JP2020015968A - Iron nitride based magnet - Google Patents

Iron nitride based magnet Download PDF

Info

Publication number
JP2020015968A
JP2020015968A JP2018141561A JP2018141561A JP2020015968A JP 2020015968 A JP2020015968 A JP 2020015968A JP 2018141561 A JP2018141561 A JP 2018141561A JP 2018141561 A JP2018141561 A JP 2018141561A JP 2020015968 A JP2020015968 A JP 2020015968A
Authority
JP
Japan
Prior art keywords
iron nitride
magnetic
magnetic phase
iron
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018141561A
Other languages
Japanese (ja)
Other versions
JP7111549B2 (en
Inventor
竜二 藤澤
Ryuji Fujisawa
竜二 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Toda Kogyo Corp
Original Assignee
TDK Corp
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp, Toda Kogyo Corp filed Critical TDK Corp
Priority to JP2018141561A priority Critical patent/JP7111549B2/en
Publication of JP2020015968A publication Critical patent/JP2020015968A/en
Application granted granted Critical
Publication of JP7111549B2 publication Critical patent/JP7111549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide an iron nitride based magnet having high residual magnetic flux density, high coercive force, high mechanical strength and high electrical resistance.SOLUTION: The iron nitride based magnet includes a plurality of iron nitride based magnetic particles having a magnetic phase including iron nitride and a non-magnetic phase existing around the magnetic phase. The plurality of iron nitride based magnetic particles neck to each other, and when in any cut surface of the iron nitride based magnet, the cross sectional area of the magnetic phase is S1, the cross-sectional area of the non-magnetic phase is S2 and the cross sectional area of a space is S3, 0.10≤S2/S1≤0.30 and 0.50≤S3/S1≤0.70 are satisfied.SELECTED DRAWING: Figure 1

Description

本発明は、窒化鉄系磁石に関する。    The present invention relates to an iron nitride-based magnet.

近年、モータ用磁石として、Nd−Fe−B系の磁石が広く使われている。しかしながら、Ndに代表されるレアアース(希土類元素)は、近年需要が拡大している。さらに、特定の産出国への依存度が高い。したがって、安定供給の確保に対する懸念があり、レアアースの使用量を低減した高性能磁石の開発が求められている。   In recent years, Nd-Fe-B magnets have been widely used as motor magnets. However, demand for rare earths (rare earth elements) represented by Nd has been increasing in recent years. Furthermore, they are highly dependent on specific countries of origin. Therefore, there is a concern about securing a stable supply, and there is a demand for the development of a high-performance magnet that reduces the amount of rare earth used.

レアアースの使用量を低減した高性能磁石の材料として、Fe−N系の化合物、特にFe16化合物が注目されている。Fe16化合物は、Feよりも巨大な飽和磁化を示すためである。 As a material for a high-performance magnet in which the amount of rare earth used is reduced, an Fe-N-based compound, particularly an Fe 16 N 2 compound, has attracted attention. This is because the Fe 16 N 2 compound shows a larger saturation magnetization than Fe.

しかしながら、Fe16化合物は200℃を超える温度に長時間さらされることで分解してしまう。したがって、Fe16化合物を用いた焼結磁石を作製することができない。特許文献1には、Fe16を用いたボンド磁石が記載されている。しかし、ボンド磁石では磁性粉の含有率が焼結磁石と比較して小さくなるため、高性能な部品、例えばモータ用の磁石としては十分な残留磁束密度を確保することが困難である。 However, the Fe 16 N 2 compound is decomposed by prolonged exposure to a temperature exceeding 200 ° C. Therefore, a sintered magnet using the Fe 16 N 2 compound cannot be manufactured. Patent Literature 1 describes a bonded magnet using Fe 16 N 2 . However, since the content of the magnetic powder in the bonded magnet is smaller than that of the sintered magnet, it is difficult to secure a sufficient residual magnetic flux density as a high-performance component, for example, a magnet for a motor.

また、特に磁石をモータに用いる場合には、磁石自身の機械的強度および電気抵抗を十分に確保することが好ましい。電気抵抗を確保することが好ましいのは、渦電流損失を低下させるためである。   In particular, when a magnet is used for a motor, it is preferable to sufficiently secure the mechanical strength and electric resistance of the magnet itself. It is preferable to secure the electric resistance in order to reduce the eddy current loss.

特開2009−84115号公報JP 2009-84115 A

本発明は、高い残留磁束密度、高い保磁力、高い機械的強度かつ高い電気抵抗を有する窒化鉄系磁石を提供することを目的とする。   An object of the present invention is to provide an iron nitride-based magnet having high residual magnetic flux density, high coercive force, high mechanical strength, and high electric resistance.

本発明は、複数の窒化鉄系磁性粒子を有する窒化鉄系磁石であり、
前記窒化鉄系磁性粒子は、磁性相と、前記磁性相の周囲に存在する非磁性相と、を有し、
前記磁性相は窒化鉄を含み、
複数の前記窒化鉄系磁性粒子同士が互いにネッキングしており、
前記窒化鉄系磁石の任意の切断面において、前記磁性相の断面積をS1、前記非磁性相の断面積をS2、空隙の断面積をS3として、下記の式(1)および式(2)を満たす。
0.10≦S2/S1≦0.30 ・・・式(1)
0.50≦S3/S1≦0.70 ・・・式(2)
The present invention is an iron nitride-based magnet having a plurality of iron nitride-based magnetic particles,
The iron nitride-based magnetic particles have a magnetic phase and a non-magnetic phase existing around the magnetic phase,
The magnetic phase includes iron nitride;
The plurality of iron nitride-based magnetic particles are necked with each other,
In any cross section of the iron nitride-based magnet, assuming that the cross-sectional area of the magnetic phase is S1, the cross-sectional area of the non-magnetic phase is S2, and the cross-sectional area of the void is S3, the following equations (1) and (2) Meet.
0.10 ≦ S2 / S1 ≦ 0.30 Expression (1)
0.50 ≦ S3 / S1 ≦ 0.70 Expression (2)

本発明に係る窒化鉄系磁石は下記の式(1A)を満たしていてもよい。
0.15≦S2/S1≦0.25 ・・・式(1A)
The iron nitride-based magnet according to the present invention may satisfy the following expression (1A).
0.15 ≦ S2 / S1 ≦ 0.25 (1A)

本発明に係る窒化鉄系磁石は下記の式(2A)を満たしていてもよい。
0.55≦S3/S1≦0.65 ・・・式(2A)
The iron nitride-based magnet according to the present invention may satisfy the following expression (2A).
0.55 ≦ S3 / S1 ≦ 0.65 Expression (2A)

本発明に係る窒化鉄系磁石は前記任意の切断面における前記磁性相の平均円相当径が30nm以上150nm以下であってもよい。   In the iron nitride-based magnet according to the present invention, an average equivalent circle diameter of the magnetic phase at the arbitrary cut surface may be 30 nm or more and 150 nm or less.

本発明によれば、従来の窒化鉄系磁石に比べて、高い残留磁化、高い保磁力、高い機械的強度かつ高い電気抵抗を有する窒化鉄系磁石を提供することができる。   According to the present invention, it is possible to provide an iron nitride-based magnet having higher residual magnetization, higher coercive force, higher mechanical strength, and higher electric resistance than conventional iron nitride-based magnets.

図1は、本発明の一実施形態に係る窒化鉄系磁石を任意の方向で削り出した切断面の概略図である。FIG. 1 is a schematic view of a cut surface obtained by cutting an iron nitride-based magnet according to an embodiment of the present invention in an arbitrary direction. 図2は、ネッキング状態にある窒化鉄系磁性粒子の概略図である。FIG. 2 is a schematic view of the iron nitride-based magnetic particles in a necked state. 図3は、ネッキング状態にない窒化鉄系磁性粒子の概略図である。FIG. 3 is a schematic diagram of iron nitride-based magnetic particles that are not in a necked state.

以下、本発明の好適な実施形態について、図面に示す実施形態に基づき説明する。なお、本発明は以下に記載の実施形態及び実施例の内容に限定されるものではない。また、以下に記載の実施形態及び実施例にて示された構成要素は適宜組み合わせても良いし、適宜選択しても良い。   Hereinafter, preferred embodiments of the present invention will be described based on the embodiments shown in the drawings. Note that the present invention is not limited to the contents of the embodiments and examples described below. Further, the components shown in the embodiments and examples described below may be appropriately combined or may be appropriately selected.

図1に示すように、本実施形態の窒化鉄系磁石1は、窒化鉄系磁性粒子2を有する。さらに、窒化鉄系磁性粒子2は磁性相2aおよび磁性相2aの周囲に存在する非磁性相2bを有する。また、本実施形態では窒化鉄系磁石1の窒化鉄系磁性粒子2以外の部分は空隙4であるが、窒化鉄系磁性粒子2以外の物質が含まれていてもよく、例えば樹脂が含まれていてもよい。   As shown in FIG. 1, an iron nitride-based magnet 1 of the present embodiment has iron nitride-based magnetic particles 2. Further, the iron nitride-based magnetic particles 2 have a magnetic phase 2a and a non-magnetic phase 2b existing around the magnetic phase 2a. In the present embodiment, the portions other than the iron nitride-based magnetic particles 2 of the iron nitride-based magnet 1 are the voids 4. However, a substance other than the iron nitride-based magnetic particles 2 may be included, for example, a resin is included. May be.

ただし、窒化鉄系磁石1における樹脂の含有量は1.0wt%以下であってもよく、樹脂を実質的に含有しないことが好ましい。樹脂の含有量が多すぎる場合には、窒化鉄系磁性粒子2の含有量が低下する。その結果、特に残留磁束密度が低下しやすくなる。なお、樹脂を実質的に含有しないとは、樹脂の含有量が0.1wt%以下であるという意味である。   However, the content of the resin in the iron nitride-based magnet 1 may be 1.0 wt% or less, and it is preferable that the resin is not substantially contained. When the content of the resin is too large, the content of the iron nitride-based magnetic particles 2 decreases. As a result, in particular, the residual magnetic flux density tends to decrease. In addition, that it does not contain resin substantially means that the content of resin is 0.1 wt% or less.

