bonded magnet having a high degree of orientation and a high density.

特開2011−91215号公報JP 2011-91215 A

本発明は、上記を鑑みたものであり、高い配向度且つ高い密度を得るのに適した窒化鉄系磁性粉末及び前記磁性粉末を用いた高い残留磁束密度(Br)を有する窒化鉄系ボンド磁石の提供を目的とする。 The present invention has been made in view of the above, and an iron nitride based magnetic powder suitable for obtaining a high degree of orientation and high density, and an iron nitride based bonded magnet having a high residual magnetic flux density (Br) using the magnetic powder. The purpose is to provide.

すなわち本発明は、Fe16化合物相を主相とする窒化鉄系磁性粒子からなる窒化鉄系磁性粉末であり、前記磁性粒子の表層部にFeSを主相とする硫化鉄を含有する層が形成されており、前記硫化鉄含有層の平均厚みが1.2〜12nmであって、且つ前記磁性粉末の平均粒子径に対する前記硫化鉄含有層の平均厚みの比率が、2.4〜13%であることを特徴とする、窒化鉄系磁性粉末及び前記磁性粉末を用いたボンド磁石に関するものである。 That is, the present invention is an iron nitride-based magnetic powder comprising iron nitride-based magnetic particles whose main phase is Fe 16 N 2 compound phase, and a layer containing iron sulfide whose main phase is FeS in the surface layer portion of the magnetic particles. The average thickness of the iron sulfide-containing layer is 1.2 to 12 nm, and the ratio of the average thickness of the iron sulfide-containing layer to the average particle diameter of the magnetic powder is 2.4 to 13 The present invention relates to an iron nitride-based magnetic powder and a bonded magnet using the magnetic powder.

前記硫化鉄を含有する層の主相がFeSであると、細孔を有する六方晶の層状構造を形成する。前記磁性粒子同士の接触点に力が加わった時、前記層状構造が剥離するように滑ることで、前記磁性粒子間の摩擦抵抗を低減することが出来る。さらに、前記硫化鉄を含有する層に形成される細孔に、ボンド磁石に用いられる樹脂や溶剤等の液体が担持され、この担持物が前記磁性粒子間に潤滑作用をもたらすことで摩擦抵抗を低減することが出来る。このような窒化鉄系磁性粉末を用いることで、前記磁性粒子間の摩擦抵抗が低減すれば、少ない樹脂量でも前記磁性粒子が充填されやすくなるとともに、外部磁場による粒子の回転が容易になるため、高い配向度及び高い密度を得ることが出来る。 When the main phase of the iron sulfide-containing layer is FeS, a hexagonal layered structure having pores is formed. When a force is applied to the contact point between the magnetic particles, the frictional resistance between the magnetic particles can be reduced by sliding so that the layered structure is peeled off. Furthermore, liquids such as resins and solvents used in bonded magnets are supported in the pores formed in the iron sulfide-containing layer, and this support provides a lubricating action between the magnetic particles, thereby reducing frictional resistance. It can be reduced. By using such an iron nitride magnetic powder, if the frictional resistance between the magnetic particles is reduced, the magnetic particles can be easily filled even with a small amount of resin, and the rotation of the particles by an external magnetic field is facilitated. High degree of orientation and high density can be obtained.

さらに本発明は、前記硫化鉄含有層の平均厚みが、1.5〜10nmである、窒化鉄系磁性粉末及び前記磁性粉末を用いたボンド磁石に関するものである。 Furthermore, the present invention relates to an iron nitride magnetic powder having an average thickness of the iron sulfide-containing layer of 1.5 to 10 nm and a bonded magnet using the magnetic powder.

さらに本発明は、前記磁性粉末の平均粒子径に対する前記硫化鉄含有層の平均厚みの比率が、2.4〜10.2%である、窒化鉄系磁性粉末及び前記磁性粉末を用いたボンド磁石に関するものである。 Furthermore, the present invention provides an iron nitride magnetic powder and a bonded magnet using the magnetic powder, wherein the ratio of the average thickness of the iron sulfide-containing layer to the average particle diameter of the magnetic powder is 2.4 to 10.2%. It is about.

さらに本発明は、前記磁性粉末の平均粒子径が、20〜130nmであることを特徴とする、窒化鉄系磁性粉末及び前記磁性粉末を用いたボンド磁石に関するものである。 Furthermore, the present invention relates to an iron nitride magnetic powder and a bond magnet using the magnetic powder, wherein the magnetic powder has an average particle size of 20 to 130 nm.

本発明は、高い配向度且つ高い密度を得るのに適した窒化鉄系磁性粉末を提供することが出来る。さらに、前記磁性粉末を用いた高い残留磁束密度(Br)を有する窒化鉄系ボンド磁石を提供することが出来る。 The present invention can provide an iron nitride magnetic powder suitable for obtaining a high degree of orientation and a high density. Furthermore, it is possible to provide an iron nitride bond magnet having a high residual magnetic flux density (Br) using the magnetic powder.

図1は、本発明の一実施形態に係る窒化鉄系磁性粉末について示した断面図である。FIG. 1 is a cross-sectional view showing an iron nitride-based magnetic powder according to an embodiment of the present invention. 図2は、本発明の一実施形態に係るボンド磁石の断面構成図である。FIG. 2 is a cross-sectional configuration diagram of a bonded magnet according to an embodiment of the present invention.

以下、本発明の好適な実施形態について、図面に示す実施形態に基づき説明する。なお、本発明は以下に記載の実施形態及び実施例の内容により限定されるものではない。また、以下に記載の実施形態及び実施例にて示された構成要素は適宜組み合わせても良いし、適宜選択しても良い。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described based on the embodiments shown in the drawings. The present invention is not limited by the contents of the embodiments and examples described below. In addition, the constituent elements shown in the embodiments and examples described below may be appropriately combined or may be appropriately selected.

図1に示すように、本発明に記載の窒化鉄系磁性粉末は、窒化鉄系磁性粒子1からなり、前記磁性粒子1は、Fe16化合物からなる主相2と、前記磁性粒子1の表層部に形成された硫化鉄を含有する層3を有する。 As shown in FIG. 1, the iron nitride magnetic powder according to the present invention is composed of iron nitride magnetic particles 1, and the magnetic particles 1 are composed of a main phase 2 composed of Fe 16 N 2 compound and the magnetic particles 1. The layer 3 containing iron sulfide is formed on the surface layer portion of.

前記磁性粒子1の主相2はFe16化合物相であるが、Fe16化合物以外にFeN化合物等の窒化物相を含んでも良い。また窒化物相以外に、微量のFe、Fe及びFeO等の酸化物相、FeS等の硫化物相を有していても良く、前記磁性粒子1の表層に酸化物からなる相を有していても良い。さらに前記磁性粒子1は、Mn、Ni、Co、Ti、Zn等の遷移金属を含んでいても良い。 The main phase 2 of the magnetic particle 1 is an Fe 16 N 2 compound phase, but may include a nitride phase such as an Fe 4 N compound in addition to the Fe 16 N 2 compound. In addition to the nitride phase, it may have a trace amount of an oxide phase such as Fe 2 O 3 , Fe 3 O 4 and FeO, and a sulfide phase such as FeS. May have a phase. Further, the magnetic particle 1 may contain a transition metal such as Mn, Ni, Co, Ti, Zn.

前記硫化鉄を含有する層3に含まれる硫化鉄の主相はFeSであるが、前記Fe16化合物相からなる主相2と硫化鉄を含有する層3の界面若しくは硫化鉄を含有する層3の一部に、微量のFeS、Fe等の硫化物相、FeN化合物等の窒化物相、Fe、Fe及びFeO等の酸化鉄相を含んでいてもよい。また、この限りではなく、効果を妨げる範囲外であれば他の相を含んでいてもよい。 The main phase of iron sulfide contained in the layer 3 containing iron sulfide is FeS, but contains the interface between the main phase 2 composed of the Fe 16 N 2 compound phase and the layer 3 containing iron sulfide or iron sulfide. Part of the layer 3 contains a trace amount of a sulfide phase such as FeS 2 and Fe 3 S 4 , a nitride phase such as an Fe 4 N compound, and an iron oxide phase such as Fe 2 O 3 , Fe 3 O 4 and FeO. You may go out. Further, the present invention is not limited to this, and other phases may be included as long as they are outside the range of hindering the effect.

前記磁性粉末1の粒子径4は、その平均値が15〜155nmの範囲であることが好ましい。平均粒子径がこの範囲に無い場合、十分な残留磁束密度(Br)が得られないことがある。より好ましくは、20〜130nmである。 The average particle size 4 of the magnetic powder 1 is preferably in the range of 15 to 155 nm. If the average particle diameter is not within this range, a sufficient residual magnetic flux density (Br) may not be obtained. More preferably, it is 20-130 nm.

前記硫化鉄を含有する層の厚み5は、その平均値が1.2〜12nmであって、且つ前記磁性粉末の平均粒子径に対する前記硫化鉄含有層の平均厚みの比率が、2.4〜13%である。前記硫化鉄を含有する層の厚み5のより好ましい範囲は、1.5〜10nmである。また、平均厚み比率のより好ましい範囲は2.4〜10.2%である。 The thickness 5 of the iron sulfide-containing layer has an average value of 1.2 to 12 nm, and the ratio of the average thickness of the iron sulfide-containing layer to the average particle diameter of the magnetic powder is 2.4 to 13%. A more preferable range of the thickness 5 of the layer containing iron sulfide is 1.5 to 10 nm. A more preferable range of the average thickness ratio is 2.4 to 10.2%.

