JP4370555B2 - Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet - Google Patents

Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet Download PDF

Info

Publication number
JP4370555B2
JP4370555B2 JP2003092556A JP2003092556A JP4370555B2 JP 4370555 B2 JP4370555 B2 JP 4370555B2 JP 2003092556 A JP2003092556 A JP 2003092556A JP 2003092556 A JP2003092556 A JP 2003092556A JP 4370555 B2 JP4370555 B2 JP 4370555B2
Authority
JP
Japan
Prior art keywords
magnetic powder
temperature
powder
reaction
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003092556A
Other languages
Japanese (ja)
Other versions
JP2004303821A (en
Inventor
実 山崎
勝弘 藤田
匡宣 平田
節弘 蔵田
典生 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2003092556A priority Critical patent/JP4370555B2/en
Publication of JP2004303821A publication Critical patent/JP2004303821A/en
Application granted granted Critical
Publication of JP4370555B2 publication Critical patent/JP4370555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ボンド磁石形成時の流動性及び混練安定性に優れたボンド磁石用Sm−Fe−N系磁性粉末の製造法を提供する。
【0002】
【従来の技術】
ボンド磁石は、その形状自在性や高寸法精度などの利点があるため、従来から電気製品や自動車部品等の各種用途に広く使用されているが、近年、電気製品や自動車部品の小型・軽量化に伴って、これに使用されるボンド磁石自体の高性能化が強く要求されている。
【0003】
ボンド磁石は、一般に、ゴム又はプラスチック材料等の結合剤樹脂と磁性粉末とを混練した後、成形することによって製造されているため、ボンド磁石の高性能化のためには、磁性粉末の高性能化、即ち、大きな残留磁束密度Brと高い保磁力iHcとを有し、その結果、最大磁気エネルギー積(BH)maxが大きな磁性粉末が強く要求されている。
【0004】
磁性粉末としては、バリウムフェライトやストロンチウムフェライト等のマグネトプランバイト型フェライトやSm−Fe−N系磁性粉末及び希土類−鉄−ホウ素系磁石が知られている。特に、Sm−Fe−N系磁性粉末は、飽和磁化値と異方性磁界が共に高く、更に、高いキュリー温度を有することから、近年特に注目されている。
【0005】
Sm−Fe−N系磁性粉末はサマリウムと鉄との合金を窒化反応して得ることができるが、ボンド磁石に用いるためには適度な大きさに粉砕する必要がある。しかしながら、粉砕工程を経ることによって磁気特性が低下したり、均一な粒子形状を得ることが困難であることから、粉砕することなくSm−Fe−N系磁性粉末を得ることが要求されている。
【0006】
即ち、ボンド磁石の残留磁束密度は結合剤樹脂中に磁性粉末を多量に充填できることが重要である。そこで、粒子形状が均一で、粒度分布に優れ、しかも、流動性に優れた磁性粉末が要求されている。
【0007】
また、ボンド磁石の残留磁束密度は、磁性粉末の飽和磁化値に左右されることから、高い飽和磁化値を有する磁性粉末であることが重要である。そのためには、優れた磁気特性を有するSm−Fe−N系磁性粉末が要求されている。
【0008】
更に、ボンド磁石の製造時において、結合剤樹脂と磁性粉末との混練時には、加熱及び加圧するため、磁性粉末が酸化されやすく、磁性粉末の酸化に伴って、結合剤樹脂が変質しやすい。そこで、酸化されにくく、混練時の安定性に優れたSm−Fe−N系磁性粉末が要求されている。
【0009】
従来、粒度が調整された原料を用いてSm−Fe−N系磁性粉末を得る技術が知られている(特許文献1乃至5等)。
【0010】
【特許文献1】
特開平5−148517号公報
【特許文献2】
特開平11−121216号公報
【特許文献3】
特開平11−310807号公報
【特許文献4】
特開平11−335702号公報
【特許文献5】
特開2000−17309号公報等
【0011】
【発明が解決しようとする課題】
ボンド磁石形成時の流動性に優れ、しかも、混練時の安定性に優れたボンド磁石用Sm−Fe−N系磁性粉末は現在最も要求されているところであるが、このような特性を有するボンド磁石用Sm−Fe−N系磁性粉末の製造法は未だ得られていない。
【0012】
即ち、前出特許文献1には、大気に曝すことなく、還元拡散反応から窒化反応を連続して行う技術が記載されているが、還元拡散反応後に窒化処理温度まで降温し、直ちに窒化反応を開始しているので、窒化反応を安定して行うことが困難である。また、窒化反応時に、何らかの原因で発熱反応が起き、窒化反応温度が部分的に所定よりも高い温度になることがあり、窒化反応時に反応温度が適温より高い場合には、鉄の分解反応も同時に起こり、高い磁気特性のSmFe17磁粉を得ることは困難である。
【0013】