窒化鉄系磁性粒子2の磁性相2aは、窒化鉄を含む。磁性相2aはFe16化合物を主成分とし、強磁性を有することが好ましいが、FeN化合物等、Fe16化合物以外の窒化鉄を含んでいても良い。さらに、磁性相2aは金属元素としてFe以外の遷移金属元素を含んでいてもよく、例えばMn,Ni,Co,Tiおよび/またはZnを含んでいてもよい。磁性相2aにおける主成分であるFe16化合物の含有割合は磁性相2a全体に対して95wt%以上であることが好ましい。また、Fe16化合物以外の窒化鉄の含有割合は磁性相2a全体に対して4.0wt%以下であることが好ましく、Fe以外の遷移金属元素を有する化合物の含有割合は磁性相2a全体に対して1.0wt%以下であることが好ましい。 The magnetic phase 2a of the iron nitride-based magnetic particles 2 contains iron nitride. The magnetic phase 2a is mainly composed of a Fe 16 N 2 compound and preferably has ferromagnetism. However, the magnetic phase 2a may contain iron nitride other than the Fe 16 N 2 compound, such as a Fe 4 N compound. Furthermore, the magnetic phase 2a may contain a transition metal element other than Fe as a metal element, for example, may contain Mn, Ni, Co, Ti and / or Zn. The content ratio of the Fe 16 N 2 compound as the main component in the magnetic phase 2a is preferably 95% by weight or more based on the entire magnetic phase 2a. The content of iron nitride other than the Fe 16 N 2 compound is preferably 4.0% by weight or less based on the entire magnetic phase 2a, and the content of the compound having a transition metal element other than Fe is preferably less than 4.0 wt%. It is preferably 1.0% by weight or less.

窒化鉄系磁性粒子2の非磁性相2bは、金属酸化物を含み、強磁性を有さない。非磁性相2bは、例えば、Fe、FeおよびFeO等の酸化物を含む。さらに、金属酸化物以外の化合物を含んでいてもよい。金属酸化物以外の化合物としては、例えば、Si化合物等が挙げられる。また、金属酸化物以外の化合物の含有量は、本願発明の効果を妨げない限りにおいて任意である。例えば、窒化鉄系磁性粒子2に含まれるSi量は窒化鉄系磁性粒子2全体に対してSi換算で0.2wt%以上2.1wt%以下であってもよい。 The non-magnetic phase 2b of the iron nitride-based magnetic particles 2 contains a metal oxide and has no ferromagnetism. The non-magnetic phase 2b includes, for example, oxides such as Fe 2 O 3 , Fe 3 O 4 and FeO. Furthermore, compounds other than metal oxides may be included. Examples of the compound other than the metal oxide include a Si compound. The content of the compound other than the metal oxide is arbitrary as long as the effects of the present invention are not hindered. For example, the amount of Si contained in the iron nitride-based magnetic particles 2 may be from 0.2 wt% to 2.1 wt% in terms of Si with respect to the entire iron nitride-based magnetic particles 2.

全ての窒化鉄系磁性粒子2が非磁性相2bを有していなくてもよいが、個数ベースで90%以上の窒化鉄系磁性粒子2が非磁性相2bを有していることが好ましい。   Although not all iron nitride-based magnetic particles 2 need to have the nonmagnetic phase 2b, it is preferable that 90% or more of the iron nitride-based magnetic particles 2 on a number basis have the nonmagnetic phase 2b.

本実施形態に係る窒化鉄系磁石1は、任意の切断面において磁性相2aの断面積をS1、非磁性相2bの断面積をS2、空隙4の断面積をS3として、下記の式(1)および式(2)を満たす。
0.10≦S2/S1≦0.30 ・・・式(1)
0.50≦S3/S1≦0.70 ・・・式(2)
In the iron nitride-based magnet 1 according to the present embodiment, the cross-sectional area of the magnetic phase 2a is S1, the cross-sectional area of the non-magnetic phase 2b is S2, and the cross-sectional area of the void 4 is S3 at an arbitrary cut surface. ) And Equation (2) are satisfied.
0.10 ≦ S2 / S1 ≦ 0.30 Expression (1)
0.50 ≦ S3 / S1 ≦ 0.70 Expression (2)

S2/S1<0.10である場合には、非磁性相2bによる十分な磁気分離効果が発現しないため、保磁力が不十分となる。S2/S1>0.30である場合には、窒化鉄系磁性粒子2中の強磁性を有する磁性相2aが少なくなるため、残留磁化が不十分となり、残留磁束密度が不十分となる。より好ましくは下記の式(1A)を満たす。
0.15≦S2/S1≦0.25 ・・・式(1A)
When S2 / S1 <0.10, a sufficient magnetic separation effect by the non-magnetic phase 2b is not exhibited, so that the coercive force becomes insufficient. When S2 / S1> 0.30, the amount of the ferromagnetic magnetic phase 2a in the iron nitride-based magnetic particles 2 is reduced, so that the residual magnetization becomes insufficient and the residual magnetic flux density becomes insufficient. More preferably, the following formula (1A) is satisfied.
0.15 ≦ S2 / S1 ≦ 0.25 (1A)

S3/S1<0.50である場合には、窒化鉄系磁石1中において空隙4と比較して電気抵抗の低い窒化鉄系磁性粒子2(磁性相2a)の割合が多くなり、窒化鉄系磁石1の電気抵抗が不十分となる。S3/S1>0.70である場合には、窒化鉄系磁石1中の窒化鉄系磁性粒子2(磁性相2a)の割合が少なくなり、残留磁化が不十分となり、残留磁束密度が不十分となる。さらに、複数の窒化鉄系磁性粒子2同士が互いにネッキングしている割合が低くなり、機械的強度(特に曲げ強度)が不十分となる。より好ましくは下記の式(2A)を満たす。
0.55≦S3/S1≦0.65 ・・・式(2A)
When S3 / S1 <0.50, the ratio of the iron nitride-based magnetic particles 2 (magnetic phase 2a) having a lower electric resistance in the iron nitride-based magnet 1 than the gap 4 increases, and The electric resistance of the magnet 1 becomes insufficient. When S3 / S1> 0.70, the ratio of the iron nitride-based magnetic particles 2 (magnetic phase 2a) in the iron nitride-based magnet 1 decreases, the residual magnetization becomes insufficient, and the residual magnetic flux density becomes insufficient. Becomes Furthermore, the rate at which the plurality of iron nitride-based magnetic particles 2 are necked with each other decreases, and the mechanical strength (particularly, bending strength) becomes insufficient. More preferably, the following formula (2A) is satisfied.
0.55 ≦ S3 / S1 ≦ 0.65 Expression (2A)

窒化鉄系磁性粒子2および磁性相2aの1個あたりの大きさは任意である。磁性相2aの平均円相当径が30nm以上150nm以下であることが好ましい。磁性相2aの平均円相当径が30nm以上150nm以下である場合には、特に残留磁束密度および保磁力が増加する傾向がある。なお、磁性相2aの平均円相当径とは、複数の磁性相2aの円相当径、すなわち、複数の磁性相2aと同じ面積である円の直径を算出し、平均したものである。   The size of each of the iron nitride-based magnetic particles 2 and the magnetic phase 2a is arbitrary. The average equivalent circle diameter of the magnetic phase 2a is preferably 30 nm or more and 150 nm or less. When the average circle equivalent diameter of the magnetic phase 2a is 30 nm or more and 150 nm or less, the residual magnetic flux density and the coercive force particularly tend to increase. The average equivalent circle diameter of the magnetic phase 2a is the average equivalent circle diameter of the plurality of magnetic phases 2a, that is, the diameter of a circle having the same area as the plurality of magnetic phases 2a.

以下、窒化鉄系磁石1の任意の切断面における磁性相2a、非磁性相2bおよび空隙4の同定方法および各相の断面積の算出方法、および磁性相2aの平均円相当径の算出方法などについて述べる   Hereinafter, a method for identifying the magnetic phase 2a, the non-magnetic phase 2b, and the voids 4 at an arbitrary cut surface of the iron nitride-based magnet 1, a method for calculating a cross-sectional area of each phase, a method for calculating an average circle equivalent diameter of the magnetic phase 2a, and the like. State about

磁性相2aおよび磁性相2aの周囲に存在する非磁性相2bを有する窒化鉄系磁性粒子2の構成相の同定方法は任意であるが、例えば窒化鉄系磁石1を粉砕後、粉末XRDによりX線回折プロファイルを得ることで行うことができる。また、窒化鉄系磁石1を断面が出るように削り出し、その断面をTEM(透過型電子顕微鏡)によって断面観察を行い、さらにEDSにより元素分布マッピングを行ってもよい。元素マッピング像(倍率3万倍以上10万倍倍以下)より、窒化鉄系磁性粒子2中の少なくともFeとNとを実質的に含みOを実質的に含まない相を磁性相2aとし、窒化鉄系磁性粒子2中の少なくともFeとOとを実質的に含む相を非磁性相2bとし、窒化鉄系磁性粒子2以外の部分を空隙4として同定することができる。また、得られた元素マッピング像の画像解析により、窒化鉄系磁石1の断面に含まれる磁性相2a、非磁性相2bおよび空隙4のそれぞれの断面積の合計を測定する。磁性相2aの断面積の合計をS1、非磁性相2bの断面積の合計をS2、空隙の断面積の合計をS3として、S2/S1およびS3/S1を算出することができる。また、得られた各磁性相2aの断面積から各磁性相2aの円相当径を算出し、平均することで磁性相2aの平均円相当径を求めることができる。なお、SEMで窒化鉄系磁石1の断面観察を行うと白い部分が磁性相2a、グレーの部分が非磁性相2b、黒い部分が空隙4として観察される。   The method for identifying the constituent phases of the iron nitride-based magnetic particles 2 having the magnetic phase 2a and the non-magnetic phase 2b present around the magnetic phase 2a is optional. For example, after the iron nitride-based magnet 1 is pulverized, X is determined by powder XRD. This can be done by obtaining a line diffraction profile. Further, the iron nitride-based magnet 1 may be cut so as to have a section, the section may be observed with a TEM (transmission electron microscope), and the element distribution may be mapped with EDS. From the elemental mapping image (magnification of 30,000 or more and 100,000 or less), a phase substantially containing at least Fe and N and substantially not containing O in the iron nitride-based magnetic particles 2 is defined as a magnetic phase 2a. The phase substantially containing at least Fe and O in the iron-based magnetic particles 2 can be identified as the nonmagnetic phase 2 b, and the portion other than the iron nitride-based magnetic particles 2 can be identified as the void 4. Further, the total of the cross-sectional areas of the magnetic phase 2a, the non-magnetic phase 2b, and the voids 4 included in the cross section of the iron nitride-based magnet 1 is measured by image analysis of the obtained element mapping image. S2 / S1 and S3 / S1 can be calculated, where S1 is the total cross-sectional area of the magnetic phase 2a, S2 is the total cross-sectional area of the nonmagnetic phase 2b, and S3 is the total cross-sectional area of the void. Also, the equivalent circle diameter of each magnetic phase 2a is calculated from the obtained cross-sectional area of each magnetic phase 2a and averaged, whereby the average equivalent circle diameter of the magnetic phase 2a can be obtained. When a cross section of the iron nitride magnet 1 is observed by SEM, a white portion is observed as the magnetic phase 2a, a gray portion is observed as the nonmagnetic phase 2b, and a black portion is observed as the void 4.