硫化鉄を含有する層の厚み5が1.2nmより小さい場合、細孔を有する六方晶の層状構造の形成が不十分となるため、高い配向度且つ高い密度が得られない。また、前記磁性粉末の平均粒子径に対する前記硫化鉄含有層の平均厚みの比率が2.4%より低い場合、前記磁性粒子間の摩擦抵抗の低減効果が小さすぎることにより、高い配向度や高い密度が得られない場合がある。一方、12nmより大きい場合や、前記磁性粉末の平均粒子径に対する前記硫化鉄含有層の平均厚みの比率が13%より高い場合、表層の構造が脆くなったり異相が過剰に析出したりすることで、高い配向度や高い密度を得られにくくなったり、窒化鉄系磁性粒子に含まれる主相の割合が低下して、窒化鉄系磁性粉末の飽和磁化が低下したりするため、十分な残留磁束密度(Br)を得られない場合がある。 When the thickness 5 of the layer containing iron sulfide is smaller than 1.2 nm, the formation of a hexagonal layered structure having pores is insufficient, so that a high degree of orientation and high density cannot be obtained. In addition, when the ratio of the average thickness of the iron sulfide-containing layer to the average particle diameter of the magnetic powder is lower than 2.4%, the effect of reducing the frictional resistance between the magnetic particles is too small, resulting in a high degree of orientation and high The density may not be obtained. On the other hand, if the ratio is larger than 12 nm or if the ratio of the average thickness of the iron sulfide-containing layer to the average particle diameter of the magnetic powder is higher than 13%, the structure of the surface layer becomes brittle or the foreign phase is excessively precipitated. It is difficult to obtain a high degree of orientation and high density, or the ratio of the main phase contained in the iron nitride-based magnetic particles is reduced, so that the saturation magnetization of the iron nitride-based magnetic powder is reduced. The density (Br) may not be obtained.

以下に、本実施形態に係る窒化鉄系磁性粉末の好適な製造法について述べる。本実施形態に係る窒化鉄系磁性粉末は、酸化鉄粒子を合成した後、前記酸化鉄粒子に還元処理および窒化処理を順に施して得た窒化鉄系磁性粒子に対して、硫化鉄を含有する層を形成する処理を行うことで得られる。 Below, the suitable manufacturing method of the iron nitride type magnetic powder which concerns on this embodiment is described. The iron nitride magnetic powder according to the present embodiment contains iron sulfide with respect to iron nitride magnetic particles obtained by synthesizing iron oxide particles and then subjecting the iron oxide particles to reduction treatment and nitriding treatment in order. It is obtained by performing a process for forming a layer.

前記酸化鉄粒子は鉄塩水溶液と、アルカリ水溶液とを混合させた後、熟成し、洗浄することにより製造することが出来る。 The iron oxide particles can be produced by mixing an aqueous iron salt solution and an aqueous alkaline solution, aging and washing.

前記鉄塩としては、硫酸塩、塩化物、硝酸塩等を挙げることが出来、これらを適宜組み合わせて使用しても良い。また、それらの水和物を使用することが出来る。 Examples of the iron salt include sulfates, chlorides and nitrates, and these may be used in appropriate combination. Moreover, those hydrates can be used.

前記アルカリ水溶液としては、水酸化ナトリウム水溶液、アンモニア水、アンモニア塩水溶液、および尿素水溶液を1つ以上用いることができるが、この限りではない。 As the alkaline aqueous solution, one or more of sodium hydroxide aqueous solution, ammonia water, ammonia salt aqueous solution, and urea aqueous solution can be used, but not limited thereto.

また、酸化鉄製造後、結晶性の改善、粒子サイズや粒子形状制御のために、オートクレーブによる水熱処理など液中熟成反応を行っても良い。 In addition, after the iron oxide production, an aging reaction in liquid such as hydrothermal treatment by an autoclave may be performed for improving crystallinity and controlling the particle size and particle shape.

酸化鉄製造後、水溶液をろ過し、必要に応じて水洗等の洗浄処理を施すことで、酸化鉄粒子を回収することが出来る。 After the iron oxide is produced, the aqueous solution is filtered, and the iron oxide particles can be recovered by performing a washing treatment such as washing with water as necessary.

前記酸化鉄粒子は、還元等の熱処理時における粒子同士の焼結を抑制するために、Si化合物で被覆しても良い。Si化合物としては、コロイダルシリカ、シランカップリング剤、シラノール化合物等が使用出来る。 The iron oxide particles may be coated with a Si compound in order to suppress sintering of the particles during heat treatment such as reduction. As the Si compound, colloidal silica, a silane coupling agent, a silanol compound, or the like can be used.

Si化合物で被覆する場合、その被覆量は酸化鉄粒子に対して、Si換算で0.1質量%以上20質量%以下であることが好ましい。0.1質量%未満の場合には、熱処理時における粒子同士の焼結の抑制効果が十分得られないため、最終的に得られる窒化鉄系磁性粒子が大きくなる。一方、20質量%を超える場合には、熱処理時における粒子同士の焼結の抑制効果が過剰となり、最終的に得られる窒化鉄系磁性粒子が小さくなる。 When coat | covering with Si compound, it is preferable that the coating amount is 0.1 to 20 mass% in conversion of Si with respect to iron oxide particles. When the amount is less than 0.1% by mass, the effect of suppressing the sintering of the particles during the heat treatment cannot be obtained sufficiently, and the finally obtained iron nitride magnetic particles become large. On the other hand, if it exceeds 20% by mass, the effect of suppressing the sintering of the particles during the heat treatment becomes excessive, and the finally obtained iron nitride-based magnetic particles become smaller.

前記酸化鉄粒子は、平均粒子径は10nm以上150nm以下が好ましい。平均粒子径をこの範囲とすることで、最終的に得られる窒化鉄系磁性粒子の平均粒子径を15〜155nmとすることが出来る。 The iron oxide particles preferably have an average particle diameter of 10 nm to 150 nm. By setting the average particle diameter within this range, the average particle diameter of the iron nitride-based magnetic particles finally obtained can be set to 15 to 155 nm.

前記酸化鉄粒子は、マグネタイト、γ−Fe、α−Fe、α−FeOOH、β−FeOOH、γ−FeOOH、FeOなどであるが、この限りではない。 Examples of the iron oxide particles include magnetite, γ-Fe 2 O 3 , α-Fe 2 O 3 , α-FeOOH, β-FeOOH, γ-FeOOH, and FeO, but are not limited thereto.

前記酸化鉄粒子の粒子形状は、球状、針状、粒状、紡錘状、直方体状などいずれでも良い。 The particle shape of the iron oxide particles may be any of spherical shape, needle shape, granular shape, spindle shape, rectangular parallelepiped shape, and the like.

次に、得られた酸化鉄粒子の還元処理を行い、鉄粒子を得る。還元処理の温度は200〜400℃である。還元処理の温度が200℃未満の場合には酸化鉄粒子が十分に還元されない。還元処理の温度が400℃を超える場合には酸化鉄粒子は十分に還元されるが、粒子間の焼結が進行するため好ましくない。より好ましくは230〜350℃である。 Next, the obtained iron oxide particles are subjected to reduction treatment to obtain iron particles. The temperature of the reduction treatment is 200 to 400 ° C. When the temperature of the reduction treatment is less than 200 ° C., the iron oxide particles are not sufficiently reduced. When the temperature of the reduction treatment exceeds 400 ° C., the iron oxide particles are sufficiently reduced, but this is not preferable because sintering between the particles proceeds. More preferably, it is 230-350 degreeC.

還元処理の時間は特に限定されないが、1〜96時間が好ましい。96時間を超えると還元温度によっては焼結が進み、後段の窒化処理が進行しにくくなってしまう。1時間未満では十分に還元が進行しない。より好ましくは2〜72時間である。 The time for the reduction treatment is not particularly limited, but is preferably 1 to 96 hours. If it exceeds 96 hours, the sintering proceeds depending on the reduction temperature, and the subsequent nitriding process is difficult to proceed. If it is less than 1 hour, the reduction does not proceed sufficiently. More preferably, it is 2 to 72 hours.

還元処理の雰囲気は、水素ガス雰囲気である。 The atmosphere for the reduction treatment is a hydrogen gas atmosphere.

次に、得られた鉄粒子の窒化処理を行い、窒化鉄系磁性粒子を得る。窒化処理の温度は100〜200℃である。窒化処理の温度が100℃未満の場合には窒化が十分に進行しない。窒化処理の温度が200℃を超える場合には、窒化が過剰に進行するため、磁気特性が低下する。より好ましくは120〜180℃である。 Next, the obtained iron particles are nitrided to obtain iron nitride-based magnetic particles. The temperature of the nitriding treatment is 100 to 200 ° C. When the nitriding temperature is less than 100 ° C., nitriding does not proceed sufficiently. When the temperature of the nitriding process exceeds 200 ° C., nitriding proceeds excessively, so that the magnetic characteristics are deteriorated. More preferably, it is 120-180 degreeC.