また、前出特許文献2乃至5には、鉄原料粉末の粒度を調整すること及びサマリウム原料と鉄原料との混合物の粒度を調整することが記載されているが、粒子間の焼結を抑制することが困難なため、均一な窒化反応を行うことが困難である。
【0014】
そこで、本発明は、粒度分布に優れ、均一な粒子形状を有することによって、分散性及び流動性に優れたSm−Fe−N系磁性粉末を得ることを技術的課題とする。
【0015】
【課題を解決するための手段】
前記技術的課題は、次の通りの本発明によって達成できる。
【0016】
即ち、本発明は、酸化鉄粒子粉末と酸化サマリウム粒子粉末とを混合した後、当該混合物を還元反応を行って鉄粒子と酸化サマリウム粒子との混合物とし、次いで、30〜150℃の温度範囲、酸素含有雰囲気下で安定化処理を行って前記鉄粒子の粒子表面に酸化被膜を形成した後、金属Caを混合して800〜1200℃の温度範囲、不活性ガス雰囲気下で還元拡散反応を行い、次いで、不活性ガス雰囲気下で300℃未満に冷却した後、窒素雰囲気に切り替え、300〜600℃の温度範囲の所定の温度になるまで昇温し、引き続き、300〜600℃の温度範囲で窒化反応を行うことを特徴とするボンド磁石用Sm−Fe−N系磁性粉末の製造法である(本発明1)。
【0017】
また、本発明は、前記ボンド磁石用Sm−Fe−N系磁性粉末の製造法において、不活性ガス雰囲気下で300℃未満に冷却した後、窒素雰囲気に切り替え、0.5〜3℃/分の昇温速度で300〜600℃の温度範囲の所定の温度範囲まで昇温し、引き続き、300〜600℃の温度範囲で窒化反応を行うことを特徴とするボンド磁石用Sm−Fe−N系磁性粉末の製造法である(本発明2)。
【0018】
また、本発明は、本発明1又は2のボンド磁石用Sm−Fe−N系磁性粉末の製造法で得られたボンド磁石用Sm−Fe−N系磁性粉末を含有することを特徴とするボンド磁石である(本発明3)。
【0019】
本発明の構成をより詳しく説明すれば、次の通りである。
【0020】
本発明に係るボンド磁石用Sm−Fe−N系磁性粉末の製造法について述べる。
【0021】
本発明における酸化鉄粒子粉末は、ヘマタイト粒子粉末又はマグネタイト粒子粉末が好ましい。
【0022】
酸化鉄粒子粉末の粒子形状は球状であり、平均粒子径は0.1〜10μmが好ましい。平均粒子径が0.1μm未満の場合には、還元して鉄粒子とした後の安定化処理における酸化被膜の全体に占める体積が増加し、そのため、次工程の還元拡散反応時に激しい発熱反応を招き、均一な合金組成及びシャープな粒度分布を有するSm−Fe−N系磁性粉末を得ることが困難となる。10μmを越える場合には、粒子サイズが大きく、目的とする粒子サイズを有するSm−Fe−N系磁性粉末を得ることが困難となる。また、還元拡散反応による、鉄粒子へのSmのドーピングも、粒子内部まで均一に及ぶことが困難となり、望ましくない。
【0023】
酸化鉄粒子粉末の粒度分布は、酸化鉄粒子粉末の全体積を100%として粒子径に対する累積の体積割合を求めたとき、その累積の体積割合が10%、90%となる点の粒子径をそれぞれD10、D90として示した場合、D10が0.5μm以上、D90が8.0μm以下であることが好ましい。前記範囲外の場合には、粒度分布が広いことを意味し、得られるSm−Fe−N系磁性粉末の粒度分布が広くなり、磁気特性が低下するため好ましくない。D10とD90との比D10/D90は0.1以上であることが好ましい。この値が小さいことは、粒度分布が広いことを意味しており、結果的に得られるSm−Fe−N系磁性粉末の磁気特性が低下するため好ましくない。
【0024】
前記酸化鉄粒子粉末のうちマグネタイト粒子粉末は、硫酸第一鉄水溶液とアルカリ水溶液とを反応して得られる水酸化第一鉄塩コロイドを含む第一鉄塩反応溶液に酸素含有ガスを通気することにより得ることができる。また、ヘマタイト粒子粉末は、前記マグネタイト粒子粉末を700〜1000℃の温度範囲で加熱焼成を行って得ることができる。
【0025】
本発明における酸化サマリウム粒子粉末の粒子形状は粒状であり、平均粒子径は0.5〜5.0μmであることが好ましい。
【0026】
前記酸化鉄粒子粉末と前記酸化サマリウム粒子粉末との混合割合は、化学量論比であるSmFe17となるSmとFeとの割合に対して、サマリウムをSm換算で100〜130モル%となるように過剰の酸化サマリウムを混合する。
【0027】
前記酸化鉄粒子粉末と前記酸化サマリウム粒子粉末との混合は、酸化鉄粒子と酸化サマリウム粒子とが均一に接触するように混合できれば湿式混合又は乾式混合のいずれでもよく、より好ましくはアトライタなどを用いた湿式混合もしくは湿式粉砕混合である。
【0028】
前記酸化鉄粒子粉末と前記酸化サマリウム粒子粉末との混合物は、還元反応を行って鉄粒子と酸化サマリウム粒子との混合物にする。還元反応は、例えば、水素ガス雰囲気下で400〜700℃の温度範囲で加熱して行うことができる。
【0029】
本発明においては、鉄粒子と酸化サマリウム粒子との混合物に安定化処理を行って、鉄粒子の粒子表面に酸化被膜を形成する。鉄粒子の粒子表面に酸化被膜を形成することによって、後述する還元拡散反応を均一に進行させることができ、粒子間の焼結を抑制することができる。
【0030】
安定化処理は、鉄粒子と酸化サマリウム粒子との混合物を酸素含有雰囲気下で30〜150℃の温度範囲で加熱する。30℃未満の場合には、均一な酸化被膜を形成することが困難であり、また、処理に長時間を要するので好ましくない。150℃を越える場合には局所的に反応が進むことがあるため好ましくない。反応時間は1〜5時間程度である。
【0031】
安定化処理の雰囲気は酸素含有雰囲気であり、酸素含有量は30体積%以下が好ましく、より好ましくは1〜25体積%である。
【0032】
安定化処理の程度は、後述するように、安定化処理後の混合物を熱分析し重量増加を計測して酸化被膜の重量比から算出することができる。混合物における鉄粒子の酸化被膜の重量比は1〜15重量%が好ましい。1重量%未満の場合には酸化被膜を形成した効果が無く、15重量%を越える場合には後工程の還元拡散反応が激しく起こるため好ましくない。
【0033】