また、複数の窒化鉄系磁性粒子2の非磁性相2bについて微構造解析を行うことで、ネッキング状態の有無を確認することができる。微構造解析の方法は任意である。例えば、TEMを用いる方法がある。複数の窒化鉄系磁性粒子2の非磁性相2b同士が焼結し、図2に示すように非磁性相2b間の粒子境界をTEM画像(倍率10万倍以上20万倍以下)によっても確認できない状態をネッキング状態とした。すなわち、ネッキング状態とは、図3に示すように各窒化鉄系磁性粒子2の非磁性相2b同士が粒子境界2cで単に接している状態とは異なる。   Further, by performing a microstructure analysis on the nonmagnetic phase 2b of the plurality of iron nitride-based magnetic particles 2, the presence or absence of a necking state can be confirmed. The method of microstructure analysis is arbitrary. For example, there is a method using a TEM. The nonmagnetic phases 2b of the plurality of iron nitride-based magnetic particles 2 are sintered together, and the particle boundaries between the nonmagnetic phases 2b are also confirmed by TEM images (magnification of 100,000 to 200,000 times) as shown in FIG. The state where it cannot be performed is referred to as the necking state. That is, the necking state is different from the state in which the nonmagnetic phases 2b of the respective iron nitride-based magnetic particles 2 are simply in contact with each other at the particle boundaries 2c as shown in FIG.

ここで、一般的に、窒化鉄系磁性粒子(磁性相2a)の密度が高くなるほど電気抵抗が低下し、保磁力が低下する傾向にある。また、窒化鉄系磁性粒子(磁性相2a)の密度が低くなるほど電気抵抗は上昇するが残留磁束密度が低下する傾向にある。   Here, in general, as the density of the iron nitride-based magnetic particles (magnetic phase 2a) increases, the electric resistance tends to decrease and the coercive force tends to decrease. Also, as the density of the iron nitride-based magnetic particles (magnetic phase 2a) decreases, the electric resistance increases, but the residual magnetic flux density tends to decrease.

本実施形態に係る窒化鉄系磁石1は、磁性相2aの周囲(表面)に非磁性相2bが存在する構造であり、さらにネッキング状態が存在する。電気抵抗の高い非磁性相2bが電気抵抗の低い磁性相2aの周囲に存在することで、個々の磁性相2aが単磁区構造となっている。そのため、窒化鉄系磁性粒子2(磁性相2a)の密度が高くなっても電気抵抗が高く保たれ、保磁力も低下しない。そして、残留磁束密度が向上する。さらに、ネッキングにより窒化鉄系磁性粒子2(磁性相2a)の空隙の割合が低くなり、窒化鉄系磁石の機械的強度も高くなる。   The iron nitride-based magnet 1 according to the present embodiment has a structure in which the nonmagnetic phase 2b exists around the magnetic phase 2a (surface), and further has a necking state. Since the non-magnetic phase 2b having a high electric resistance exists around the magnetic phase 2a having a low electric resistance, each magnetic phase 2a has a single magnetic domain structure. Therefore, even if the density of the iron nitride-based magnetic particles 2 (magnetic phase 2a) increases, the electric resistance is kept high, and the coercive force does not decrease. Then, the residual magnetic flux density is improved. Further, the ratio of the voids in the iron nitride-based magnetic particles 2 (magnetic phase 2a) decreases due to necking, and the mechanical strength of the iron nitride-based magnet also increases.

窒化鉄系磁性粒子2に含まれるSi量はEDSにて測定できる。   The amount of Si contained in the iron nitride-based magnetic particles 2 can be measured by EDS.

本実施形態に係る窒化鉄系磁石の好適な製造方法について述べる。本実施形態に係る窒化鉄系磁性粒子の製造方法は任意である。例えば、酸化鉄粒子を合成した後、前記酸化鉄粒子に還元処理および窒化処理を順に施して得た窒化鉄粒子に、低温かつ低酸素分圧下にて徐酸化熱処理を施し、前記窒化鉄粒子表面に非磁性相を形成させ、金型で成型体を作製後、ネッキング熱処理することにより得られる。   A preferred method for manufacturing the iron nitride-based magnet according to the present embodiment will be described. The method for producing the iron nitride-based magnetic particles according to the present embodiment is arbitrary. For example, after synthesizing the iron oxide particles, the iron nitride particles obtained by sequentially performing a reduction treatment and a nitriding treatment on the iron oxide particles are subjected to a slow oxidation heat treatment at a low temperature and a low oxygen partial pressure to obtain a surface of the iron nitride particles. Is formed by forming a non-magnetic phase on the substrate, forming a molded body with a mold, and performing necking heat treatment.

酸化鉄粒子の製造方法は任意である。例えば、鉄(II)塩および/または鉄(III)塩を含む鉄塩水溶液と、アルカリ水溶液とを混合させた後、熟成し、洗浄することにより製造することができる。なお、以下の記載では、鉄(II)塩および鉄(III)塩を総称して鉄塩と呼ぶことがある。   The method for producing the iron oxide particles is arbitrary. For example, it can be produced by mixing an aqueous solution of an iron salt containing an iron (II) salt and / or an iron (III) salt and an aqueous alkali solution, then aging and washing. In the following description, iron (II) salt and iron (III) salt may be collectively referred to as iron salt.

鉄塩の種類は任意である。例えば、硫酸鉄、塩化鉄、硝酸鉄等を挙げることができ、これらを適宜組み合わせて使用してもよい。また、それらの水和物を使用することができる。   The type of iron salt is arbitrary. For example, iron sulfate, iron chloride, iron nitrate and the like can be mentioned, and these may be used in an appropriate combination. Also, their hydrates can be used.

アルカリ水溶液の種類は任意である。例えば、水酸化ナトリウム水溶液、アンモニア水、アンモニア塩水溶液、および尿素水溶液から選択される1種以上を用いることができる。   The type of the alkaline aqueous solution is arbitrary. For example, one or more selected from aqueous sodium hydroxide, aqueous ammonia, aqueous ammonium salt, and aqueous urea can be used.

また、熟成の方法は任意である。熟成は、酸化鉄粒子の結晶性改良や粒子サイズおよび/または粒子形状の制御などのために行うことができる。熟成の方法は任意である。例えば、オートクレーブによる水熱処理などの液中熟成反応により行うことができる。また、熟成を省略することも可能である。   The aging method is optional. Aging can be performed to improve the crystallinity of the iron oxide particles, control the particle size and / or particle shape, and the like. The ripening method is optional. For example, it can be performed by a liquid aging reaction such as a hydrothermal treatment in an autoclave. In addition, aging can be omitted.

酸化鉄粒子の製造後(熟成後)、酸化鉄粒子を含む水溶液をろ過し、必要に応じて水洗等の洗浄処理を施すことで酸化鉄粒子を回収することができる。   After the production of the iron oxide particles (after aging), the aqueous solution containing the iron oxide particles is filtered, and if necessary, a washing treatment such as washing with water is performed to collect the iron oxide particles.

回収した酸化鉄粒子は、後述する還元処理によって粒子同士が焼結することを抑制するために、還元処理の前に粒子表面の一部または全部をSi化合物で被覆してもよい。被覆に用いられるSi化合物の種類は任意である。例えば、コロイダルシリカ、シランカップリング剤、シラノール化合物が挙げられる。   The collected iron oxide particles may be partially or entirely coated with a Si compound before the reduction treatment in order to suppress sintering of the particles by the reduction treatment described below. The type of the Si compound used for coating is arbitrary. For example, colloidal silica, a silane coupling agent, and a silanol compound are mentioned.

Si化合物で粒子表面の一部または全部を被覆する場合、被覆に用いられるSi化合物量は酸化鉄粒子に対してSi換算で0.1wt%以上20wt%以下であることが好ましい。0.1wt%未満である場合には熱処理時に粒子間の焼結を抑制しにくく、最終的に得られる窒化鉄系磁性粒子が粗大になりやすくなる。20wt%を超える場合には熱処理時に粒子間の焼結が過剰に抑制されやすくなり、最終的に得られる窒化鉄系磁性粒子が細密になりやすくなる。   When a part or the whole of the particle surface is coated with the Si compound, the amount of the Si compound used for coating is preferably 0.1 wt% or more and 20 wt% or less in terms of Si with respect to the iron oxide particles. If the amount is less than 0.1 wt%, it is difficult to suppress sintering between particles during heat treatment, and the finally obtained iron nitride-based magnetic particles tend to be coarse. If the content exceeds 20 wt%, sintering between the particles during heat treatment tends to be excessively suppressed, and the finally obtained iron nitride-based magnetic particles tend to be fine.

また、回収した酸化鉄粒子の平均粒子径は任意であるが10nm以上150nm以下が好ましい。平均粒子径を10nm以上150nm以下とすることで、後述する磁性相の平均円相当径を30nm以上150nm以下としやすくなる。   The average particle size of the collected iron oxide particles is arbitrary, but is preferably from 10 nm to 150 nm. By setting the average particle diameter to 10 nm or more and 150 nm or less, it is easy to set the average circle equivalent diameter of the magnetic phase described later to 30 nm or more and 150 nm or less.