窒化処理の時間は特に限定されないが、1〜48時間が好ましい。48時間を超えると窒化温度によっては磁気特性が低下する。1時間未満では十分な窒化が出来ない場合が多い。より好ましくは3〜36時間である。 The nitriding time is not particularly limited, but is preferably 1 to 48 hours. If it exceeds 48 hours, the magnetic properties will deteriorate depending on the nitriding temperature. In many cases, sufficient nitriding cannot be performed in less than 1 hour. More preferably, it is 3 to 36 hours.

窒化処理の雰囲気は、アンモニアガスNH雰囲気が望ましく、NHの他、窒素ガスN、水素ガスHなどを適宜混合しても良い。 The atmosphere of the nitriding treatment is desirably an ammonia gas NH 3 atmosphere, and in addition to NH 3 , nitrogen gas N 2 , hydrogen gas H 2, and the like may be appropriately mixed.

この時、窒化鉄系磁性粒子の表層に酸化鉄層を有していても良い。 At this time, an iron oxide layer may be provided on the surface layer of the iron nitride magnetic particles.

窒化処理に続いて浸硫処理を行い、表層部に硫化鉄を含有する層が形成された、窒化鉄系磁性粉末を得る。浸硫処理の温度は100〜200℃である。浸硫処理の温度が100℃未満の場合には、硫化鉄を含有する層の形成が十分に進行しない。浸硫処理の温度が200℃を超える場合には、S及びNの侵入が過剰に進行するため、磁気特性が低下する。より好ましくは120〜180℃である。 Subsequent to the nitriding treatment, a sulfuration treatment is performed to obtain an iron nitride-based magnetic powder in which a layer containing iron sulfide is formed on the surface layer portion. The temperature of the sulfuration treatment is 100 to 200 ° C. When the temperature of the sulfuration treatment is less than 100 ° C., formation of the layer containing iron sulfide does not proceed sufficiently. When the temperature of the sulfiding treatment exceeds 200 ° C., the penetration of S and N proceeds excessively, so that the magnetic characteristics are deteriorated. More preferably, it is 120-180 degreeC.

浸硫処理の時間は特に限定されないが、1〜36時間が好ましい。処理時間を変化させることで、硫化鉄を含有する層の厚みを制御することが出来る。1時間未満では硫化鉄を含有する層の形成が不十分である。36時間を超えると、処理温度によってはS及びNの侵入が過剰に進行するため、磁気特性が低下する。より好ましくは2〜24時間である。 The time for the sulfur treatment is not particularly limited, but is preferably 1 to 36 hours. By changing the treatment time, the thickness of the layer containing iron sulfide can be controlled. If it is less than 1 hour, the formation of a layer containing iron sulfide is insufficient. If it exceeds 36 hours, the penetration of S and N will proceed excessively depending on the processing temperature, so that the magnetic properties will deteriorate. More preferably, it is 2 to 24 hours.

浸硫処理の雰囲気は、硫化水素ガスHSとNH混合雰囲気が望ましいが、この限りではなく、HS単独雰囲気やNHの他、N、Hなどを混合してもよい。HSとNHの混合比率を変化させることで、硫化鉄を含有する層の厚みを制御することが出来る。望ましくは、混合雰囲気中のHSの割合が10〜60mol%である。 The atmosphere of the sulfuration treatment is preferably a mixed atmosphere of hydrogen sulfide gas H 2 S and NH 3, but is not limited to this, and N 2 , H 2, etc. may be mixed in addition to the H 2 S single atmosphere or NH 3. . By changing the mixing ratio of H 2 S and NH 3 , the thickness of the layer containing iron sulfide can be controlled. Desirably, the ratio of H 2 S in the mixed atmosphere is 10~60mol%.

本実施形態によって得られた窒化鉄系磁性粉末を用いて、ボンド磁石を得ることが出来る。ボンド磁石は、磁性粉末と熱硬化性樹脂や熱可塑性樹脂などの有機バインダーの混合物を、所望とする形状に成形して作製する。焼結により得られるバルク磁石と比較して、磁気特性は劣るが、複雑な形状の磁石が作製可能で、寸法精度に優れるといった利点がある。 A bonded magnet can be obtained using the iron nitride magnetic powder obtained according to the present embodiment. The bond magnet is manufactured by molding a mixture of magnetic powder and an organic binder such as a thermosetting resin or a thermoplastic resin into a desired shape. Compared to bulk magnets obtained by sintering, the magnetic properties are inferior, but there are advantages that magnets with complex shapes can be produced and that dimensional accuracy is excellent.

図2に、本発明の一実施形態に係るボンド磁石の断面構成図を示す。図2に示すように、本発明に記載のボンド磁石8は、前記樹脂(有機バインダー)9と窒化鉄系磁性粒子2からなる。前記磁性粒子2の表層部に硫化鉄を含有する層4が形成されることで、前記磁性粒子間の摩擦抵抗を低減するため、高い配向度及び高い密度を有するボンド磁石を得ることが出来る。 FIG. 2 shows a cross-sectional configuration diagram of a bonded magnet according to an embodiment of the present invention. As shown in FIG. 2, the bonded magnet 8 according to the present invention includes the resin (organic binder) 9 and the iron nitride magnetic particles 2. By forming the layer 4 containing iron sulfide on the surface layer portion of the magnetic particles 2, the frictional resistance between the magnetic particles is reduced, so that a bonded magnet having a high degree of orientation and a high density can be obtained.

ボンド磁石に用いられる有機バインダーとしては熱硬化性樹脂や熱可塑性樹脂が挙げられる。熱硬化性樹脂としてはエポキシ樹脂、フェノール樹脂等、熱可塑性樹脂としては、ポリオレフィン系樹脂、ポリスチレン、ポリウレタン樹脂、ポリエステル系、ポリアミド(ナイロン)系、アクリル樹脂やこれらの誘導体、共重合体等、がそれぞれ挙げられる。有機バインダーは、所望とする成形性、耐熱性、機械的強度などに応じて、様々な種類の樹脂を選択することが出来、1種類の樹脂を単独で使用しても、2種類以上の樹脂を混合して使用しても良い。 Examples of the organic binder used for the bond magnet include a thermosetting resin and a thermoplastic resin. Examples of thermosetting resins include epoxy resins and phenol resins, and thermoplastic resins include polyolefin resins, polystyrene, polyurethane resins, polyester systems, polyamide (nylon) systems, acrylic resins, derivatives thereof, copolymers, and the like. Each is listed. The organic binder can be selected from various types of resins according to the desired moldability, heat resistance, mechanical strength, etc., and even if one type of resin is used alone, two or more types of resins can be selected. May be used in combination.

以下に、本実施形態によって得られた窒化鉄系磁性粉末を用いたボンド磁石の製造方法の一例について説明する。本実施形態におけるボンド磁石の製造方法は、コンパウンド化(磁性粉末と樹脂の混合組成物作製)工程、成形工程からなり、これらの工程を経てボンド磁石を製造することが出来る。 Below, an example of the manufacturing method of the bonded magnet using the iron nitride type magnetic powder obtained by this embodiment is demonstrated. The method for manufacturing a bonded magnet in the present embodiment includes a compounding (preparing a mixed composition of magnetic powder and resin) process and a molding process, and a bonded magnet can be manufactured through these processes.

コンパウンド化工程では、樹脂と窒化鉄系磁性粉末とを、例えば加圧加熱ニーダー、二軸押出機、ヘンシェルミキサーなどで混合して、ボンド磁石用コンパウンド(組成物)を作製する。圧縮成形によりボンド磁石を作製する場合は、熱硬化性樹脂を用いるのが好ましく、エポキシ樹脂又はフェノール樹脂がより好ましい。射出成形によりボンド磁石を作製する場合には、熱可塑性樹脂が好ましい。 In the compounding step, the resin and the iron nitride-based magnetic powder are mixed with, for example, a pressure heating kneader, a twin screw extruder, a Henschel mixer, or the like to produce a compound (composition) for a bond magnet. When producing a bonded magnet by compression molding, it is preferable to use a thermosetting resin, and more preferably an epoxy resin or a phenol resin. When producing a bonded magnet by injection molding, a thermoplastic resin is preferable.

ボンド磁石用コンパウンドの形態としては、粉末状、顆粒状、ペレット状などが挙げられるが、これに限定されるものではなく、適宜選択すれば良い。 Examples of the bonded magnet compound include powder, granules, and pellets, but the present invention is not limited to this and may be selected as appropriate.

ボンド磁石用コンパウンドはスラリー状、若しくはペースト状であっても良い。この場合、液体状の樹脂あるいは樹脂を有機溶媒に溶解した溶液と窒化鉄系磁性粉末とを、例えばボールミルや自転・公転ミキサー等を用いて混合・撹拌し、ボンド磁石用コンパウンドを作製する。液体中で混合することで、樹脂と磁性粉末との混合度合いがより良好になる。前記有機溶媒としては、使用する樹脂を溶解出来るものが良い。例えば、ヘキサン、シクロヘキサン、オクタン等のアルカン類や、シクロヘキサノン、MEK等のケトン類等のいずれか一つ以上を用いた単体液体、若しくは混合液体を用いることが出来るが、この限りではない。 The compound for the bond magnet may be in the form of a slurry or a paste. In this case, a liquid resin or a solution obtained by dissolving a resin in an organic solvent and an iron nitride-based magnetic powder are mixed and stirred using, for example, a ball mill or a rotation / revolution mixer to produce a compound for a bonded magnet. By mixing in the liquid, the mixing degree of the resin and the magnetic powder becomes better. The organic solvent is preferably one that can dissolve the resin used. For example, a single liquid or a mixed liquid using any one or more of alkanes such as hexane, cyclohexane and octane, and ketones such as cyclohexanone and MEK can be used, but this is not restrictive.