安定化処理後の鉄粒子と酸化サマリウム粒子との混合物に、カルシウムを混合して還元拡散反応を行う。
【0034】
カルシウムの混合割合は、混合物中の酸化サマリウム(Sm)1モルに対して3〜15モルが好ましい。3モル未満の場合には、還元拡散反応が十分ではなく、サマリウムの還元が不十分となる。15モルを越える場合には効果が飽和するため必要以上に添加する意味がない。
【0035】
還元拡散反応は、不活性ガス雰囲気下で800〜1200℃の温度範囲で行う。800℃未満の場合には酸化サマリウムの還元が不十分となる。1200℃を越える場合にはカルシウム及びサマリウムの蒸発が起こり始め組成比が変化しやすく、また、焼結が進行しやすくなる。
【0036】
還元拡散反応を行うことによって、鉄粒子と酸化サマリウム粒子との混合物を鉄とサマリウムとの合金にする。
【0037】
本発明においては、還元拡散反応後の鉄とサマリウムとの合金は、300℃未満に冷却することが肝要である。冷却することなく窒化反応を行った場合には、窒化反応を均一に進行することが困難であり、得られるSm−Fe−N系磁性粉末は高い磁気特性を有するものではない。工業的生産性を考慮した場合、冷却温度の下限値は100℃程度である。
【0038】
冷却後の鉄とサマリウムとの合金を窒化反応温度までゆっくり昇温することが好ましい。昇温速度は0.5〜3.0℃/分程度が好ましく、0.5℃/分未満の場合には、昇温に長時間かかるため工業的ではなく、3.0℃/分を越える場合には到達する窒化温度が安定しない。より好ましくは0.5〜2.0℃/分である。
【0039】
窒化反応は300〜600℃の温度範囲で行う。300℃未満の場合には鉄とサマリウムとの合金に必要量の窒素を侵入させることが困難となる。600℃を越える場合にはα−FeとSmの窒化物などへの分解が始まるため好ましくない。窒化反応の時間は1〜20時間程度である。
【0040】
窒化反応は、SmFe17に対して2.8〜3.5重量%の窒素を含有するように行う。
【0041】
窒化反応後のSm−Fe−N系磁性粉末は水洗、濾過、乾燥して取り出すことができる。
【0042】
得られたボンド磁石用Sm−Fe−N系磁性粉末は、SmFe17を主成分とし、粒子形状はほぼ球状であり粒子表面は滑らかであり、平均粒径が2.0〜6.0μm、BET比表面積値が0.10〜1.50m/g、粒度分布のうちD10が1.0μm以上、D90が10.0μm以下であることが好ましい。D10とD90との比D10/D90は0.10以上であることが好ましい。
【0043】
得られたボンド磁石用Sm−Fe−N系磁性粉末の磁気特性は(粉末を磁場中配向させて測定したところ)、保磁力238.7〜1428.6kA/m(3000〜18000Oe)が好ましく、残留磁束密度が800〜1300mT(8〜13kG)が好ましく、最大磁気エネルギー積が79.4〜396.8kJ/m(10〜50MGOe)が好ましく、より好ましくは100〜396.8kJ/m(12.6〜50MGOe)である。
【0044】
次に、本発明におけるボンド磁石用樹脂組成物について述べる。
【0045】
本発明におけるボンド磁石用樹脂組成物は、Sm−Fe−N系磁性粉末を結合剤樹脂中に分散してなるものであって、当該Sm−Fe−N系磁性粉末を85〜99重量%含有し、残部が結合剤樹脂とその他添加剤とからなる。
【0046】
前記結合剤樹脂としては、成形法によって種々選択することができ、射出成形、押し出し成形及びカレンダー成形の場合には熱可塑性樹脂が使用でき、圧縮成形の場合には、熱硬化性樹脂が使用できる。前記熱可塑性樹脂としては、例えば、ナイロン(PA)系、ポリプロピレン(PP)系、エチレンビニルアセテート(EVA)系、ポリフェニレンサルファイド(PPS)系、液晶樹脂(LCP)系、エラストマー系、ゴム系等の樹脂が使用でき、前記熱硬化性樹脂としては、例えば、エポキシ系、フェノール系等の樹脂を使用することができる。
【0047】
なお、ボンド磁石用樹脂組成物を製造するに際して、成形を容易にしたり、磁気特性を十分に引き出すために、必要により、結合剤樹脂の他に可塑剤、滑剤、カップリング剤など周知の添加物を使用してもよい。また、フェライト磁石粉末などの多種の磁石粉末を混合することもできる。
【0048】
これらの添加物は、目的に応じて適切なものを選択すればよく、可塑剤としては、それぞれの使用樹脂に応じた市販品を使用することができ、その合計量は使用する結合剤樹脂に対して0.01〜5.0重量%程度が使用できる。
【0049】
前記滑剤としては、ステアリン酸とその誘導体、無機滑剤、オイル系等が使用でき、ボンド磁石全体に対して0.01〜1.0重量%程度が使用できる。
【0050】
前記カップリング剤としては、使用樹脂とフィラーに応じた市販品が使用でき、使用する結合剤樹脂に対して0.01〜3.0重量%程度が使用できる。
【0051】
他の磁性粉末としては、フェライト磁石粉末、アルニコ系磁石粉末、希土類系磁石粉末などが使用できる。
【0052】
ボンド磁石用樹脂組成物の混練安定性は、後述する評価法において20%以下が好ましい。混練安定性が20%を越える場合には、磁性粉末と結合剤樹脂とを混練する工程において、熱と圧力が加わる中で、磁性粉末が酸化などすると、それに伴って結合剤樹脂も化学的に変質し、プラストミルのトルクが上昇することになり好ましくない。
【0053】
ボンド磁石用樹脂組成物の流れ性(MFR)は、後述する評価法において、150〜500g/10min程度が望ましい。150g/10min未満の場合には、射出成型の成形性と生産性が著しく低下する。
【0054】
本発明に係るボンド磁石用樹脂組成物は、Sm−Fe−N系磁性粉末を結合剤樹脂と混合、混練してボンド磁石用樹脂組成物を得る。
【0055】
前記混合は、ヘンシェルミキサー、V字ミキサー、ナウター等の混合機などで行うことができ、混練は一軸混練機、二軸混練機、臼型混練機、押し出し混練機などで行うことができる。
【0056】
次に、本発明に係るボンド磁石について述べる。
【0057】