さらに、回収した酸化鉄粒子は、マグネタイト、γ−Fe、α−Fe、α−FeOOH、β−FeOOH、γ−FeOOH、FeOなどから構成されるが、上記以外の成分から構成されていてもよい。 Further, the recovered iron oxide particles are composed of magnetite, γ-Fe 2 O 3 , α-Fe 2 O 3 , α-FeOOH, β-FeOOH, γ-FeOOH, FeO, etc. It may be configured.

回収した酸化鉄粒子の粒子形状は、球状、針状、粒状、紡錘状、直方体状などいずれでもよい。   The shape of the collected iron oxide particles may be spherical, needle-like, granular, spindle-shaped, or rectangular parallelepiped.

次に、回収した酸化鉄粒子の還元処理を行い、鉄粒子を得る。還元処理の温度は任意であるが200℃以上400℃以下であってもよい。還元処理の温度が200℃未満である場合には酸化鉄粒子が十分に還元されにくくなるため好ましくない。還元処理の温度が400℃を超える場合には酸化鉄粒子は十分に還元されるが、粒子間の焼結が過剰に進行しやすくなるため好ましくない。還元処理の温度は、より好ましくは230℃以上350℃以下である。   Next, the collected iron oxide particles are reduced to obtain iron particles. The temperature of the reduction treatment is arbitrary, but may be 200 ° C. or more and 400 ° C. or less. If the temperature of the reduction treatment is lower than 200 ° C., it is not preferable because the iron oxide particles are not sufficiently reduced. If the temperature of the reduction treatment exceeds 400 ° C., the iron oxide particles are sufficiently reduced, but the sintering between the particles tends to proceed excessively, which is not preferable. The temperature of the reduction treatment is more preferably 230 ° C or more and 350 ° C or less.

還元処理の時間は任意であるが、1時間以上96時間以下が好ましい。還元処理の時間が96時間を超える場合には還元処理の温度によっては焼結が進んでしまう。そのため、後述の窒化処理が進みにくくなる。還元処理の時間が1時間未満である場合には十分に還元が進行しにくくなる。還元処理の時間は、より好ましくは2時間以上72時間以下である。   The time of the reduction treatment is arbitrary, but is preferably 1 hour or more and 96 hours or less. If the time of the reduction treatment exceeds 96 hours, sintering proceeds depending on the temperature of the reduction treatment. Therefore, it becomes difficult for the nitriding treatment described later to proceed. If the time of the reduction treatment is less than 1 hour, the reduction will not sufficiently proceed. The time of the reduction treatment is more preferably 2 hours or more and 72 hours or less.

還元処理時の雰囲気は、H雰囲気であることが好ましい。 The atmosphere at the time of the reduction treatment is preferably an H 2 atmosphere.

次に、得られた鉄粒子の窒化処理を行い、Fe16化合物を主成分とする窒化鉄粒子を得る。窒化処理の温度は任意であるが100℃以上200℃以下であることが好ましい。窒化処理の温度が100℃未満である場合には鉄粒子の窒化が十分に進行しにくい。窒化処理の温度が200℃を超える場合には、鉄粒子の窒化が過剰に進行しやすくなり、磁気特性が低下しやすくなる。窒化処理の温度は、より好ましくは120℃以上180℃以下である。 Next, the obtained iron particles are subjected to nitriding treatment to obtain iron nitride particles containing a Fe 16 N 2 compound as a main component. The temperature of the nitriding treatment is optional, but is preferably 100 ° C. or more and 200 ° C. or less. If the temperature of the nitriding treatment is lower than 100 ° C., the nitriding of the iron particles does not easily proceed sufficiently. If the temperature of the nitriding treatment exceeds 200 ° C., the nitriding of the iron particles tends to proceed excessively, and the magnetic properties tend to deteriorate. The temperature of the nitriding treatment is more preferably 120 ° C. or more and 180 ° C. or less.

窒化処理の時間は任意である。1時間以上48時間以下が好ましい。窒化処理の時間が48時間を超える場合には、窒化温度によっては最終的に得られる窒化鉄系磁石の磁気特性が低下しやすくなる。窒化処理の時間が1時間未満である場合には窒化温度によっては鉄粒子が十分に窒化されにくくなる。窒化処理の時間は、より好ましくは3時間以上24時間以下である。   The nitriding time is optional. The time is preferably from 1 hour to 48 hours. If the nitriding time exceeds 48 hours, the magnetic properties of the finally obtained iron nitride-based magnet tend to deteriorate depending on the nitriding temperature. If the nitriding time is less than 1 hour, the iron particles may not be sufficiently nitrided depending on the nitriding temperature. The nitriding time is more preferably 3 hours or more and 24 hours or less.

窒化処理の雰囲気は、NH雰囲気が好ましい。また、NHにNやHなどを混合させた雰囲気でもよい。 The nitriding atmosphere is preferably an NH 3 atmosphere. Alternatively, an atmosphere in which N 2 , H 2, or the like is mixed with NH 3 may be used.

次に、得られた窒化鉄粒子の徐酸化熱処理を行い、窒化鉄粒子の表面を酸化させることで、磁性相と、前記磁性相の周囲に存在する非磁性相と、を有する窒化鉄系磁性粒子を得る。徐酸化熱処理の温度は任意であるが、40℃以上100℃以下であることが好ましい。徐酸化熱処理の温度が40℃未満である場合には、非磁性相が十分に形成されにくくなり、最終的に得られる窒化鉄系磁石の磁気特性が低下しやすくなる。また、徐酸化熱処理の温度が100℃以上である場合には、非磁性相が過剰に形成されやすくなり、最終的に得られる窒化鉄系磁石の磁気特性が低下しやすくなる。徐酸化熱処理の温度は、より好ましくは50℃以上80℃以下である。   Next, by subjecting the obtained iron nitride particles to a gradual oxidation heat treatment, the surface of the iron nitride particles is oxidized, whereby a magnetic phase and a non-magnetic phase existing around the magnetic phase are provided. Get the particles. The temperature of the gradual oxidation heat treatment is arbitrary, but is preferably 40 ° C. or more and 100 ° C. or less. If the temperature of the gradual oxidation heat treatment is lower than 40 ° C., it is difficult to form a non-magnetic phase sufficiently, and the magnetic properties of the finally obtained iron nitride-based magnet tend to deteriorate. Further, when the temperature of the gradual oxidation heat treatment is 100 ° C. or more, an excessively non-magnetic phase is likely to be formed, and the magnetic properties of the finally obtained iron nitride-based magnet are likely to deteriorate. The temperature of the slow oxidation heat treatment is more preferably 50 ° C. or more and 80 ° C. or less.

徐酸化熱処理の時間は任意である。1時間以上96時間以下であることが好ましい。徐酸化熱処理の時間が96時間を超える場合には、徐酸化温度や徐酸化雰囲気によっては非磁性相が過剰に形成されやすくなり、最終的に得られる窒化鉄系磁石の磁気特性が低下しやすくなる。徐さ加熱処理の時間が1時間未満である場合には、徐酸化温度や徐酸化雰囲気によっては非磁性相が十分に形成されにくくなり、最終的に得られる窒化鉄系磁石の磁気特性が低下しやすくなる。徐酸化熱処理の時間は、より好ましくは2時間以上72時間以下である。   The time of the slow oxidation heat treatment is arbitrary. It is preferable that the time is 1 hour or more and 96 hours or less. If the annealing time exceeds 96 hours, the non-magnetic phase tends to be excessively formed depending on the annealing temperature and the annealing atmosphere, and the magnetic properties of the finally obtained iron nitride-based magnet tend to deteriorate. Become. If the annealing time is less than 1 hour, it is difficult to form a non-magnetic phase sufficiently depending on the annealing temperature and the annealing atmosphere, and the magnetic properties of the finally obtained iron nitride magnet deteriorate. Easier to do. The time of the slow oxidation heat treatment is more preferably 2 hours or more and 72 hours or less.

徐酸化熱処理の雰囲気は、Oを10ppm以上500ppm以下含むN雰囲気が好ましく、Nの他にHeやArなどの不活性ガスを混合させても良い。Oの含有量が10ppm未満である場合には、徐酸化温度によっては非磁性相を十分に形成しにくくなり、最終的に得られる窒化鉄系磁石の磁気特性が低下しやすくなる。また、Oの含有量が500ppmを超える場合には、徐酸化温度によっては非磁性相が過剰に形成されやすくなり最終的に得られる窒化鉄系磁石の磁気特性が低下しやすくなる。徐酸化熱処理時のOの含有量は、より好ましくは30ppm以上100ppm以下である。 Xu atmosphere oxidizing heat treatment is preferably N 2 atmosphere containing 10ppm or 500ppm or less O 2, may be in addition to mixed with an inert gas such as He or Ar in N 2. When the content of O 2 is less than 10 ppm, it is difficult to form a non-magnetic phase sufficiently depending on the gradual oxidation temperature, and the magnetic properties of the finally obtained iron nitride-based magnet tend to decrease. On the other hand, if the O 2 content exceeds 500 ppm, an excessively non-magnetic phase is likely to be formed depending on the gradual oxidation temperature, and the magnetic properties of the finally obtained iron nitride-based magnet are likely to deteriorate. The content of O 2 during the slow oxidation heat treatment is more preferably 30 ppm or more and 100 ppm or less.

次に、磁性相と、前記磁性相の周囲に存在する非磁性相と、を有する窒化鉄系磁性粒子を任意の形状およびサイズの金型に投入し、好ましくは30kgf/cm以上300kgf/cm以下の荷重をかけ、成型体を作製する。30kgf/cm以上300kgf/cm以下の荷重とすることで、成型体が十分な保形性を有し、かつ成型体に発生するクラックを抑制することができる。荷重はより好ましくは100kgf/cm以上300kgf/cm以下である。 Next, iron nitride-based magnetic particles having a magnetic phase and a non-magnetic phase existing around the magnetic phase are charged into a mold having an arbitrary shape and size, preferably from 30 kgf / cm 2 to 300 kgf / cm. A load of 2 or less is applied to produce a molded body. 30 kgf / cm 2 or more 300 kgf / cm 2 by the following load, it is possible to suppress the crack molded body has sufficient shape retention, and generates the molded body. Load more preferably 100 kgf / cm 2 or more 300 kgf / cm 2 or less.