ボンド磁石における窒化鉄系磁性粉末と樹脂との含有比率は、前記磁性粉末100質量%に対して、樹脂を例えば0.5質量%以上20質量%以下含むことが好ましい。樹脂の含有量が0.5質量%未満であると、前記磁性粉末への樹脂の被覆が不十分となるため、前記磁性粉末の分散状態が悪くなり、ボンド磁石の保形性が低下する傾向がある。一方、樹脂の含有量が20質量%と超えると、ボンド磁石中の前記磁性粉末の含有量が低下するため、十分に優れた磁気特性が得られ難くなる傾向がある。 The content ratio of the iron nitride-based magnetic powder and the resin in the bonded magnet preferably includes, for example, 0.5% by mass or more and 20% by mass or less of the resin with respect to 100% by mass of the magnetic powder. When the resin content is less than 0.5% by mass, the magnetic powder is not sufficiently coated with the resin, so that the dispersion state of the magnetic powder is deteriorated, and the shape retention of the bonded magnet tends to be lowered. There is. On the other hand, when the resin content exceeds 20% by mass, the content of the magnetic powder in the bonded magnet is lowered, and thus there is a tendency that it is difficult to obtain sufficiently excellent magnetic properties.

また、ボンド磁石用コンパウンドには、必要に応じて、カップリング剤、分散剤やその他の添加剤を加えても良い。前記カップリング剤としては、シランカップリング剤、チタネートカップリング剤等の何れか一つ以上を用いることが出来るが、この限りではない。また前記分散剤には、オレイン酸、オレイルアミン、トリオクチルアミン等の何れか一つ以上を用いることが出来るが、この限りではない。前記カップリング剤や分散剤の添加量は、前記磁性粉末に対して0.1質量%以上5質量%以下であれば良い。   Moreover, you may add a coupling agent, a dispersing agent, and another additive to the compound for bonded magnets as needed. As the coupling agent, any one or more of a silane coupling agent, a titanate coupling agent and the like can be used, but not limited thereto. The dispersant may be any one or more of oleic acid, oleylamine, trioctylamine and the like, but is not limited thereto. The amount of the coupling agent or dispersant added may be 0.1% by mass or more and 5% by mass or less with respect to the magnetic powder.

前述のボンド磁石用コンパウンドを作製した後、このボンド磁石用コンパウンドを圧縮成形することにより、前記磁性粉末と樹脂とを含むボンド磁石を得ることが出来る。圧縮成形によりボンド磁石を作製する場合、前述のボンド磁石用コンパウンドを作製した後、このボンド磁石用コンパウンドを所定の形状を有する金型内に充填し、圧力を加えて金型から所定形状を有する成形品(ボンド磁石)を取り出す。金型にてボンド磁石用コンパウンドを成形し、取り出す際には、機械式プレスや油圧式プレス等の圧縮成形機を用いて行なわれる。その後、加熱炉や真空乾燥炉などの炉に入れて加熱し樹脂を硬化させることで、ボンド磁石が得られる。 A bonded magnet containing the magnetic powder and the resin can be obtained by producing the above-described bonded magnet compound and then compression-molding the bonded magnet compound. When producing a bonded magnet by compression molding, after producing the aforementioned compound for bonded magnet, the compound for bonded magnet is filled into a mold having a predetermined shape, and pressure is applied to obtain the predetermined shape from the mold. Take out the molded product (bonded magnet). When a bonded magnet compound is formed and taken out by a mold, it is performed using a compression molding machine such as a mechanical press or a hydraulic press. Then, a bonded magnet is obtained by putting in a furnace such as a heating furnace or a vacuum drying furnace and heating to cure the resin.

圧縮成型によりボンド磁石を作製する場合、成形圧力は例えば0.29〜1.96MPa(3〜20kgf/cm)とすれば良い。成形圧力が0.29MPa(3kgf/cm)未満の場合、加圧が不十分で保形が難しい。一方、成形圧力が1.96MPa(20kgf/cm)より大きい場合、残留応力が大きくなるため窒化鉄系ボンド磁石にクラックが発生したり、金型破損が発生したりする。 When producing a bonded magnet by compression molding, the molding pressure may be, for example, 0.29 to 1.96 MPa (3 to 20 kgf / cm 2 ). When the molding pressure is less than 0.29 MPa (3 kgf / cm 2 ), pressurization is insufficient and shape retention is difficult. On the other hand, when the molding pressure is greater than 1.96 MPa (20 kgf / cm 2 ), the residual stress increases, so that a crack occurs in the iron nitride-based bond magnet or a mold breakage occurs.

また、ボンド磁石用コンパウンド中の溶剤を揮発させる際は、金型を50〜200℃に加熱することが好ましい。50℃未満の場合は、溶剤を十分に揮発させることが出来ない。200℃以上ではFe16相の分解や樹脂の熱分解が始まり、磁気特性が低下する。 Moreover, when volatilizing the solvent in the compound for bonded magnets, it is preferable to heat the mold to 50 to 200 ° C. When the temperature is lower than 50 ° C., the solvent cannot be volatilized sufficiently. Above 200 ° C., decomposition of the Fe 16 N 2 phase and thermal decomposition of the resin start, and the magnetic properties deteriorate.

さらに溶剤を揮発させる際は、加熱に加えて真空ポンプ等を用いて減圧することにより、より短時間で溶剤を揮発させることが出来る。前記真空ポンプはドライポンプやロータリーポンプを用いることが出来るが、この限りではない。   Furthermore, when volatilizing the solvent, the solvent can be volatilized in a shorter time by reducing the pressure using a vacuum pump or the like in addition to heating. The vacuum pump may be a dry pump or a rotary pump, but is not limited thereto.

前述のようにボンド磁石用コンパウンドを作製した後、このボンド磁石用コンパウンドを射出成形することにより、前記磁性粉末と樹脂とを含むボンド磁石を得ることができる。射出成形によりボンド磁石を作製する場合、ボンド磁石用コンパウンドを、必要に応じてバインダー(熱可塑性樹脂)の溶融温度まで加熱し、流動状態とした後、このボンド磁石用コンパウンドを所定の形状を有する金型内に射出して成形を行う。その後、冷却し、金型から所定形状を有する成形品(ボンド磁石)を取り出す。このようにしてボンド磁石が得られる。 After producing the bonded magnet compound as described above, the bonded magnet compound containing the magnetic powder and the resin can be obtained by injection molding the bonded magnet compound. When producing a bonded magnet by injection molding, the bonded magnet compound is heated to the melting temperature of the binder (thermoplastic resin) as necessary to obtain a fluid state, and then the bonded magnet compound has a predetermined shape. Injection into the mold and molding. Then, it cools and the molded article (bond magnet) which has a predetermined shape is taken out from a metal mold | die. In this way, a bonded magnet is obtained.

成形して得られるボンド磁石の形状は特に限定されるものではなく、用いる金型の形状に応じて、例えば平板状、柱状、断面形状がリング状等、変更することが出来る。また、得られたボンド磁石は、その表面に酸化層の形成や樹脂層等の劣化を防止するために、めっきや塗装を施すようにしても良い。 The shape of the bonded magnet obtained by molding is not particularly limited, and can be changed, for example, in a plate shape, a column shape, or a cross-sectional shape in a ring shape, depending on the shape of the mold to be used. In addition, the obtained bonded magnet may be plated or painted in order to prevent the formation of an oxide layer or the deterioration of the resin layer on the surface.

ボンド磁石用コンパウンドは目的とする所定の形状に成形する際、磁場を印加しながら成形しても良い。これにより、窒化鉄系磁性粉末が特定方向に配向するので、より磁気特性に優れた異方性ボンド磁石が得られる。このときの印加磁場は、例えば398〜1989kA/m(5〜25kOe)程度とすれば良い。 The bonded magnet compound may be molded while applying a magnetic field when it is molded into a desired shape. Thereby, since the iron nitride magnetic powder is oriented in a specific direction, an anisotropic bonded magnet having more excellent magnetic properties can be obtained. The applied magnetic field at this time may be about 398 to 1989 kA / m (5 to 25 kOe), for example.

ボンド磁石の製造は、大気中で行っても、例えばN雰囲気中やAr雰囲気中など、酸素濃度の低い雰囲気で実施しても良い。酸素濃度を例えば0.1%未満等の低酸素雰囲気にすることで、前記磁性粉末や樹脂の酸化劣化等を抑止することが出来る。 The manufacture of the bonded magnet may be performed in the air or in an atmosphere having a low oxygen concentration, such as in an N 2 atmosphere or an Ar atmosphere. By setting the oxygen concentration to a low oxygen atmosphere such as less than 0.1%, it is possible to suppress oxidative deterioration of the magnetic powder and resin.