ボンド磁石の磁気特性は目的とする用途に応じて種々変化させることができるが、残留磁束密度は350〜800mT(3.5〜8.0kG)が好ましく、保磁力238.7〜1428.5kA/m(3000〜18000Oe)が好ましく、最大エネルギー積23.9〜158.7kJ/m(3〜20MGOe)が好ましく、より好ましくは80.0〜158.7kJ/m(10〜20MGOe)である。
【0058】
ボンド磁石の成形密度は4.5〜5.0g/cmであることが好ましい。
【0059】
本発明におけるボンド磁石は、前記ボンド磁石用樹脂組成物を用いて、射出成形、押出成形、圧縮成形又はカレンダー成形等の周知の成形法で成形加工した後、常法に従って電磁石着磁やパルス着磁することにより、ボンド磁石とすることができる。
【0060】
【発明の実施の形態】
本発明の代表的な実施の形態は次の通りである。
【0061】
本発明における安定化処理の程度は、下記方法に従って算出した。
【0062】
即ち、熱重量測定TGを用いて、空気中600℃で加熱し、重量増加を計測することで、酸化被膜の重量比を算出した。たとえば、SmFe17となる化学量論比に対してSmの含有量を110%とした場合の混合物では、酸化による重量増加が29%だとすると、下記計算式に従って算出することによって、鉄粒子に設けられた酸化被膜は鉄粒子全体の約7.0wt%と計算できる。
【0063】
重量増加比をD、鉄粒子中のFe原子全量中のマグネタイトに含まれるFe原子の比をx、SmFe17となる化学量論比に対するSmの混合比をz(z×100(%))として、下記数1及び数2に従って、鉄粒子中のマグネタイト重量比yを算出した。なお、[Fe]、[Sm]、[Fe]及び[Fe]は、各組成の原子量又は分子量である。
【0064】
【数1】
重量増加比D:

Figure 0004370555
【0065】
【数2】
鉄粒子中のマグネタイト重量比y:
Figure 0004370555
【0066】
Sm−Fe−N系磁性粉末の形状は走査型電子顕微鏡で観察した。
【0067】
酸化鉄粒子粉末及びSm−Fe−N系磁性粉末の粒度分布はHELOSで測定し、各粒子粉末の全体積を100%として粒子径に対する累積割合を求めたとき、その累積割合が10%、50%、90%となる点の粒子径をそれぞれD10、D50(平均粒子径)、D90として示した。
【0068】
Sm−Fe−N系磁性粉末の磁気特性は、アクリル製のカプセル中に蝋と磁粉を入れて、磁粉を配向した上で、瞬間最大約8Tのパルス磁場で着磁した後、試料振動型磁力計VSM(東英工業株式会社製)で測定した値で示した。
【0069】
ボンド磁石用樹脂組成物の混練安定性は、Sm−Fe−N系磁性粉末90.3重量部と12ナイロン樹脂8.2重量%、酸化防止剤0.5重量%及び表面処理剤1.0重量%とをヘンシェルミキサーを用いて混合し、二軸押出混練機により混練(混練温度190℃)を行い、得られた組成物をプラストミルで120分間連続して混練したとき、その混練トルクが0.2kg・mを超えることがなく、且つ、最低トルクの値を(A)、120分後のトルクの値を(B)としたとき、[(B)−(A)]/(A)×100(%)で示す。
【0070】
ボンド磁石用樹脂組成物の流れ性(MFR)はセミメルトインデクサ(型式2A、東洋精機(株)製)を用いて加熱温度270℃、加重10kgfの条件で測定した。
【0071】
Sm−Fe−N系磁性粉末を含有するボンド磁石の磁気特性は、配向磁場中で成型したボンド磁石をBHトレーサー(東英工業株式会社)により測定した。
【0072】
ボンド磁石の密度は、成形ボンド磁石を室温約25℃に十分冷却した後、ボンド磁石の大きさを測定し、測定値から体積を求めた。次に、当該成形ボンド磁石の重量を測定し、重量値(g)を体積値で除した値で示した。
【0073】
<Sm−Fe−N系磁性粉末の製造>
反応タンクに水、苛性ソーダ、硫酸鉄FeSOを所定量投入し、温度を80℃に保ち、空気を吹き込み、反応溶液をpH5に調整して、反応、合成、粒状マグネタイト粒子を得る。次いで、ろ過・水洗・乾燥して、800〜1000℃の範囲で大気中で焼成を行う。焼成後、ピンミルで解砕して酸化鉄粒子粉末を得た。
【0074】
得られた酸化鉄粒子粉末はヘマタイト(α−Fe)であり、粒子形状はほぼ球状に近い形であり、平均粒子径1.31μmであり、粒度分布のうちD100.6μm、D902.24μmであり、BET比表面積値2.2m/gであった。
【0075】
<湿式混合>
ここに得た酸化鉄粒子粉末のうち3118.52gと酸化サマリウム(Sm、粒子形状:粒状、平均粒子径4.40μm)881.48gとをアトライタにて、水を用いて湿式混合した。得られたスラリーを濾過、乾燥し、ほぐして混合粉末を得た。
【0076】
<還元反応及び安定化処理>
次いで、得られた混合粉末3000gを回転熱処理炉に充填し、純度100%の水素を40リットル/minで流通させながら、600℃で5時間加熱して還元反応を行った。還元反応後は、鉄粒子と酸化サマリウム粒子の混合物であった。その後、回転炉中雰囲気をNに置換し、温度を40℃にまで冷却する。温度が安定したら、およそ2.0vol%の酸素を含有するN流通下にて1時間安定化処理を行って、前記鉄粒子の粒子表面を徐酸化し、粒子表面に酸化被膜を形成した。反応熱を観察し、反応熱が収まったら、系全体を室温まで冷却し、大気中に当該混合物を取り出し、ライカイキでほぐして粒子表面に酸化被膜を形成した鉄粒子と酸化サマリウム粒子との混合物からなる黒色粉末を得た。鉄粒子に形成された酸化被膜は、鉄粒子中のマグネタイトとして7.0重量%であった。
【0077】
<還元拡散反応および窒化反応>
ここに得た黒色粉末521.51gと粒状金属Ca103.49g(Smに対して600モル%)とを混合して、純鉄製トレーに入れて、雰囲気炉に挿入する。炉内を真空排気した後、アルゴンガス気流中で1050℃まで昇温する。炉内の温度が所定の温度に到達したら、次に、250℃まで冷却し、一度真空排気し、Nガス気流中とする。N気流中としてから、400℃になるまで、1℃/分の速度で、昇温する。温度が400℃に安定したら、400℃に保持して8時間窒化反応した後、室温まで冷却する。