前記成型体は所定の形状に成型する際、磁場を印加しながら成型することで作製しても良い。これにより、最終的に得られる窒化鉄系磁石に含まれる窒化鉄系磁性粒子が特定の方向に配向するので、より磁気特性に優れた窒化鉄系磁石を得ることができる。   The molded body may be manufactured by applying a magnetic field when molding into a predetermined shape. Thereby, the iron nitride-based magnetic particles contained in the finally obtained iron nitride-based magnet are oriented in a specific direction, so that an iron nitride-based magnet having more excellent magnetic properties can be obtained.

得られた磁性相と、前記磁性相の周囲に存在する非磁性相と、を有する窒化鉄系磁性粒子からなる成型体は、RHK(ローラーハースキルン)を用いて300℃以下の温度でネッキング熱処理を施すことにより、複数の窒化鉄系磁性粒子同士をネッキングさせ、本実施形態に係る窒化鉄系磁石を得る。300℃を超える温度でネッキング熱処理した場合には、短時間であっても磁性相の主成分であるFe16化合物が分解し、磁気特性が著しく低下することがある。RHKによるネッキング熱処理の温度は、より好ましくは200℃以下である。 A molded body made of iron nitride-based magnetic particles having the obtained magnetic phase and a non-magnetic phase existing around the magnetic phase is subjected to necking heat treatment at a temperature of 300 ° C. or less using RHK (roller hearth kiln). By performing the above, the plurality of iron nitride-based magnetic particles are necked together to obtain the iron nitride-based magnet according to the present embodiment. When the necking heat treatment is performed at a temperature exceeding 300 ° C., the Fe 16 N 2 compound which is a main component of the magnetic phase may be decomposed even in a short time, and the magnetic properties may be significantly reduced. The temperature of the necking heat treatment by RHK is more preferably 200 ° C. or less.

RHKを用いるネッキング熱処理の時間は任意であるが1分以上10分以下であることが好ましい。RHKを用いるネッキング熱処理の時間が1分未満である場合には、複数の窒化鉄系磁性粒子同士のネッキングが不十分となり、機械的強度が低下しやすくなる。ネッキング熱処理の時間が10分を超える場合には、磁性相の主成分であるFe16化合物が分解し、磁気特性が著しく低下することがある。ネッキング熱処理の時間は、より好ましくは1分以上5分以下である。 The time of the necking heat treatment using RHK is arbitrary, but is preferably 1 minute or more and 10 minutes or less. When the time of the necking heat treatment using RHK is less than 1 minute, necking between a plurality of iron nitride-based magnetic particles becomes insufficient, and mechanical strength tends to decrease. If the necking heat treatment time exceeds 10 minutes, the Fe 16 N 2 compound which is the main component of the magnetic phase may be decomposed, and the magnetic properties may be significantly reduced. The time of the necking heat treatment is more preferably 1 minute or more and 5 minutes or less.

RHKによるネッキング熱処理時の雰囲気は任意である。例えばN、He、Ar等の不活性雰囲気もしくは真空である。 The atmosphere at the time of necking heat treatment by RHK is arbitrary. For example, it is an inert atmosphere such as N 2 , He, or Ar or a vacuum.

なお、ネッキング熱処理の方法は任意である。上記のRHKを用いる方法の他にも、ホットプレス法、HIP(熱間等方圧加圧法)、SPS(放電プラズマ焼結法)等が挙げられる。ネッキング熱処理の条件、特に時間や雰囲気については、ネッキング熱処理の方法により適宜選択すればよい。ただし、静置式バッチ炉で行うような通常の熱処理ではネッキング状態にはなりにくい。   The necking heat treatment method is optional. In addition to the above method using RHK, a hot press method, HIP (hot isostatic pressing method), SPS (discharge plasma sintering method) and the like can be mentioned. The conditions of the necking heat treatment, particularly the time and atmosphere, may be appropriately selected depending on the method of the necking heat treatment. However, a normal heat treatment, such as that performed in a stationary batch furnace, hardly causes a necking state.

得られた窒化鉄系磁石は、その表面に酸化層や樹脂等の劣化を防止するために、めっきや塗装を施しても良い。   The obtained iron nitride-based magnet may be plated or painted on its surface in order to prevent the oxide layer and the resin from deteriorating.

本実施形態に係る窒化鉄系磁石の用途は任意である。例えばモータ(特に電気自動車用およびハイブリッド自動車用)、発電機用ジェネレーター、ボイスコイルモーター、ロボット用アクチュエーター等が挙げられる。   The application of the iron nitride-based magnet according to the present embodiment is arbitrary. Examples include motors (especially for electric vehicles and hybrid vehicles), generators for generators, voice coil motors, actuators for robots, and the like.

次に、本発明の窒化鉄系磁石について、実施例および比較例を用いてさらに詳細に説明するが、本発明は実施例に示す態様に限定されるものではない。   Next, the iron nitride-based magnet of the present invention will be described in more detail using examples and comparative examples, but the present invention is not limited to the embodiments shown in the examples.

(実施例1)硫酸鉄七水和物(FeSO・7HO)167gと塩化鉄六水和物(FeCl・6HO)85gとをイオン交換水248gに溶解させ、鉄塩水溶液を作製した。次に、2.5molアンモニア水溶液600gを30℃に保持し、先に調整した鉄塩水溶液500gを添加した後、液中熟成反応として70℃で一定となるように温度コントロールし、30分撹拌した。その後、遠心分離機を用いて2Lのイオン交換水で3回洗浄し、酸化鉄スラリーを作製した。 (Example 1) was dissolved in iron sulfate heptahydrate (FeSO 4 · 7H 2 O) 167g iron chloride hexahydrate (FeCl 3 · 6H 2 O) Ion exchange water 248g and 85 g, the iron salt solution Produced. Next, 600 g of a 2.5 mol aqueous ammonia solution was maintained at 30 ° C., and 500 g of the previously adjusted iron salt aqueous solution was added. The temperature was controlled so as to be constant at 70 ° C. as an in-solution aging reaction, followed by stirring for 30 minutes. . Thereafter, the resultant was washed three times with 2 L of ion-exchanged water using a centrifuge to prepare an iron oxide slurry.

前記酸化鉄スラリー1000gに、テトラエトキシシラン5.0g、エタノール21g、ジエチレングリコールモノブチルエーテル78gを添加し、Si被着処理を施した。この酸化鉄スラリーを85℃で24時間乾燥し、Feを含む酸化鉄粒子を作製した。 To 1000 g of the iron oxide slurry, 5.0 g of tetraethoxysilane, 21 g of ethanol, and 78 g of diethylene glycol monobutyl ether were added, and a Si coating treatment was performed. This iron oxide slurry was dried at 85 ° C. for 24 hours to produce iron oxide particles containing Fe 2 O 3 .

前記酸化鉄粒子2gを焼成ボートに入れ、熱処理炉(バッチ炉)に静置した。炉内にNガスを充填した後、Hガスを1L/minの流量で流しながら、5℃/minの昇温速度で250℃まで昇温し、48時間保持して還元処理を行った。その後、Hガスの供給を止めて窒素ガスを2L/minの流量で流しながら140℃まで降温した。続いて、Nガスの供給を止めてNHガスを0.2L/minの流量で流しながら、140℃で24時間窒化処理を行った。その後、NHガスの供給を止めてNガスを2L/minの流量で流しながら50℃まで降温した。続いて、Oを50ppm含んだNガスを2L/minの流量で流しながら、50℃で24時間徐酸化熱処理を行った。その後、各種雰囲気ガスの供給を止めて室温まで降温し、粒子表面にFeからなる非磁性相を有する窒化鉄系磁性粒子を得た。 2 g of the iron oxide particles were placed in a firing boat and left in a heat treatment furnace (batch furnace). After filling the furnace with N 2 gas, the temperature was raised to 250 ° C. at a rate of 5 ° C./min while flowing H 2 gas at a flow rate of 1 L / min, and the reduction treatment was performed by holding for 48 hours. . Thereafter, the supply of H 2 gas was stopped, and the temperature was lowered to 140 ° C. while flowing nitrogen gas at a flow rate of 2 L / min. Subsequently, the nitriding treatment was performed at 140 ° C. for 24 hours while stopping the supply of the N 2 gas and flowing the NH 3 gas at a flow rate of 0.2 L / min. Thereafter, the supply of NH 3 gas was stopped, and the temperature was lowered to 50 ° C. while flowing N 2 gas at a flow rate of 2 L / min. Subsequently, a slow oxidation heat treatment was performed at 50 ° C. for 24 hours while flowing N 2 gas containing 50 ppm of O 2 at a flow rate of 2 L / min. Thereafter, the supply of various atmosphere gases was stopped, and the temperature was lowered to room temperature to obtain iron nitride-based magnetic particles having a nonmagnetic phase composed of Fe 3 O 4 on the surface of the particles.

得られた粒子表面にFeからなる非磁性相を有する窒化鉄系磁性粒子を金型に充填し、室温にて150kgf/cmの圧力を加え、粒子表面にFeからなる非磁性相を有する窒化鉄系磁性粒子からなる成型体を得た。なお、磁気特性測定用および電気抵抗測定用の成型体と、曲げ強度測定用の成型体と、では別個の金型に充填して別個の成型体を得た。測定に用いられる試験サンプルのサイズが異なるためである。 A mold is filled with iron nitride-based magnetic particles having a nonmagnetic phase of Fe 3 O 4 on the surface of the obtained particles, and a pressure of 150 kgf / cm 2 is applied at room temperature to form particles of Fe 3 O 4 on the surface. A molded body made of iron nitride-based magnetic particles having a non-magnetic phase was obtained. The molded bodies for measuring magnetic properties and electric resistance and the molded bodies for measuring bending strength were filled in separate molds to obtain separate molded bodies. This is because the size of the test sample used for the measurement is different.