次に、本発明に記載の窒化鉄系磁性粉末及びボンド磁石について、実施例・比較例を用いてさらに詳細に説明するが、本発明は実施例に示す態様に限定されるものではない。 Next, the iron nitride magnetic powder and the bonded magnet described in the present invention will be described in more detail using examples and comparative examples, but the present invention is not limited to the embodiments shown in the examples.

(実施例1)
<窒化鉄系磁性粉末の作製>
塩化鉄六水和物(FeCl・6HO)167gと硫酸鉄七水和物(FeSO・7HO)85gをイオン交換水に溶解し、鉄塩水溶液を作製した。2.5molアンモニア水溶液600gを30℃に保持し、先に調整した鉄塩水溶液を添加した後、液中熟成反応として70℃で一定となるように温度コントロールし、30分撹拌後、遠心分離機にて2Lのイオン交換水で3回洗浄を行い、酸化鉄スラリーを作製した。
Example 1
<Production of iron nitride magnetic powder>
167 g of iron chloride hexahydrate (FeCl 3 · 6H 2 O) and 85 g of iron sulfate heptahydrate (FeSO 4 · 7H 2 O) were dissolved in ion-exchanged water to prepare an iron salt aqueous solution. After maintaining 600 g of 2.5 mol ammonia aqueous solution at 30 ° C. and adding the previously prepared iron salt aqueous solution, the temperature was controlled to be constant at 70 ° C. as a ripening reaction in the liquid, stirred for 30 minutes, and then centrifuged. Was washed 3 times with 2 L of ion exchange water to prepare an iron oxide slurry.

前記酸化鉄スラリーに、テトラエトキシシラン10.0g、エタノール9.0gを添加し、Si被着処理を施した。この酸化鉄スラリーを85℃で24時間乾燥し、Feを含む酸化鉄粒子を作製した。 To the iron oxide slurry, 10.0 g of tetraethoxysilane and 9.0 g of ethanol were added and subjected to Si deposition treatment. This iron oxide slurry was dried at 85 ° C. for 24 hours to produce iron oxide particles containing Fe 2 O 3 .

前記酸化鉄粒子3gを焼成ボートに入れ、熱処理炉に静置した。炉内に窒素ガスを充填した後、流量1L/min.の水素ガス気流中、5℃/min.の昇温速度で270℃まで昇温し、48時間保持して還元処理を行った。還元処理後に水素ガスの供給を停止し、流量2L/min.の窒素ガス気流中、140℃まで降温した。140℃に到達後に窒素ガスの供給を停止し、流量0.2L/min.のアンモニアガス気流中、22時間窒化処理を行った。窒化処理に続いて、流量0.04L/min.の硫化水素ガスと流量0.16L/min.のアンモニアガスの混合ガス気流中、140℃で4時間浸硫処理を行った。浸硫処理後、流量2L/min.の窒素ガス気流中50℃まで降温し、空気置換を24時間実施して、窒化鉄系磁性粉末を得た。 3 g of the iron oxide particles were placed in a firing boat and left in a heat treatment furnace. After filling the furnace with nitrogen gas, the flow rate was 1 L / min. In a hydrogen gas stream at 5 ° C./min. The temperature was increased to 270 ° C. at a rate of temperature increase of and maintained for 48 hours for reduction treatment. After the reduction treatment, the supply of hydrogen gas was stopped and the flow rate was 2 L / min. The temperature was lowered to 140 ° C. in a nitrogen gas stream. After reaching 140 ° C., the supply of nitrogen gas was stopped, and the flow rate was 0.2 L / min. In an ammonia gas stream, nitriding was performed for 22 hours. Following the nitriding treatment, the flow rate was 0.04 L / min. Hydrogen sulfide gas and a flow rate of 0.16 L / min. In a mixed gas stream of ammonia gas, the sulfurating treatment was performed at 140 ° C. for 4 hours. After the sulfur treatment, the flow rate is 2 L / min. The temperature was lowered to 50 ° C. in a nitrogen gas stream and air replacement was performed for 24 hours to obtain an iron nitride magnetic powder.

<ボンド磁石の作製>
得られた窒化鉄系磁性粉末9.5gをビスフェノールA型エポキシ樹脂0.5gおよび脂肪族ポリアミン型エポキシ樹脂硬化剤0.25gと混合し、さらに分散剤としてオレイルアミンを0.1g添加し、窒化鉄系磁性粉末を含むコンパウンドを作製した。得られたコンパウンドを10mm角の金型に充填し、40t油圧成形機を用いて金型を50℃に加熱しながら796kA/m(10kOe)の磁場中、0.98MPa(10kgf/cm)の成形圧力で加圧して異方性ボンド磁石成形体を作製した。得られた成形体を真空中80℃で加熱し、異方性ボンド磁石を得た。
<Production of bonded magnet>
9.5 g of the obtained iron nitride magnetic powder was mixed with 0.5 g of bisphenol A type epoxy resin and 0.25 g of an aliphatic polyamine type epoxy resin curing agent, and 0.1 g of oleylamine was further added as a dispersant. A compound containing a magnetic powder was prepared. The obtained compound was filled in a 10 mm square mold, and 0.98 MPa (10 kgf / cm 2 ) in a magnetic field of 796 kA / m (10 kOe) while heating the mold to 50 ° C. using a 40-t hydraulic molding machine. An anisotropic bonded magnet molded body was produced by pressurizing with a molding pressure. The obtained molded body was heated in vacuum at 80 ° C. to obtain an anisotropic bonded magnet.

<窒化鉄系磁性粉末の構成相>
得られた窒化鉄系磁性粉末の構成相は、粉末X線回折装置(XRD、(株)リガク製強力X線回折装置RINT−2000、CuKα、2θスキャン速度=2°/min.)を用いて測定したXRD回折パターンより同定した。
<Constituent phase of iron nitride magnetic powder>
The constituent phase of the obtained iron nitride magnetic powder was measured using a powder X-ray diffractometer (XRD, a powerful X-ray diffractometer RINT-2000 manufactured by Rigaku Corporation, CuKα, 2θ scan rate = 2 ° / min.). It was identified from the measured XRD diffraction pattern.

<窒化鉄系磁性粉末の平均粒子径、硫化鉄含有層の平均厚みの算出>
得られた窒化鉄系磁性粉末の平均粒子径は、透過型電子顕微鏡(TEM、日本電子(株)製JEM−200FX)により観察した粒子像から求めた。観察用サンプルは、得られた窒化鉄系磁性粉末をエポキシ樹脂に練りこみ、樹脂硬化した後、薄片化処理して作製した。TEM観察像の中から任意に選択した100個の窒化鉄系磁性粒子断面について、EDS(エネルギー分散型分光分析)により粒子内部ならびに粒子表層部の点分析を行った。窒化鉄系磁性粒子の内部及び表層部からはFe、表層部からS、粒子内部からNをそれぞれ検出した。次に、Fe、S、Nの各元素について、EDSによる元素マッピングを行い、1000個の窒化鉄系磁性粒子断面に対してFe、S、Nの各元素の分布状態を分析した。Feが検出された箇所を窒化鉄系磁性粒子、FeとSの両方が検出された箇所を硫化鉄含有層とした。窒化鉄系磁性粉末の平均粒子径Dは、Feが検出された領域の円相当径dを各粒子毎に求めた後に平均値を算出して得た。また硫化鉄含有層の平均厚みTは、Feが検出されてSが検出されなかった領域の円相当径d‘を各粒子毎に求め、各粒子毎の厚みt=(d−d’)/2の平均値を算出して得た。
<Calculation of average particle diameter of iron nitride magnetic powder and average thickness of iron sulfide-containing layer>
The average particle size of the obtained iron nitride-based magnetic powder was determined from a particle image observed with a transmission electron microscope (TEM, JEM-200FX manufactured by JEOL Ltd.). The sample for observation was prepared by kneading the obtained iron nitride-based magnetic powder into an epoxy resin, curing the resin, and then slicing it. With respect to 100 iron nitride magnetic particle cross sections arbitrarily selected from TEM observation images, point analysis of the inside of the particle and the surface layer of the particle was performed by EDS (energy dispersive spectroscopic analysis). Fe was detected from the inside and surface portion of the iron nitride magnetic particles, S was detected from the surface portion, and N was detected from the inside of the particles. Next, each element of Fe, S, and N was subjected to element mapping by EDS, and the distribution state of each element of Fe, S, and N was analyzed with respect to a cross section of 1000 iron nitride magnetic particles. The location where Fe was detected was an iron nitride magnetic particle, and the location where both Fe and S were detected was an iron sulfide-containing layer. The average particle diameter D of the iron nitride-based magnetic powder was obtained by calculating the average value after determining the equivalent circle diameter d in the region where Fe was detected for each particle. In addition, the average thickness T of the iron sulfide-containing layer is obtained by obtaining, for each particle, a circle-equivalent diameter d ′ in a region where Fe is detected but S is not detected, and the thickness t = (dd ′) / for each particle. The average value of 2 was calculated.