【0078】
<水洗・乾燥>
窒化反応後の粉末を水中に投じる。これにより、水中にて、自然に崩壊し、合金粉末とCa成分との分離が始まる。さらに機械的解砕を加えることで、凝集体の中のCa成分を水洗する。数回デカンテーションを繰り返すことで、当該粉末からCa成分を除去した後、濾過し、N気流中で乾燥させてSm−Fe−N系磁性粉末500gを得た。
【0079】
得られたSm−Fe−N系磁性粉末は、粒子形状は球状であってその粒子表面は滑らかであり、平均粒径3.0μm、粒度分布のうちD10が1.03μm、D90が5.70μm、BET比表面積値0.67m/gであった。磁気特性は、保磁力897kA/m(11300Oe)であり、残留磁束密度が1244mT(12.44kG)であり、最大磁気エネルギー積が222kJ/m(28.0MGOe)であった。
【0080】
<ボンド磁石用樹脂組成物の製造>
ここに得たSm−Fe−N系磁性粉末90.3重量%と12ナイロン樹脂8.2重量%、酸化防止剤0.5重量%及び表面処理剤1.0重量%とをヘンシェルミキサーを用いて混合し、二軸押出混練機により混練(混練温度190℃)を行い、ボンド磁石用樹脂組成物を得た。
【0081】
得られたボンド磁石用樹脂組成物の混練安定性は前述した評価法で3%であり、流動性を示すMFRは加熱温度270℃、加圧10kgの条件で430g/10minであった。
【0082】
<ボンド磁石の製造>
得られたボンド磁石用樹脂組成物を用いて射出成形し、ボンド磁石を作製した。
【0083】
得られた射出成形ボンド磁石の室温磁気特性は残留磁束密度が763mT(7.63kG)、保磁力が635kA/m(8.01kOe)、最大磁気エネルギー積が103kJ/m(13.0MGOe)であり、密度は4.76g/ccであった。
【0084】
【作用】
本発明では、酸化サマリウムと酸化鉄粒子粉末との混合物を水素還元した後、安定化処理を行って鉄粒子の粒子表面に酸化被膜を形成するとともに、還元拡散反応後の鉄とサマリウムとの合金を窒化反応温度未満に冷却した後、再度、昇温して窒化反応を行う。
【0085】
鉄粒子の粒子表面に酸化被膜を形成することよって、還元拡散反応の際に各鉄粒子の酸化被膜層が発熱し、全体として均一な還元拡散反応を行うことができるとともに、一度、窒化反応温度未満に冷却したことによって、高温で起こりやすい不純物相の発生や生成したSm−Fe−N系磁性粉末の分解反応を抑制できると共に、Sm−Fe−N系磁性粉末の生成反応のみを促進させることができたことによるものと推定している。
【0086】
即ち、還元拡散反応後には、Sm−Fe合金以外に、余剰で残存した金属Ca及び酸化Ca、さらに少量であるが余剰分の金属Smが存在する。金属Caなどの不純物相もSm−Fe合金と同様に窒化反応を起し、前記不純物相の窒化反応は発熱反応と考えられる。しかし、全体の発熱量が短い時間で発生すると、温度がSmFeNを分解するまで押し上げられることになる。そこで、本発明においては、一度、窒化反応温度未満に冷却したことによって、前記不純物相の急激な発熱反応を抑制することができ、生成したSm−Fe−N系磁性粉末の分解反応を抑制することができたものである。
【0087】
更に、本発明においては、窒化反応温度までゆっくりと昇温することによって、余計な発熱反応による局所的な高温部分の発生を抑制し、均一な温度分布にて窒化反応を起すことが可能となったものと推定している。
【0088】
また、Sm−Fe−N系磁性粉末の粒子形状及び粒度分布は、出発原料、特に酸化鉄粒子粉末の粒子形状及び粒度分布に依存して成長することが知られている。本発明においては粒度分布が均斉な酸化鉄粒子粉末を用いたことによって、得られるSm−Fe−N系磁性粉末はより均斉な粒度分布を有するものである。
【0089】
本発明においては、前記理由によって均一な窒化反応を効率よく行うことができるので、高い磁気特性を有するSm−Fe−N系磁性粉末を得ることができる。
【0090】
【実施例】
次に、実施例並びに比較例を挙げる。
【0091】
実施例1〜4、比較例1〜5:
酸化鉄粒子粉末の平均粒子径及び粒度分布、安定化処理の条件を種々変化させた以外は前記発明の実施の形態と同様にしてSm−Fe−N系磁性粉末を得た。
【0092】
このときの製造条件を表1に、得られたSm−Fe−N系磁性粉末の諸特性を表2に示す。なお、安定化処理の酸化被膜の重量%は、鉄粒子の粒子表面に形成されたマグネタイト(酸化被膜)について、鉄粒子中のマグネタイトの重量割合である。
【0093】
【表1】
Figure 0004370555
【0094】
【表2】
Figure 0004370555
【0095】
実施例1乃至4で得られたSm−Fe−N系磁性粉末はいずれも、粒子形状はほぼ球状であって、粒子表面は滑らかであった。
【0096】
実施例5〜8、比較例6〜10:
Sm−Fe−N系磁性粉末を種々変化させた以外は前記発明の実施の形態と同様にしてボンド磁石を得た。
【0097】
このときの製造条件及びボンド磁石の諸特性を表3に示す。
【0098】
【表3】
Figure 0004370555
【0099】
【発明の効果】
本発明に係るボンド磁石用Sm−Fe−N系磁性粉末の製造法によって、流動性及び混練安定性に優れたボンド磁石用Sm−Fe−N系磁性粉末が得られるので、ボンド磁石用Sm−Fe−N系磁性粉末の製造法として好適である。[0001]
BACKGROUND OF THE INVENTION
This invention provides the manufacturing method of the Sm-Fe-N type magnetic powder for bond magnets excellent in the fluidity | liquidity at the time of bond magnet formation, and kneading | mixing stability.