得られたそれぞれの成型体を、ArガスをフローしているRHK(ローラーハースキルン)にてネッキング熱処理し、窒化鉄系磁石を作製した。この時のArガス流量は2L/minとし、200℃で5分間、熱処理した。   Each of the obtained molded bodies was subjected to necking heat treatment with an RHK (roller hearth kiln) flowing Ar gas to produce an iron nitride-based magnet. At this time, the Ar gas flow rate was 2 L / min, and heat treatment was performed at 200 ° C. for 5 minutes.

(実施例2)酸化鉄スラリーに添加するテトラエトキシシランの量を4.0gとした点以外は、実施例1と同様にして窒化鉄系磁石を作製した。   (Example 2) An iron nitride-based magnet was produced in the same manner as in Example 1, except that the amount of tetraethoxysilane added to the iron oxide slurry was 4.0 g.

(実施例3)酸化鉄スラリーに添加するテトラエトキシシランの量を2.5gとし、成型体作製時の成型圧を150kgf/cmとした点以外は、実施例1と同様にして窒化鉄系磁石を作製した。 (Example 3) An iron nitride-based material was prepared in the same manner as in Example 1 except that the amount of tetraethoxysilane added to the iron oxide slurry was 2.5 g, and the molding pressure at the time of producing a molded body was 150 kgf / cm 2. A magnet was made.

(実施例4)酸化鉄スラリーに添加するテトラエトキシシランの量を1.8gとした点以外は、実施例1と同様にして窒化鉄系磁石を作製した。   (Example 4) An iron nitride-based magnet was produced in the same manner as in Example 1 except that the amount of tetraethoxysilane added to the iron oxide slurry was 1.8 g.

(実施例5)酸化鉄スラリーに添加するテトラエトキシシランの量を0.8gとした点以外は、実施例1と同様にして窒化鉄系磁石を作製した。   Example 5 An iron nitride-based magnet was produced in the same manner as in Example 1, except that the amount of tetraethoxysilane added to the iron oxide slurry was 0.8 g.

(実施例6)酸化鉄スラリーに添加するテトラエトキシシランの量を0.6gとした点以外は、実施例1と同様にして窒化鉄系磁石を作製した。   (Example 6) An iron nitride magnet was produced in the same manner as in Example 1, except that the amount of tetraethoxysilane added to the iron oxide slurry was 0.6 g.

(比較例1)徐酸化熱処理を0.5時間とした以外は、実施例3と同様にして窒化鉄系磁石を作製した   (Comparative Example 1) An iron nitride-based magnet was produced in the same manner as in Example 3, except that the annealing time was set to 0.5 hour.

(実施例11)徐酸化熱処理を1時間とした点以外は、実施例3と同様にして窒化鉄系磁石を作製した。   (Example 11) An iron nitride-based magnet was produced in the same manner as in Example 3, except that the gradual oxidation heat treatment was performed for 1 hour.

(実施例12)徐酸化熱処理を12時間とした点以外は、実施例3と同様にして窒化鉄系磁石を作製した。   (Example 12) An iron nitride-based magnet was produced in the same manner as in Example 3, except that the annealing treatment was gradually performed for 12 hours.

(実施例13)徐酸化熱処理を30時間とした点以外は、実施例3と同様にして窒化鉄系磁石を作製した。   (Example 13) An iron nitride-based magnet was produced in the same manner as in Example 3, except that the gradual oxidation heat treatment was performed for 30 hours.

(実施例14)徐酸化熱処理を36時間とした点以外は、実施例3と同様にして窒化鉄系磁石を作製した。   (Example 14) An iron nitride-based magnet was produced in the same manner as in Example 3, except that the gradual oxidation heat treatment was performed for 36 hours.

(比較例2)徐酸化熱処理を40時間とした点以外は、実施例3と同様にして窒化鉄系磁石を作製した。   (Comparative Example 2) An iron nitride-based magnet was produced in the same manner as in Example 3, except that the annealing treatment was gradually performed for 40 hours.

(比較例11)成型体作製時の成型圧を350kgf/cmとした点以外は、実施例3と同様にして窒化鉄系磁石を作製した。 (Comparative Example 11) An iron nitride-based magnet was produced in the same manner as in Example 3, except that the molding pressure at the time of producing a molded body was 350 kgf / cm 2 .

(実施例21)成型体作製時の成型圧を300kgf/cmとした点以外は、実施例3と同様にして窒化鉄系磁石を作製した。 (Example 21) An iron nitride-based magnet was produced in the same manner as in Example 3, except that the molding pressure at the time of producing the molded body was 300 kgf / cm 2 .

(実施例22)成型体作製時の成型圧200kgf/cmとした点以外は、実施例3と同様にして窒化鉄系磁石を作製した。 (Example 22) An iron nitride-based magnet was produced in the same manner as in Example 3, except that the molding pressure at the time of producing the molded body was 200 kgf / cm 2 .

(実施例23)成型体作製時の成型圧を100kgf/cmとした点以外は、実施例3と同様にして窒化鉄系磁石を作製した。 (Example 23) An iron nitride-based magnet was produced in the same manner as in Example 3, except that the molding pressure at the time of producing the molded body was 100 kgf / cm 2 .

(実施例24)成型体作製時の成型圧を30kgf/cmとした点以外は、実施例3と同様にして窒化鉄系磁石を作製した。 (Example 24) An iron nitride-based magnet was produced in the same manner as in Example 3, except that the molding pressure at the time of producing the molded body was 30 kgf / cm 2 .

(比較例12)成型体作製時の成型圧を20kgf/cmとした点以外は、実施例3と同様にして窒化鉄系磁石を作製した。 (Comparative Example 12) An iron nitride-based magnet was produced in the same manner as in Example 3, except that the molding pressure at the time of producing the molded body was 20 kgf / cm 2 .

(比較例21)成型体の熱処理をRHKに代えてバッチ炉を用いて200℃で1分間行った点以外は、実施例3と同様にして窒化鉄系磁石を作製した。   (Comparative Example 21) An iron nitride-based magnet was produced in the same manner as in Example 3 except that the heat treatment of the molded body was performed at 200 ° C for 1 minute using a batch furnace instead of RHK.

(実施例31)RHKでの成型体のネッキング熱処理の条件を200℃で1分間とした点以外は、実施例3と同様にして窒化鉄系磁石を作製した。   (Example 31) An iron nitride-based magnet was produced in the same manner as in Example 3, except that the condition for necking heat treatment of the molded body with RHK was set to 200 ° C for 1 minute.

(実施例32)RHKでの成型体のネッキング熱処理の条件を200℃で10分間とした点以外は、実施例3と同様にして窒化鉄系磁石を作製した。   (Example 32) An iron nitride-based magnet was produced in the same manner as in Example 3, except that the condition for necking heat treatment of the molded body with RHK was set to 200 ° C for 10 minutes.

≪窒化鉄系磁石の断面中の構成相の同定、各構成相の断面積比の算出、および窒化鉄系磁性粒子の平均円相当径の算出≫
作製した粒子表面に非磁性相を有する窒化鉄系磁性粒子は、窒化鉄系磁石を粉砕後、粉末XRD(リガク製RINT−2500)によりX線回折プロファイルを得て構成相の同定を行った。また、得られた窒化鉄系磁石を断面が出るように削り出し、その断面をTEM(日本電子製JEM−2100FCS)によって断面観察を行い、さらにESDにより元素分布マッピングを行った。元素マッピング像(倍率5万倍)より、前記窒化鉄系磁性粒子中の少なくともFeとNとを実質的に含みOを実質的に含まない相を磁性相とし、前記窒化鉄系磁性粒子中の少なくともFeとOとを実質的に含む相を非磁性相とし、窒化鉄系磁性粒子以外の部分を空隙として同定した。なお、断面観察の測定範囲は、磁性相2a、非磁性相2bおよび空隙4をそれぞれ少なくとも100個以上含む範囲としてもよく、好ましくは200個以上含む範囲とする。また、得られた元素マッピング像の画像解析により、窒化鉄系磁石の断面に含まれる磁性相、非磁性相および空隙の断面積をそれぞれ500個測定した。磁性相の断面積をS1、非磁性相の断面積をS2、空隙の断面積をS3として、S2/S1およびS3/S1を算出した。また、得られた各磁性相の断面積から各磁性相の円相当径を算出し、平均することで平均円相当径を求めた。
同 定 Identification of the constituent phases in the cross section of the iron nitride magnet, calculation of the cross-sectional area ratio of each constituent phase, and calculation of the average circle equivalent diameter of the iron nitride magnetic particles≫
The prepared iron nitride-based magnetic particles having a nonmagnetic phase on the particle surface were obtained by crushing an iron nitride-based magnet and obtaining an X-ray diffraction profile by powder XRD (Rigaku RINT-2500) to identify constituent phases. Further, the obtained iron nitride-based magnet was cut so as to have a section, the section was observed with a TEM (JEM-2100FCS, manufactured by JEOL Ltd.), and the element distribution was mapped by ESD. From the elemental mapping image (magnification: 50,000 times), a phase substantially containing at least Fe and N and substantially not containing O in the iron nitride-based magnetic particles was defined as a magnetic phase, A phase substantially containing at least Fe and O was defined as a nonmagnetic phase, and portions other than the iron nitride-based magnetic particles were identified as voids. The measurement range of the cross-section observation may be a range including at least 100 or more magnetic phase 2a, nonmagnetic phase 2b, and void 4, respectively, and preferably a range including 200 or more. Further, by image analysis of the obtained element mapping image, 500 cross-sectional areas of the magnetic phase, the non-magnetic phase, and the voids included in the cross section of the iron nitride-based magnet were measured. S2 / S1 and S3 / S1 were calculated assuming that the sectional area of the magnetic phase is S1, the sectional area of the nonmagnetic phase is S2, and the sectional area of the void is S3. Further, the equivalent circle diameter of each magnetic phase was calculated from the obtained cross-sectional area of each magnetic phase, and averaged to obtain an average equivalent circle diameter.

TEMを用いて倍率10万倍で非磁性相の微構造解析を行い、ネッキング状態の有無を確認した。   The microstructure of the non-magnetic phase was analyzed using a TEM at a magnification of 100,000 and the presence or absence of necking was confirmed.