<異方性ボンド磁石の残留磁束密度(Br)、配向度測定>
得られた異方性ボンド磁石を用いて、残留磁束密度(Br=残留磁気分極Jr)及び配向度を測定した。残留磁束密度(Br)測定は23℃の大気中において、BHトレーサ(東英工業(株)製TRF−5BH、印加磁場±20kOe)を用いて行った。配向度は、磁気ヒステリシスカーブの第1象限における最大値である飽和磁気分極Jsに対する残留磁束密度(Br)の比(Br/Js)×100 で算出した。
<Measurement of residual magnetic flux density (Br) and orientation degree of anisotropic bonded magnet>
Using the obtained anisotropic bonded magnet, the residual magnetic flux density (Br = residual magnetic polarization Jr) and the degree of orientation were measured. Residual magnetic flux density (Br) was measured in a 23 ° C. atmosphere using a BH tracer (TRF-5BH manufactured by Toei Kogyo Co., Ltd., applied magnetic field ± 20 kOe). The degree of orientation was calculated by the ratio (Br / Js) × 100 of the residual magnetic flux density (Br) to the saturation magnetic polarization Js, which is the maximum value in the first quadrant of the magnetic hysteresis curve.

<異方性ボンド磁石中の磁性粉末充填率の算出>
得られた異方性ボンド磁石中の磁性粉末充填率は、以下のように求めた。作製した異方性ボンド磁石を樹脂包含して樹脂の硬化後、鏡面研磨ならびにArイオンミリング処理で得られた該ボンド磁石断面を走査型電子顕微鏡(FE−SEM,日本電子(株)製JSM−6700F)にて観察した。10視野の観察像それぞれについて、画像処理により窒化鉄系磁性粉末が占める部分の面積Sと観察視野全体の面積Sを求め、その比S/S の平均値を該ボンド磁石中の磁性粉末充填率とした。
<Calculation of magnetic powder filling rate in anisotropic bonded magnet>
The magnetic powder filling rate in the obtained anisotropic bonded magnet was determined as follows. After the cured anisotropic bonded magnet was included to cure the resin, the cross section of the bonded magnet obtained by mirror polishing and Ar ion milling was scanned with a scanning electron microscope (FE-SEM, JSM-manufactured by JEOL Ltd.). 6700F). About 10 field of the observation image, respectively, and measuring the area S P and the observation field total area S A of the portion occupied by the iron nitride-based magnetic powder by image processing, an average value of the ratio S P / S A in the bonded magnet The magnetic powder filling rate was used.

(実施例2)
窒化鉄系磁性粉末の作製において、アンモニアガス気流中での窒化処理時間を20時間とし、硫化水素ガスとアンモニアガスの混合気流中における浸硫処理時間を8時間とした以外は、実施例1と同様に窒化鉄系磁性粉末及びボンド磁石を作製し、評価を行った。
(Example 2)
In the production of the iron nitride magnetic powder, the nitriding treatment time in the ammonia gas stream was set to 20 hours, and the sulfurating treatment time in the mixed stream of hydrogen sulfide gas and ammonia gas was set to 8 hours. Similarly, an iron nitride-based magnetic powder and a bonded magnet were produced and evaluated.

(実施例3)
窒化鉄系磁性粉末の作製において、アンモニアガス気流中での窒化処理時間を18時間とし、硫化水素ガスとアンモニアガスの混合気流中における浸硫処理時間を12時間とした以外は、実施例1と同様に窒化鉄系磁性粉末及びボンド磁石を作製し、評価を行った。
(Example 3)
Example 1 except that the nitriding time in the ammonia gas stream was 18 hours and the sulfurating time in the mixed gas stream of hydrogen sulfide gas and ammonia gas was 12 hours in the production of the iron nitride magnetic powder. Similarly, an iron nitride-based magnetic powder and a bonded magnet were produced and evaluated.

(実施例4)
窒化鉄系磁性粉末の作製において、アンモニアガス気流中での窒化処理時間を16時間とし、硫化水素ガスとアンモニアガスの混合気流中における浸硫処理時間を16時間とした以外は、実施例1と同様に窒化鉄系磁性粉末及びボンド磁石を作製し、評価を行った。
Example 4
In the production of the iron nitride-based magnetic powder, Example 1 and Example 1 were performed except that the nitriding time in the ammonia gas stream was set to 16 hours and the sulfurating time in the mixed stream of hydrogen sulfide gas and ammonia gas was set to 16 hours. Similarly, an iron nitride-based magnetic powder and a bonded magnet were produced and evaluated.

(実施例5)
窒化鉄系磁性粉末の作製において、アンモニアガス気流中での窒化処理時間を14時間とし、硫化水素ガスとアンモニアガスの混合気流中における浸硫処理時間を20時間とした以外は、実施例1と同様に窒化鉄系磁性粉末及びボンド磁石を作製し、評価を行った。
(Example 5)
Example 1 except that the nitriding time in the ammonia gas stream was set to 14 hours and the sulfurating time in the mixed stream of hydrogen sulfide gas and ammonia gas was set to 20 hours in the production of the iron nitride magnetic powder. Similarly, an iron nitride-based magnetic powder and a bonded magnet were produced and evaluated.

(実施例6)
窒化鉄系磁性粉末の作製において、テトラエトキシシランの添加量を15.0g、エタノールの添加量を13.5gとした以外は、実施例1と同様に窒化鉄系磁性粉末及びボンド磁石を作製し、評価を行った。
(Example 6)
In the production of the iron nitride magnetic powder, an iron nitride magnetic powder and a bonded magnet were produced in the same manner as in Example 1 except that the addition amount of tetraethoxysilane was 15.0 g and the addition amount of ethanol was 13.5 g. And evaluated.

(実施例7)
窒化鉄系磁性粉末の作製において、テトラエトキシシランの添加量を13.0g、エタノールの添加量を11.7gとし、硫化水素ガスとアンモニアガスの混合気流中における浸硫処理時間を6時間とした以外は、実施例1と同様に窒化鉄系磁性粉末及びボンド磁石を作製し、評価を行った。
(Example 7)
In the production of the iron nitride magnetic powder, the addition amount of tetraethoxysilane was 13.0 g, the addition amount of ethanol was 11.7 g, and the sulfurization time in a mixed gas stream of hydrogen sulfide gas and ammonia gas was 6 hours. Except for the above, an iron nitride magnetic powder and a bonded magnet were produced and evaluated in the same manner as in Example 1.

(実施例8)
窒化鉄系磁性粉末の作製において、テトラエトキシシランの添加量を6.5g、エタノールの添加量を5.5gとし、硫化水素ガスとアンモニアガスの混合気流中における浸硫処理時間を16時間とした以外は、実施例1と同様に窒化鉄系磁性粉末及びボンド磁石を作製し、評価を行った。
(Example 8)
In the production of the iron nitride magnetic powder, the addition amount of tetraethoxysilane was 6.5 g, the addition amount of ethanol was 5.5 g, and the sulfurization treatment time in a mixed gas flow of hydrogen sulfide gas and ammonia gas was 16 hours. Except for the above, an iron nitride magnetic powder and a bonded magnet were produced and evaluated in the same manner as in Example 1.

(実施例9)
窒化鉄系磁性粉末の作製において、テトラエトキシシランの添加量を5.0g、エタノールの添加量を4.5gとし、硫化水素ガスとアンモニアガスの混合気流中における浸硫処理時間を20時間とした以外は、実施例1と同様に窒化鉄系磁性粉末及びボンド磁石を作製し、評価を行った。
Example 9
In the production of the iron nitride magnetic powder, the addition amount of tetraethoxysilane was 5.0 g, the addition amount of ethanol was 4.5 g, and the sulfurization time in a mixed gas flow of hydrogen sulfide gas and ammonia gas was 20 hours. Except for the above, an iron nitride magnetic powder and a bonded magnet were produced and evaluated in the same manner as in Example 1.

(実施例10)
窒化鉄系磁性粉末の作製において、テトラエトキシシランの添加量を4.0g、エタノールの添加量を3.5gとし、硫化水素ガスとアンモニアガスの混合気流中における浸硫処理時間を24時間とした以外は、実施例1と同様に窒化鉄系磁性粉末及びボンド磁石を作製し、評価を行った。
(Example 10)
In the production of the iron nitride magnetic powder, the amount of tetraethoxysilane added was 4.0 g, the amount of ethanol added was 3.5 g, and the sulfurization time in a mixed gas stream of hydrogen sulfide gas and ammonia gas was 24 hours. Except for the above, an iron nitride magnetic powder and a bonded magnet were produced and evaluated in the same manner as in Example 1.

(実施例11)
窒化鉄系磁性粉末の作製において、テトラエトキシシランの添加量を3.0g、エタノールの添加量を2.5gとし、硫化水素ガスとアンモニアガスの混合気流中における浸硫処理時間を30時間とした以外は、実施例1と同様に窒化鉄系磁性粉末及びボンド磁石を作製し、評価を行った。
(Example 11)
In the production of the iron nitride magnetic powder, the addition amount of tetraethoxysilane was 3.0 g, the addition amount of ethanol was 2.5 g, and the sulfurization time in a mixed gas flow of hydrogen sulfide gas and ammonia gas was 30 hours. Except for the above, an iron nitride magnetic powder and a bonded magnet were produced and evaluated in the same manner as in Example 1.

(比較例1)
窒化鉄系磁性粉末の作製において、アンモニアガス気流中での窒化処理時間を24時間とし、硫化水素ガスとアンモニアガスの混合気流中における浸硫処理を実施しなかった以外は、実施例3と同様に窒化鉄系磁性粉末及びボンド磁石を作製し、評価を行った。
(Comparative Example 1)
In the production of the iron nitride magnetic powder, the nitriding time in the ammonia gas stream was set to 24 hours, and the sulfurating process in the mixed gas stream of hydrogen sulfide gas and ammonia gas was not performed. An iron nitride magnetic powder and a bonded magnet were prepared and evaluated.