[0002]
[Prior art]
Bonded magnets have been widely used in various applications such as electrical products and automotive parts because of their advantages such as shape flexibility and high dimensional accuracy. Recently, however, the size and weight of electrical products and automotive parts have been reduced. Accordingly, there is a strong demand for higher performance of the bond magnet itself used for this.
[0003]
Bonded magnets are generally manufactured by kneading a binder resin such as rubber or plastic material and magnetic powder and then molding them. That is, there is a strong demand for a magnetic powder having a large residual magnetic flux density Br and a high coercive force iHc and, as a result, a large maximum magnetic energy product (BH) max.
[0004]
Known magnetic powders include magnetoplumbite type ferrites such as barium ferrite and strontium ferrite, Sm-Fe-N magnetic powders, and rare earth-iron-boron magnets. In particular, Sm—Fe—N-based magnetic powder has attracted particular attention in recent years because it has a high saturation magnetization value and an anisotropic magnetic field, and also has a high Curie temperature.
[0005]
The Sm—Fe—N magnetic powder can be obtained by nitriding an alloy of samarium and iron, but it must be pulverized to an appropriate size for use in a bond magnet. However, since the magnetic properties are lowered by the pulverization step and it is difficult to obtain a uniform particle shape, it is required to obtain Sm—Fe—N magnetic powder without pulverization.
[0006]
That is, it is important that the residual magnetic flux density of the bonded magnet can be filled with a large amount of magnetic powder in the binder resin. Therefore, a magnetic powder having a uniform particle shape, excellent particle size distribution, and excellent fluidity is required.
[0007]
Further, since the residual magnetic flux density of the bond magnet depends on the saturation magnetization value of the magnetic powder, it is important that the magnetic powder has a high saturation magnetization value. For this purpose, Sm—Fe—N magnetic powder having excellent magnetic properties is required.
[0008]
Furthermore, during the production of the bond magnet, heating and pressurization are performed when the binder resin and the magnetic powder are kneaded, so that the magnetic powder is easily oxidized, and the binder resin is easily altered as the magnetic powder is oxidized. Therefore, there is a demand for Sm—Fe—N-based magnetic powder that is not easily oxidized and has excellent stability during kneading.
[0009]
Conventionally, techniques for obtaining Sm—Fe—N magnetic powder using raw materials with adjusted particle sizes are known (Patent Documents 1 to 5, etc.).
[0010]
[Patent Document 1]
JP-A-5-148517 [Patent Document 2]
JP-A-11-121216 [Patent Document 3]
JP 11-310807 A [Patent Document 4]
Japanese Patent Laid-Open No. 11-335702 [Patent Document 5]
Japanese Patent Laid-Open No. 2000-17309, etc.
[Problems to be solved by the invention]
The Sm—Fe—N magnetic powder for bonded magnets, which is excellent in fluidity at the time of forming a bonded magnet and has excellent stability at the time of kneading, is currently most demanded. The manufacturing method of the Sm-Fe-N type magnetic powder for use has not been obtained yet.
[0012]
That is, Patent Document 1 described above describes a technique in which a nitriding reaction is continuously performed from a reduction diffusion reaction without being exposed to the atmosphere, but after the reduction diffusion reaction, the temperature is lowered to a nitriding temperature, and the nitriding reaction is immediately performed. Since it has started, it is difficult to carry out the nitriding reaction stably. In addition, an exothermic reaction may occur during the nitriding reaction, and the nitriding reaction temperature may be partially higher than a predetermined temperature. If the reaction temperature is higher than the appropriate temperature during the nitriding reaction, the iron decomposition reaction may also occur. It is difficult to obtain Sm 2 Fe 17 N 3 magnetic powder that occurs at the same time and has high magnetic properties.
[0013]
In addition, Patent Documents 2 to 5 mentioned above describe adjusting the particle size of the iron raw material powder and adjusting the particle size of the mixture of the samarium raw material and the iron raw material. Therefore, it is difficult to perform a uniform nitriding reaction.
[0014]
Then, this invention makes it a technical subject to obtain the Sm-Fe-N type magnetic powder excellent in the dispersibility and fluidity | liquidity by being excellent in a particle size distribution and having a uniform particle shape.
[0015]
[Means for Solving the Problems]
The technical problem can be achieved by the present invention as follows.
[0016]
That is, in the present invention, after mixing iron oxide particle powder and samarium oxide particle powder, the mixture is subjected to a reduction reaction to obtain a mixture of iron particles and samarium oxide particles, and then in a temperature range of 30 to 150 ° C. After stabilization treatment is performed in an oxygen-containing atmosphere to form an oxide film on the surface of the iron particles, metal Ca is mixed and a reduction diffusion reaction is performed in a temperature range of 800 to 1200 ° C. under an inert gas atmosphere. Then, after cooling to less than 300 ° C. under an inert gas atmosphere, switching to a nitrogen atmosphere, raising the temperature to a predetermined temperature in the temperature range of 300 to 600 ° C., and subsequently in the temperature range of 300 to 600 ° C. It is a manufacturing method of the Sm-Fe-N type magnetic powder for bond magnets characterized by performing nitriding reaction (this invention 1).