窒化鉄系磁性粒子に含まれるSi量はEDSにて測定した。   The amount of Si contained in the iron nitride-based magnetic particles was measured by EDS.

≪窒化鉄系磁石の残留磁化(Br)および保磁力(Hc)の測定≫
窒化鉄系磁石のBrとHcは、磁気特性測定用の窒化鉄系磁石についてB−Hトレーサー(東英工業製TRF−5BH)を用いて測定した。外部印加磁場を+25kOeから−25kOeとして得られた減磁曲線からBrおよびHcを求めた。Brが3.0kG以上かつHcが2.0kOe以上の窒化鉄系磁石を許容とした。また、Brは4.0kG以上であることが好ましく、Hcは2.5kOe以上であることが好ましい。
<< Measurement of residual magnetization (Br) and coercive force (Hc) of iron nitride magnet >>
The Br and Hc of the iron nitride-based magnet were measured using a BH tracer (TRF-5BH, manufactured by Toei Kogyo) for the iron nitride-based magnet for measuring magnetic properties. Br and Hc were determined from demagnetization curves obtained by changing the externally applied magnetic field from +25 kOe to -25 kOe. An iron nitride-based magnet having Br of 3.0 kG or more and Hc of 2.0 kOe or more was allowed. Further, Br is preferably 4.0 kG or more, and Hc is preferably 2.5 kOe or more.

≪窒化鉄系磁石の曲げ強度の測定≫
窒化鉄系磁石の曲げ強度は、曲げ強度測定用の窒化鉄系磁石を80mm×10mm×4mmのサイズに加工した試験サンプルを準備し、JIS K7171規格に準じて曲げ強度試験機(インストロンジャパンカンパニーリミテド製INSTRON5543)を用いて測定した。一水準につき5個の試験サンプルを作製して曲げ強度を測定し、平均値を算出した。曲げ強度25MPa以上の窒化鉄系磁石を許容とした。また、曲げ強度は35MPa以上であることが好ましい。
≫Measurement of bending strength of iron nitride magnet 磁石
The bending strength of the iron nitride magnet was prepared by preparing a test sample in which an iron nitride magnet for bending strength measurement was processed into a size of 80 mm × 10 mm × 4 mm, and a bending strength tester (Instron Japan Company) in accordance with JIS K7171 standard. It was measured using INSTRON5543 manufactured by Limited. Five test samples were prepared for each standard, the bending strength was measured, and the average value was calculated. An iron nitride-based magnet having a bending strength of 25 MPa or more was allowed. Further, the bending strength is preferably 35 MPa or more.

≪窒化鉄系磁石の電気抵抗の測定≫
窒化鉄系磁石の電気抵抗は、ネッキング熱処理後の電気抵抗測定用の窒化鉄系磁石について四深針法を用いて測定した。一水準につき5個の窒化鉄系磁石の電気抵抗を測定し、平均値を算出した。電気抵抗1.0E+00Ω・cm以上の窒化鉄系磁石を許容とした。また、電気抵抗は1.0E+01Ω・cm以上であることが好ましい。
≫Measurement of electric resistance of iron nitride magnet 磁石
The electric resistance of the iron nitride-based magnet was measured using a four-deep needle method for the iron nitride-based magnet for measuring electric resistance after necking heat treatment. The electric resistance of five iron nitride-based magnets per level was measured, and the average value was calculated. An iron nitride-based magnet having an electric resistance of 1.0E + 00Ω · cm or more was allowed. Further, the electric resistance is preferably 1.0E + 01Ω · cm or more.

Figure 2020015968
Figure 2020015968

Figure 2020015968
Figure 2020015968

Figure 2020015968
Figure 2020015968

Figure 2020015968
Figure 2020015968

全ての実施例および比較例で、窒化鉄系磁石は切断面においてFe16を含む磁性相と、Feを含む非磁性相と、空隙とが観察された。また、窒化鉄系磁性粒子に含まれるSi量が0.2〜2.1wt%であることが確認された。さらに、RHKを用いなかった比較例21を除く全ての実施例および比較例で、複数の窒化鉄系磁性粒子がネッキング状態にあることが確認された。 In all Examples and Comparative Examples, in the iron nitride-based magnet, a magnetic phase containing Fe 16 N 2 , a non-magnetic phase containing Fe 3 O 4 , and voids were observed on the cut surface. In addition, it was confirmed that the amount of Si contained in the iron nitride-based magnetic particles was 0.2 to 2.1 wt%. Furthermore, it was confirmed that a plurality of iron nitride-based magnetic particles were in a necking state in all Examples and Comparative Examples except for Comparative Example 21 in which RHK was not used.

ネッキング状態が確認され、S2/S1およびS3/S1が式(1)および式(2)を満たす全ての実施例は、Br、Hc、曲げ強度および電気抵抗が全て許容範囲内であった。   The necking state was confirmed, and in all the examples where S2 / S1 and S3 / S1 satisfy Expressions (1) and (2), Br, Hc, bending strength, and electric resistance were all within allowable ranges.

表1では、磁性相の円相当径を変化させた実施例を記載した。表1より、磁性相の円相当径を変化させても、全ての実施例はBr、Hc、曲げ強度および電気抵抗が全て許容範囲内であった。さらに、磁性相の円相当径が30nm以上150nm以下である実施例2〜5は円相当径が23nmである実施例1と比較してBrが優れていた。また、円相当径が161nmである実施例6と比較してHcが優れていた。   Table 1 shows Examples in which the equivalent circle diameter of the magnetic phase was changed. Table 1 shows that, even when the equivalent circle diameter of the magnetic phase was changed, Br, Hc, bending strength, and electric resistance were all within the allowable ranges in all Examples. Further, Examples 2 to 5 in which the equivalent circle diameter of the magnetic phase was 30 nm or more and 150 nm or less had better Br than Example 1 in which the equivalent circle diameter was 23 nm. In addition, Hc was superior to Example 6 in which the equivalent circle diameter was 161 nm.

表2では、S2/S1を変化させた実施例および比較例を記載した。表2より、S2/S1が式(1)を満たす全ての実施例はBr、Hc、曲げ強度および電気抵抗が全て許容範囲内であった。特に式(1A)を満たす実施例3,12および13はS2/S1が比較的低い実施例11と比較してHcが優れていた。また、S2/S1が比較的高い実施例14と比較してBrが優れていた。また、S2/S1が低すぎて式(1)を満たさない比較例1はHcが許容範囲を下回った。また、S2/S1が高すぎて式(1)を満たさない比較例2はBrが許容範囲を下回った。   Table 2 shows Examples and Comparative Examples in which S2 / S1 was changed. According to Table 2, Br, Hc, bending strength, and electric resistance were all within the allowable ranges in all the examples in which S2 / S1 satisfied the expression (1). In particular, Examples 3, 12 and 13 satisfying the formula (1A) were superior in Hc as compared with Example 11 in which S2 / S1 was relatively low. Further, Br was superior to Example 14 in which S2 / S1 was relatively high. In Comparative Example 1 where S2 / S1 was too low and did not satisfy the expression (1), Hc was below the allowable range. In Comparative Example 2 where S2 / S1 was too high and did not satisfy the expression (1), Br was below the allowable range.

表3では、S3/S1を変化させた実施例および比較例を記載した。表3より、S3/S1が式(2)を満たす全ての実施例はBr、Hc、曲げ強度および電気抵抗が全て許容範囲内であった。特に式(2A)を満たす実施例3,22および23はS3/S1が比較的低い実施例21と比較してHcおよび電気抵抗が優れていた。また、S3/S1が比較的高い実施例24と比較してBrおよび曲げ強度が優れていた。また、S3/S1が低すぎて式(2)を満たさない比較例11は電気抵抗が許容範囲を下回った。また、S3/S1が高すぎて式(2)を満たさない比較例12はBrおよび曲げ強度が許容範囲を下回った。   Table 3 shows Examples and Comparative Examples in which S3 / S1 was changed. According to Table 3, Br, Hc, bending strength, and electric resistance were all within the allowable ranges in all the examples where S3 / S1 satisfied the expression (2). In particular, Examples 3, 22, and 23 satisfying the formula (2A) were superior in Hc and electric resistance as compared with Example 21 in which S3 / S1 was relatively low. In addition, Br and bending strength were superior to Example 24 in which S3 / S1 was relatively high. In Comparative Example 11 where S3 / S1 was too low and did not satisfy the expression (2), the electric resistance was lower than the allowable range. Further, in Comparative Example 12 in which S3 / S1 was too high and did not satisfy the expression (2), Br and bending strength were below the allowable range.

表4では、RHKの有無およびRHKを用いた熱処理の時間を変化させた実施例および比較例を記載した。表4より、RHKを用いた熱処理を行い、複数の窒化鉄系磁性粒子がネッキング状態にあることが確認された全ての実施例はBr、Hc、曲げ強度および電気抵抗が全て許容範囲内であった。また、RHKを用いた熱処理の時間が長いほどネッキング状態にある窒化鉄系磁性粒子の割合が多くなり、Brおよび曲げ強度が高くなる傾向にあった。逆に、RHKを用いた熱処理の時間が短いほどネッキング状態にある窒化鉄系磁性粒子の割合が多くなり、Hcおよび電気抵抗が向上する傾向にあった。これに対し、RHKを用いた熱処理を行わなかった比較例21は、ネッキング状態にある窒化鉄系磁性粒子が確認されず、式(1A)および式(2A)を満たすにも関わらず曲げ強度が許容範囲を下回った。   Table 4 shows Examples and Comparative Examples in which the presence or absence of RHK and the time of the heat treatment using RHK were changed. From Table 4, heat treatment using RHK was performed, and in all the examples in which a plurality of iron nitride-based magnetic particles were confirmed to be in a necked state, Br, Hc, bending strength, and electric resistance were all within allowable ranges. Was. Further, as the time of the heat treatment using RHK becomes longer, the ratio of the iron nitride-based magnetic particles in the necking state increases, and the Br and the bending strength tend to increase. Conversely, as the time of the heat treatment using RHK becomes shorter, the ratio of the iron nitride-based magnetic particles in the necked state increases, and Hc and electric resistance tend to be improved. On the other hand, in Comparative Example 21 in which the heat treatment using RHK was not performed, no iron nitride-based magnetic particles in a necked state were confirmed, and the bending strength was high despite satisfying the formulas (1A) and (2A). Below the allowable range.