(比較例2)
窒化鉄系磁性粉末の作製において、アンモニアガス気流中での窒化処理時間を10時間とし、硫化水素ガスとアンモニアガスの混合気流中における浸硫処理時間を24時間とした以外は、実施例3と同様に窒化鉄系磁性粉末及びボンド磁石を作製し、評価を行った。
(Comparative Example 2)
In the production of the iron nitride magnetic powder, Example 3 and Example 3 were performed except that the nitriding time in the ammonia gas stream was set to 10 hours and the sulfurating time in the mixed stream of hydrogen sulfide gas and ammonia gas was set to 24 hours. Similarly, an iron nitride-based magnetic powder and a bonded magnet were produced and evaluated.

(比較例3)
窒化鉄系磁性粉末の作製において、硫化水素ガスとアンモニアガスの混合気流中における浸硫処理時間を2時間とした以外は、実施例7と同様に窒化鉄系磁性粉末及びボンド磁石を作製し、評価を行った。
(Comparative Example 3)
In the production of the iron nitride magnetic powder, an iron nitride magnetic powder and a bond magnet were produced in the same manner as in Example 7, except that the sulfurating treatment time in the mixed gas flow of hydrogen sulfide gas and ammonia gas was 2 hours. Evaluation was performed.

(比較例4)
窒化鉄系磁性粉末の作製において、硫化水素ガスとアンモニアガスの混合気流中における浸硫処理時間を30時間とした以外は、実施例9と同様に窒化鉄系磁性粉末及びボンド磁石を作製し、評価を行った。
(Comparative Example 4)
In the production of the iron nitride magnetic powder, an iron nitride magnetic powder and a bond magnet were produced in the same manner as in Example 9, except that the sulfurating treatment time in the mixed gas flow of hydrogen sulfide gas and ammonia gas was 30 hours, Evaluation was performed.

≪評価結果≫
実施例1〜11及び比較例1〜4で得られた窒化鉄系磁性粉末の平均粒子径、硫化鉄含有層の平均厚み、平均粒子径に対する硫化鉄含有層の平均厚みの比率、及びボンド磁石の残留磁束密度(Br)、配向度、磁性粉末充填率を表1に示す。なお残留磁束密度(Br)は300mT以上を良好な磁気特性であるとした。
≪Evaluation results≫
The average particle diameter of the iron nitride-based magnetic powder obtained in Examples 1 to 11 and Comparative Examples 1 to 4, the average thickness of the iron sulfide-containing layer, the ratio of the average thickness of the iron sulfide-containing layer to the average particle diameter, and the bond magnet Table 1 shows the residual magnetic flux density (Br), the degree of orientation, and the magnetic powder filling rate. The residual magnetic flux density (Br) is 300 mT or more as good magnetic properties.

Figure 2017183323
Figure 2017183323

XRDによる相同定結果より、全ての実施例と比較例で、Fe16相が主相であることが確認された。また、TEM−EDSによる元素マッピングにてFe、S、Nの各元素の分布状態を分析した結果より、比較例1を除いた全ての実施例と比較例において、硫化鉄含有層の存在が確認された。 From the phase identification results by XRD, it was confirmed that the Fe 16 N 2 phase was the main phase in all Examples and Comparative Examples. Moreover, from the result of analyzing the distribution state of each element of Fe, S, and N by elemental mapping by TEM-EDS, the presence of an iron sulfide-containing layer was confirmed in all Examples and Comparative Examples except Comparative Example 1. It was done.

全ての実施例及び比較例に示したように、窒化鉄系磁性粉末を構成する窒化鉄系磁性粒子の表層部に形成された硫化鉄含有層の平均厚みが、1.2〜12nmであって、前記磁性粉末の平均粒子径に対する前記硫化鉄含有層の平均厚みの比率が、2.4〜13%である場合、配向度及び磁性粉末充填率が向上し、残留磁束密度(Br)が300mT以上であることが確認出来た。 As shown in all Examples and Comparative Examples, the average thickness of the iron sulfide-containing layer formed on the surface layer portion of the iron nitride magnetic particles constituting the iron nitride magnetic powder is 1.2 to 12 nm. When the ratio of the average thickness of the iron sulfide-containing layer to the average particle diameter of the magnetic powder is 2.4 to 13%, the degree of orientation and the magnetic powder filling rate are improved, and the residual magnetic flux density (Br) is 300 mT. It was confirmed that this was the case.

特に、実施例3および実施例7〜10に示したように、硫化鉄含有層の平均厚みが1.5〜10nmの場合、残留磁束密度(Br)が400mT以上の良好な磁気特性が得られた。 In particular, as shown in Example 3 and Examples 7 to 10, when the average thickness of the iron sulfide-containing layer is 1.5 to 10 nm, good magnetic properties with a residual magnetic flux density (Br) of 400 mT or more can be obtained. It was.

また、特に実施例1〜4に示したように、窒化鉄系磁性粉末の平均粒子径に対する硫化鉄含有層の平均厚みの比率が2.4〜10.2%の場合、残留磁束密度(Br)が400mT以上の良好な磁気特性が得られた。 In particular, as shown in Examples 1 to 4, when the ratio of the average thickness of the iron sulfide-containing layer to the average particle diameter of the iron nitride-based magnetic powder is 2.4 to 10.2%, the residual magnetic flux density (Br ) Good magnetic properties of 400 mT or more were obtained.

比較例1に示したように、窒化鉄系磁性粒子の表層部に硫化鉄含有層が形成されていない場合、高い残留磁束密度(Br)が得られなかった。これは、硫化鉄含有層が存在しないことにより、配向度及び磁性粉末充填率が向上する効果が発現しなかったため、残留磁束密度(Br)が低下したと考えられる。従って、実施例1及び6に示すように、該硫化鉄含有層の平均厚みは1.2nm以上で、前記磁性粉末の平均粒子径に対する前記硫化鉄含有層の平均厚みの比率が2.4%以上であることが、300mT以上の残留磁束密度(Br)を得るために必要である。 As shown in Comparative Example 1, when the iron sulfide-containing layer was not formed on the surface layer portion of the iron nitride-based magnetic particles, a high residual magnetic flux density (Br) was not obtained. This is considered that the residual magnetic flux density (Br) was lowered because the effect of improving the degree of orientation and the magnetic powder filling rate did not appear due to the absence of the iron sulfide-containing layer. Therefore, as shown in Examples 1 and 6, the average thickness of the iron sulfide-containing layer is 1.2 nm or more, and the ratio of the average thickness of the iron sulfide-containing layer to the average particle diameter of the magnetic powder is 2.4%. This is necessary for obtaining a residual magnetic flux density (Br) of 300 mT or more.

比較例2に示したように、窒化鉄系磁性粒子の表層部に形成されている硫化鉄含有層の平均厚みが1.2〜12nmの範囲であっても、前記磁性粉末の平均粒子径に対する前記硫化鉄含有層の平均厚み比率が16.0%になると、高い残留磁束密度(Br)が得られなかった。これは、硫化鉄含有層の形成による配向度及び磁性粉末充填率の向上効果は発現しているが、窒化鉄系磁性粒子中のFe16相の割合が低下することで、窒化鉄系磁性粉末の飽和磁化が小さくなったため、残留磁束密度(Br)が低下したと考えられる。従って、実施例5に示すように、前記磁性粉末の平均粒子径に対する前記硫化鉄含有層の平均厚みの比率が13%以下であることが、300mT以上の残留磁束密度(Br)を得るために必要である。 As shown in Comparative Example 2, even when the average thickness of the iron sulfide-containing layer formed on the surface layer portion of the iron nitride-based magnetic particles is in the range of 1.2 to 12 nm, the average particle diameter of the magnetic powder is When the average thickness ratio of the iron sulfide-containing layer was 16.0%, a high residual magnetic flux density (Br) could not be obtained. This is because the effect of improving the degree of orientation and the magnetic powder filling rate due to the formation of the iron sulfide-containing layer is expressed, but the ratio of Fe 16 N 2 phase in the iron nitride-based magnetic particles is reduced, so that the iron nitride-based layer It is considered that the residual magnetic flux density (Br) was lowered because the saturation magnetization of the magnetic powder was reduced. Therefore, as shown in Example 5, in order to obtain a residual magnetic flux density (Br) of 300 mT or more, the ratio of the average thickness of the iron sulfide-containing layer to the average particle diameter of the magnetic powder is 13% or less. is necessary.