[0017]
Further, the present invention provides a method for producing the Sm—Fe—N based magnetic powder for bonded magnets, wherein after cooling to less than 300 ° C. under an inert gas atmosphere, the atmosphere is switched to a nitrogen atmosphere and 0.5 to 3 ° C./min. The Sm—Fe—N system for bonded magnets is characterized in that the temperature is raised to a predetermined temperature range of 300 to 600 ° C. at a rate of temperature rise of 300 ° C. and subsequently nitriding is performed in the temperature range of 300 to 600 ° C. This is a method for producing magnetic powder (Invention 2).
[0018]
Moreover, this invention contains the Sm-Fe-N type magnetic powder for bond magnets obtained by the manufacturing method of the Sm-Fe-N type magnetic powder for bond magnets of this invention 1 or 2, The bond characterized by the above-mentioned. It is a magnet (Invention 3).
[0019]
The configuration of the present invention will be described in more detail as follows.
[0020]
A method for producing the Sm—Fe—N based magnetic powder for bonded magnets according to the present invention will be described.
[0021]
The iron oxide particle powder in the present invention is preferably hematite particle powder or magnetite particle powder.
[0022]
The particle shape of the iron oxide particle powder is spherical, and the average particle size is preferably 0.1 to 10 μm. When the average particle size is less than 0.1 μm, the volume of the entire oxide film in the stabilization treatment after reduction to iron particles increases, and therefore, a vigorous exothermic reaction occurs during the reduction diffusion reaction in the next step. Therefore, it becomes difficult to obtain an Sm—Fe—N magnetic powder having a uniform alloy composition and a sharp particle size distribution. When it exceeds 10 μm, the particle size is large, and it becomes difficult to obtain an Sm—Fe—N-based magnetic powder having a target particle size. In addition, doping of iron particles with Sm by reduction diffusion reaction is not desirable because it is difficult to reach the inside of the particles uniformly.
[0023]
The particle size distribution of the iron oxide particle powder is the particle size at which the cumulative volume ratio becomes 10% and 90% when the cumulative volume ratio with respect to the particle diameter is determined with the total volume of the iron oxide particle powder being 100%. When shown as D 10 and D 90 , respectively, it is preferable that D 10 is 0.5 μm or more and D 90 is 8.0 μm or less. If it is outside the above range, it means that the particle size distribution is wide, and the Sm—Fe—N magnetic powder obtained has a wide particle size distribution, which is not preferable because the magnetic properties are lowered. D 10 and the ratio D 10 / D 90 of the D 90 is preferably 0.1 or more. A small value means that the particle size distribution is wide, and the magnetic properties of the resulting Sm—Fe—N based magnetic powder deteriorate, which is not preferable.
[0024]
Among the iron oxide particle powders, the magnetite particle powder is used to ventilate an oxygen-containing gas into a ferrous salt reaction solution containing a ferrous hydroxide salt colloid obtained by reacting a ferrous sulfate aqueous solution and an alkaline aqueous solution. Can be obtained. The hematite particle powder can be obtained by heating and firing the magnetite particle powder in a temperature range of 700 to 1000 ° C.
[0025]
The particle shape of the samarium oxide particle powder in the present invention is granular, and the average particle size is preferably 0.5 to 5.0 μm.
[0026]
Mixing ratio of the samarium oxide particles and the iron oxide particles, based on the ratio of Sm and Fe as the Sm 2 Fe 17 is a stoichiometric ratio, and 100 to 130 mol% of samarium Sm terms Mix excess samarium oxide to
[0027]
The mixing of the iron oxide particle powder and the samarium oxide particle powder may be either wet mixing or dry mixing as long as the iron oxide particles and samarium oxide particles can be uniformly contacted, more preferably using an attritor or the like. Wet mixing or wet pulverization mixing.
[0028]
The mixture of the iron oxide particle powder and the samarium oxide particle powder is reduced to form a mixture of iron particles and samarium oxide particles. The reduction reaction can be performed, for example, by heating in a temperature range of 400 to 700 ° C. in a hydrogen gas atmosphere.
[0029]
In the present invention, a mixture of iron particles and samarium oxide particles is subjected to a stabilization treatment to form an oxide film on the particle surfaces of the iron particles. By forming an oxide film on the particle surface of the iron particles, the reduction diffusion reaction described later can be progressed uniformly, and sintering between particles can be suppressed.
[0030]
In the stabilization treatment, a mixture of iron particles and samarium oxide particles is heated in a temperature range of 30 to 150 ° C. in an oxygen-containing atmosphere. If it is lower than 30 ° C., it is difficult to form a uniform oxide film, and it takes a long time for the treatment, which is not preferable. If the temperature exceeds 150 ° C., the reaction may proceed locally, which is not preferable. The reaction time is about 1 to 5 hours.
[0031]
The atmosphere of the stabilization treatment is an oxygen-containing atmosphere, and the oxygen content is preferably 30% by volume or less, more preferably 1 to 25% by volume.
[0032]
As will be described later, the degree of stabilization treatment can be calculated from the weight ratio of the oxide film by thermally analyzing the mixture after stabilization treatment and measuring the weight increase. The weight ratio of the oxide film of iron particles in the mixture is preferably 1 to 15% by weight. If it is less than 1% by weight, there is no effect of forming an oxide film, and if it exceeds 15% by weight, the reduction diffusion reaction in the subsequent step occurs vigorously, which is not preferable.
[0033]
Calcium is mixed with the mixture of iron particles and samarium oxide particles after the stabilization treatment to perform a reduction diffusion reaction.
[0034]
The mixing ratio of calcium is preferably 3 to 15 mol with respect to 1 mol of samarium oxide (Sm 2 O 3 ) in the mixture. When the amount is less than 3 mol, the reduction diffusion reaction is not sufficient, and the reduction of samarium becomes insufficient. If it exceeds 15 moles, the effect is saturated and there is no point in adding more than necessary.