比較例1のようにS2/S1が小さすぎる場合には、窒化鉄系磁性粒子中の非磁性相の割合が小さいため、窒化鉄系磁性粒子が十分に磁気分離されず、Hcが低下したものと考えられる。   When S2 / S1 is too small as in Comparative Example 1, the ratio of the non-magnetic phase in the iron nitride-based magnetic particles is small, so that the iron nitride-based magnetic particles are not sufficiently magnetically separated and Hc is reduced. it is conceivable that.

比較例2のようにS2/S1が大きすぎる場合には、窒化鉄系磁性粒子中の非磁性相の割合が大きいため、窒化鉄系磁石中の強磁性成分が少なくなり、Brが低下したものと考えられる。   When S2 / S1 is too large as in Comparative Example 2, the ratio of the nonmagnetic phase in the iron nitride-based magnetic particles is large, so that the ferromagnetic component in the iron nitride-based magnet decreases and Br decreases. it is conceivable that.

比較例11のようにS3/S1が小さすぎる場合には、窒化鉄系磁石中の空隙の割合が小さくなり、窒化鉄系磁性粒子同士の接触が著しくなったため、電気抵抗が低下したものと考えられる。   If S3 / S1 is too small as in Comparative Example 11, the ratio of the voids in the iron nitride-based magnet becomes small, and the contact between the iron nitride-based magnetic particles becomes remarkable. Can be

比較例12のようにS3/S1が大きすぎる場合には、窒化鉄系磁石中の磁性相の割合が小さくなり、強磁性成分が少なくなったため、Brが低下したものと考えられる。また、ネッキング状態にある窒化鉄系磁性粒子の割合が少なくなったため、結果として窒化鉄系磁石の曲げ強度が低下したものと考えられる。   When S3 / S1 is too large as in Comparative Example 12, the ratio of the magnetic phase in the iron nitride-based magnet is reduced, and the ferromagnetic component is reduced. In addition, it is considered that the bending strength of the iron nitride-based magnet was lowered as a result of the reduced proportion of the iron nitride-based magnetic particles in the necking state.

比較例21のように窒化鉄系磁石中の窒化鉄系磁性粒子がネッキング状態にない場合には、窒化鉄系磁性粒子の表面に存在する非磁性相同士の結合強度が小さいため、成型体の保形性が低下し、結果として曲げ強度が低下したものと考えられる。   When the iron nitride-based magnetic particles in the iron nitride-based magnet are not in the necking state as in Comparative Example 21, the bonding strength between the non-magnetic phases existing on the surface of the iron nitride-based magnetic particles is small. It is considered that the shape retention was reduced, and as a result, the bending strength was reduced.

以上のように、本発明に係る窒化鉄系磁石は、レアアースを実質的に含まなくても高い残留磁化、高い保磁力、高い機械的強度(特に曲げ強度)かつ電気抵抗を有することから、レアアースを実質的に使用しない磁石として有用である。   As described above, since the iron nitride-based magnet according to the present invention has high residual magnetization, high coercive force, high mechanical strength (particularly bending strength), and electric resistance even without substantially including rare earth, It is useful as a magnet that does not substantially use.

1 窒化鉄系磁石
2 窒化鉄系磁性粒子
2a 磁性相
2b 非磁性相
2c 粒子境界
4 空隙
DESCRIPTION OF SYMBOLS 1 Iron nitride magnet 2 Iron nitride magnetic particles 2a Magnetic phase 2b Nonmagnetic phase 2c Particle boundary 4 Void

Claims (4)

複数の窒化鉄系磁性粒子を有する窒化鉄系磁石であり、
前記窒化鉄系磁性粒子は、磁性相と、前記磁性相の周囲に存在する非磁性相と、を有し、
前記磁性相は窒化鉄を含み、
複数の前記窒化鉄系磁性粒子同士が互いにネッキングしており、
前記窒化鉄系磁石の任意の切断面において、前記磁性相の断面積をS1、前記非磁性相の断面積をS2、空隙の断面積をS3として、下記の式(1)および式(2)を満たす窒化鉄系磁石。
0.10≦S2/S1≦0.30 ・・・式(1)
0.50≦S3/S1≦0.70 ・・・式(2)
An iron nitride-based magnet having a plurality of iron nitride-based magnetic particles,
The iron nitride-based magnetic particles have a magnetic phase and a non-magnetic phase existing around the magnetic phase,
The magnetic phase includes iron nitride;
The plurality of iron nitride-based magnetic particles are necked with each other,
In any cross section of the iron nitride-based magnet, assuming that the cross-sectional area of the magnetic phase is S1, the cross-sectional area of the non-magnetic phase is S2, and the cross-sectional area of the void is S3, the following equations (1) and (2) An iron nitride magnet that satisfies.
0.10 ≦ S2 / S1 ≦ 0.30 Expression (1)
0.50 ≦ S3 / S1 ≦ 0.70 Expression (2)
下記の式(1A)を満たす請求項1に記載の窒化鉄系磁石。
0.15≦S2/S1≦0.25 ・・・式(1A)
The iron nitride-based magnet according to claim 1, wherein the following formula (1A) is satisfied.
0.15 ≦ S2 / S1 ≦ 0.25 (1A)
下記の式(2A)を満たす請求項1または2に記載の窒化鉄系磁石。
0.55≦S3/S1≦0.65 ・・・式(2A)
The iron nitride-based magnet according to claim 1 or 2, wherein the following formula (2A) is satisfied.
0.55 ≦ S3 / S1 ≦ 0.65 Expression (2A)
前記任意の切断面における前記磁性相の平均円相当径が30nm以上150nm以下である請求項1〜3のいずれかに記載の窒化鉄系磁石。
The iron nitride-based magnet according to any one of claims 1 to 3, wherein an average equivalent circle diameter of the magnetic phase at the arbitrary cut surface is 30 nm or more and 150 nm or less.
JP2018141561A 2018-07-27 2018-07-27 iron nitride magnet Active JP7111549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018141561A JP7111549B2 (en) 2018-07-27 2018-07-27 iron nitride magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018141561A JP7111549B2 (en) 2018-07-27 2018-07-27 iron nitride magnet

Publications (2)

Publication Number Publication Date
JP2020015968A true JP2020015968A (en) 2020-01-30
JP7111549B2 JP7111549B2 (en) 2022-08-02

Family

ID=69581753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018141561A Active JP7111549B2 (en) 2018-07-27 2018-07-27 iron nitride magnet

Country Status (1)

Country Link
JP (1) JP7111549B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069926A (en) * 2011-09-22 2013-04-18 Toda Kogyo Corp Method for manufacturing ferromagnetic iron nitride grain powder, anisotropic magnet, bond magnet and powder-compact magnet
WO2015118943A1 (en) * 2014-02-10 2015-08-13 株式会社日清製粉グループ本社 Method for manufacturing magnetic particles, magnetic particles, and magnetic body
JP2016096289A (en) * 2014-11-17 2016-05-26 Tdk株式会社 Film-forming type iron nitride based magnetic powder and magnet using the same
JP2017183322A (en) * 2016-03-28 2017-10-05 Tdk株式会社 Bond magnet arranged by use of iron nitride-based magnetic powder
JP2017183323A (en) * 2016-03-28 2017-10-05 Tdk株式会社 Iron nitride-based magnetic powder and bond magnet arranged by use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6485066B2 (en) 2015-01-22 2019-03-20 Tdk株式会社 Iron nitride magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069926A (en) * 2011-09-22 2013-04-18 Toda Kogyo Corp Method for manufacturing ferromagnetic iron nitride grain powder, anisotropic magnet, bond magnet and powder-compact magnet
WO2015118943A1 (en) * 2014-02-10 2015-08-13 株式会社日清製粉グループ本社 Method for manufacturing magnetic particles, magnetic particles, and magnetic body
JP2016096289A (en) * 2014-11-17 2016-05-26 Tdk株式会社 Film-forming type iron nitride based magnetic powder and magnet using the same
JP2017183322A (en) * 2016-03-28 2017-10-05 Tdk株式会社 Bond magnet arranged by use of iron nitride-based magnetic powder
JP2017183323A (en) * 2016-03-28 2017-10-05 Tdk株式会社 Iron nitride-based magnetic powder and bond magnet arranged by use thereof

Also Published As

Publication number Publication date
JP7111549B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
CN108885930B (en) Magnetic material and method for producing the same
EP2696356A1 (en) Composite soft magnetic powder, method for producing same, and powder magnetic core using same
US11732336B2 (en) Magnetic material and method for producing same
JP2013106016A (en) Alcoholic solution and sintered magnet
US9607740B2 (en) Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles
JP2013191839A (en) Dust core and powder for magnetic core used therefor
EP3690071A1 (en) Magnetic material and method for producing same
US9427805B2 (en) Method to prepare hard-soft magnetic FeCo/ SiO2/MnBi nanoparticles with magnetically induced morphology
JPWO2015118943A1 (en) Method for producing magnetic particle, magnetic particle and magnetic material
JP4623308B2 (en) Sm-Fe-N-based magnetic particle powder for bonded magnet and method for producing the same, resin composition for bonded magnet, and bonded magnet
JP6485066B2 (en) Iron nitride magnet
JP6380736B2 (en) Iron nitride magnetic powder and magnet using the same
JP2009158802A (en) Manufacturing method of dust core
JP2019080055A (en) Composite magnetic material, magnet, motor, and method of producing composite magnetic material
US11331721B2 (en) Magnetic material and process for manufacturing same
JP7111549B2 (en) iron nitride magnet
US20180301255A1 (en) Composite magnetic material and motor
JP6778651B2 (en) Iron nitride based bond magnet
JP6778652B2 (en) Iron nitride based magnet
JP6778653B2 (en) Iron nitride based magnet
JP4296379B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP6225440B2 (en) Magnetic material, method for producing the same, and coating liquid used for the production
JP2005311078A (en) Composite magnetic component and manufacturing method thereof
JP4370555B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP2016146387A (en) Iron nitride magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220721

R150 Certificate of patent or registration of utility model

Ref document number: 7111549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150