比較例3に示したように、窒化鉄系磁性粉末の平均粒子径に対する硫化鉄含有層の平均厚みの比率が2.4〜13%の範囲であっても、前記硫化鉄含有層の平均厚みが0.9nmになると、高い残留磁束密度(Br)が得られなかった。これは、硫化鉄含有層の形成による配向度及び磁性粉末充填率の向上効果が、このような平均厚みでは十分に現しないため、残留磁束密度(Br)が低下したと考えられる。従って、実施例6に示すように、前記硫化鉄含有層の平均厚みが1.2nm以上であることが、300mT以上の残留磁束密度(Br)を得るために必要である。 As shown in Comparative Example 3, even if the ratio of the average thickness of the iron sulfide-containing layer to the average particle diameter of the iron nitride-based magnetic powder is in the range of 2.4 to 13%, the average thickness of the iron sulfide-containing layer When the thickness became 0.9 nm, a high residual magnetic flux density (Br) could not be obtained. This is considered that the residual magnetic flux density (Br) was lowered because the effect of improving the degree of orientation and the magnetic powder filling rate due to the formation of the iron sulfide-containing layer was not sufficiently exhibited at such an average thickness. Therefore, as shown in Example 6, it is necessary that the average thickness of the iron sulfide-containing layer is 1.2 nm or more in order to obtain a residual magnetic flux density (Br) of 300 mT or more.

また、比較例4に示したように、窒化鉄系磁性粉末の平均粒子径に対する硫化鉄含有層の平均厚みの比率が2.4〜13%の範囲であっても、該硫化鉄含有層の平均厚みが13.0nmになると、高い残留磁束密度(Br)が得られなかった。これは硫化鉄含有層の形成による配向度及び磁性粉末充填率の向上効果は発現しているが、窒化鉄系磁性粒子中のFe16相の割合が低下することで、窒化鉄系磁性粉末の飽和磁化が小さくなったため、残留磁束密度(Br)が低下したと考えられる。従って、実施例4、5、12に示すように、該硫化鉄含有層の平均厚みが12nm以下であることが、300mT以上の残留磁束密度(Br)を得るために必要である。 Further, as shown in Comparative Example 4, even when the ratio of the average thickness of the iron sulfide-containing layer to the average particle diameter of the iron nitride-based magnetic powder is in the range of 2.4 to 13%, the iron sulfide-containing layer When the average thickness was 13.0 nm, a high residual magnetic flux density (Br) could not be obtained. Although the effect of improving the degree of orientation and the magnetic powder filling rate due to the formation of the iron sulfide-containing layer is manifested, the ratio of the Fe 16 N 2 phase in the iron nitride-based magnetic particles is reduced, so that the iron nitride-based magnetism is reduced. It is considered that the residual magnetic flux density (Br) was lowered because the saturation magnetization of the powder was reduced. Therefore, as shown in Examples 4, 5, and 12, it is necessary for the iron sulfide-containing layer to have an average thickness of 12 nm or less in order to obtain a residual magnetic flux density (Br) of 300 mT or more.

また、特に実施例3および実施例7〜10に示したように、平均粒子径が20〜130nmの場合、残留磁束密度(Br)が400mT以上の良好な磁気特性が得られた。 In particular, as shown in Example 3 and Examples 7 to 10, when the average particle diameter was 20 to 130 nm, good magnetic properties with a residual magnetic flux density (Br) of 400 mT or more were obtained.

以上のように、本発明に係る窒化鉄系磁性粉末は、高い配向度且つ高い磁性粉末充填率が得られることで、十分に高い残留磁束密度(Br)を有することから、レアアースを使用しない磁石として有用である。 As described above, the iron nitride magnetic powder according to the present invention has a sufficiently high residual magnetic flux density (Br) by obtaining a high degree of orientation and a high magnetic powder filling rate. Useful as.

1 窒化鉄系磁性粒子
2 主相
3 硫化鉄を含有する層
4 窒化鉄系磁性粉末の粒子径
5 硫化鉄を含有する層の厚み
6 ボンド磁石
7 樹脂(有機バインダー)



DESCRIPTION OF SYMBOLS 1 Iron nitride type magnetic particle 2 Main phase 3 Layer containing iron sulfide 4 Particle diameter of iron nitride type magnetic powder 5 Thickness of layer containing iron sulfide 6 Bond magnet 7 Resin (organic binder)



Claims (5)

Fe16化合物相を主相とする窒化鉄系磁性粉末であって、該磁性粉末を構成する窒化鉄系磁性粒子の表層部に、FeSを主相とする硫化鉄を含有する層が形成されており、前記硫化鉄含有層の平均厚みが1.2〜12nmであって、且つ該窒化鉄系磁性粉末の平均粒子径に対する前記硫化鉄含有層の平均厚みの比率が、2.4〜13%であることを特徴とする、窒化鉄系磁性粉末。 An iron nitride-based magnetic powder having a Fe 16 N 2 compound phase as a main phase, and a layer containing iron sulfide having FeS as a main phase is formed on a surface layer portion of an iron nitride-based magnetic particle constituting the magnetic powder. The average thickness of the iron sulfide-containing layer is 1.2 to 12 nm, and the ratio of the average thickness of the iron sulfide-containing layer to the average particle diameter of the iron nitride-based magnetic powder is 2.4 to An iron nitride magnetic powder characterized by being 13%. 前記硫化鉄含有層の平均厚みが1.5〜10nmであることを特徴とする、請求項1に記載の窒化鉄系磁性粉末。 2. The iron nitride magnetic powder according to claim 1, wherein the iron sulfide-containing layer has an average thickness of 1.5 to 10 nm. 前記窒化鉄系磁性粉末の平均粒子径に対する前記硫化鉄含有層の平均厚みの比率が、2.4〜10.2%であることを特徴とする、請求項1〜2に記載の窒化鉄系磁性粉末。 The ratio of the average thickness of the iron sulfide-containing layer to the average particle diameter of the iron nitride magnetic powder is 2.4 to 10.2%, and the iron nitride system according to claim 1 or 2, Magnetic powder. 前記磁性粉末の平均粒子径が20〜130nmであることを特徴とする、請求項1〜3に記載の窒化鉄系磁性粉末。 The iron nitride magnetic powder according to claim 1, wherein an average particle diameter of the magnetic powder is 20 to 130 nm. 請求項1〜4に記載の窒化鉄系磁性粉末を用いたボンド磁石。 A bonded magnet using the iron nitride magnetic powder according to claim 1.
JP2016063486A 2016-03-28 2016-03-28 Iron nitride-based magnetic powder and bond magnet arranged by use thereof Pending JP2017183323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016063486A JP2017183323A (en) 2016-03-28 2016-03-28 Iron nitride-based magnetic powder and bond magnet arranged by use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016063486A JP2017183323A (en) 2016-03-28 2016-03-28 Iron nitride-based magnetic powder and bond magnet arranged by use thereof

Publications (1)

Publication Number Publication Date
JP2017183323A true JP2017183323A (en) 2017-10-05

Family

ID=60006316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016063486A Pending JP2017183323A (en) 2016-03-28 2016-03-28 Iron nitride-based magnetic powder and bond magnet arranged by use thereof

Country Status (1)

Country Link
JP (1) JP2017183323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015968A (en) * 2018-07-27 2020-01-30 Tdk株式会社 Iron nitride based magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015968A (en) * 2018-07-27 2020-01-30 Tdk株式会社 Iron nitride based magnet
JP7111549B2 (en) 2018-07-27 2022-08-02 Tdk株式会社 iron nitride magnet

Similar Documents

Publication Publication Date Title
Kurian et al. Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesised by wet chemical methods
JP6155440B2 (en) Method for producing ferromagnetic iron nitride particle powder, method for producing anisotropic magnet, bonded magnet and dust magnet
JP5924657B2 (en) Method for producing ferromagnetic iron nitride particle powder, anisotropic magnet, bonded magnet and dust magnet
WO2013042721A1 (en) Method for manufacturing ferromagnetic iron nitride powder, anisotropic magnet, bond magnet, and compressed-powder magnet
JP5858419B2 (en) Method for producing ferromagnetic particle powder, anisotropic magnet, bonded magnet, and dust magnet
TWI509643B (en) A strong magnetic particle powder and a method for producing the same, an anisotropic magnet and a bonded magnet
KR20130142169A (en) Ferromagnetic granular powder and method for manufacturing same, as well as anisotropic magnet, bonded magnet, and pressed-powder magnet
TW201135760A (en) Ferromagnetic particle powder and manufacturing method thereof, and anisotropic magnet and bonded magnet
JP4623308B2 (en) Sm-Fe-N-based magnetic particle powder for bonded magnet and method for producing the same, resin composition for bonded magnet, and bonded magnet
JP6485066B2 (en) Iron nitride magnet
JP6520168B2 (en) Iron nitride based magnetic powder and bonded magnet using the same
JP2017183323A (en) Iron nitride-based magnetic powder and bond magnet arranged by use thereof
JP2017183322A (en) Bond magnet arranged by use of iron nitride-based magnetic powder
JP6778653B2 (en) Iron nitride based magnet
JP6344129B2 (en) Iron nitride magnetic powder and magnet using the same
JP4662061B2 (en) Method for producing Sm-Fe-N magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N magnetic particle powder, and bonded magnet
JP6500470B2 (en) Iron nitride magnet
JP6778651B2 (en) Iron nitride based bond magnet
JP6485065B2 (en) Iron nitride magnetic powder and bonded magnet using the same
JP6519419B2 (en) Iron nitride based magnetic powder and bonded magnet using the same
JP4296379B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP6337662B2 (en) Iron nitride magnetic powder and magnet using the same
JP2020126901A (en) Ferromagnetic powder, composition, molded product, and method for manufacturing ferromagnetic powder
JP2018156985A (en) Magnet containing iron nitride powder and bonded magnet