[0035]
The reduction-diffusion reaction is performed in the temperature range of 800 to 1200 ° C. under an inert gas atmosphere. When the temperature is lower than 800 ° C., the reduction of samarium oxide is insufficient. When the temperature exceeds 1200 ° C., evaporation of calcium and samarium starts to occur, the composition ratio is likely to change, and sintering is likely to proceed.
[0036]
A mixture of iron particles and samarium oxide particles is made into an alloy of iron and samarium by performing a reduction diffusion reaction.
[0037]
In the present invention, it is important to cool the alloy of iron and samarium after the reduction diffusion reaction to less than 300 ° C. When the nitriding reaction is performed without cooling, it is difficult to proceed the nitriding reaction uniformly, and the obtained Sm—Fe—N based magnetic powder does not have high magnetic properties. In consideration of industrial productivity, the lower limit of the cooling temperature is about 100 ° C.
[0038]
It is preferable to slowly raise the temperature of the alloy of iron and samarium after cooling to the nitriding reaction temperature. The rate of temperature rise is preferably about 0.5 to 3.0 ° C./min. If it is less than 0.5 ° C./min, it takes a long time to raise the temperature, which is not industrial and exceeds 3.0 ° C./min. In some cases, the reached nitriding temperature is not stable. More preferably, it is 0.5-2.0 degreeC / min.
[0039]
The nitriding reaction is performed in a temperature range of 300 to 600 ° C. When the temperature is lower than 300 ° C., it is difficult to allow a necessary amount of nitrogen to enter the alloy of iron and samarium. When the temperature exceeds 600 ° C., decomposition of α-Fe and Sm into nitrides and the like is not preferable. The time for the nitriding reaction is about 1 to 20 hours.
[0040]
The nitriding reaction is performed so as to contain 2.8 to 3.5% by weight of nitrogen with respect to Sm 2 Fe 17 .
[0041]
The Sm—Fe—N magnetic powder after the nitriding reaction can be removed by washing with water, filtering and drying.
[0042]
The obtained Sm-Fe-N-based magnetic powder for bonded magnet has Sm 2 Fe 17 N 3 as a main component, the particle shape is almost spherical, the particle surface is smooth, and the average particle size is 2.0-6. .0Myuemu, BET specific surface area of 0.10~1.50m 2 / g, of the particle size distribution D 10 of 1.0μm or more, and a D 90 of at most 10.0 [mu] m. D 10 and the ratio D 10 / D 90 of the D 90 is preferably 0.10 or more.
[0043]
The magnetic properties of the obtained Sm—Fe—N magnetic powder for bond magnet (measured by orienting the powder in a magnetic field) are preferably coercive force of 238.7 to 1428.6 kA / m (3,000 to 18000 Oe), The residual magnetic flux density is preferably 800 to 1300 mT (8 to 13 kG), and the maximum magnetic energy product is preferably 79.4 to 396.8 kJ / m 3 (10 to 50 MGOe), more preferably 100 to 396.8 kJ / m 3 ( 12.6 to 50 MGOe).
[0044]
Next, the resin composition for bonded magnets in the present invention will be described.
[0045]
The resin composition for bonded magnets in the present invention is obtained by dispersing Sm—Fe—N based magnetic powder in a binder resin, and contains 85 to 99% by weight of the Sm—Fe—N based magnetic powder. The balance consists of a binder resin and other additives.
[0046]
The binder resin can be variously selected depending on the molding method, and a thermoplastic resin can be used in the case of injection molding, extrusion molding and calendar molding, and a thermosetting resin can be used in the case of compression molding. . Examples of the thermoplastic resin include nylon (PA), polypropylene (PP), ethylene vinyl acetate (EVA), polyphenylene sulfide (PPS), liquid crystal resin (LCP), elastomer, and rubber. Resin can be used, and as the thermosetting resin, for example, epoxy resin, phenol resin or the like can be used.
[0047]
In addition, when manufacturing a resin composition for bonded magnets, known additives such as plasticizers, lubricants, coupling agents, etc., in addition to binder resins, may be used in order to facilitate molding or to sufficiently draw out magnetic properties. May be used. Also, various kinds of magnet powder such as ferrite magnet powder can be mixed.
[0048]
These additives may be selected appropriately according to the purpose, and as the plasticizer, commercially available products corresponding to the respective resins used can be used, and the total amount depends on the binder resin used. On the other hand, about 0.01 to 5.0% by weight can be used.
[0049]
As the lubricant, stearic acid and derivatives thereof, inorganic lubricants, oils, and the like can be used, and about 0.01 to 1.0% by weight can be used with respect to the entire bonded magnet.
[0050]
As said coupling agent, the commercial item according to use resin and a filler can be used, and about 0.01-3.0 weight% can be used with respect to binder resin to be used.
[0051]
As other magnetic powders, ferrite magnet powder, alnico magnet powder, rare earth magnet powder and the like can be used.
[0052]
The kneading stability of the bonded magnet resin composition is preferably 20% or less in the evaluation method described later. When the kneading stability exceeds 20%, when the magnetic powder is oxidized in the process of kneading the magnetic powder and the binder resin while heat and pressure are applied, the binder resin is chemically treated accordingly. It is unfavorable because it changes in quality and increases the torque of the plastmill.
[0053]
The flowability (MFR) of the resin composition for bonded magnets is preferably about 150 to 500 g / 10 min in the evaluation method described later. When it is less than 150 g / 10 min, the moldability and productivity of injection molding are significantly reduced.
[0054]
The resin composition for bonded magnets according to the present invention is obtained by mixing and kneading Sm—Fe—N magnetic powder with a binder resin to obtain a bonded magnet resin composition.
[0055]
The mixing can be performed with a mixer such as a Henschel mixer, a V-shaped mixer, or Nauta, and the kneading can be performed with a single-screw kneader, a twin-screw kneader, a mortar-type kneader, an extrusion kneader, or the like.
[0056]
Next, the bonded magnet according to the present invention will be described.
[0057]
The magnetic properties of the bond magnet can be variously changed according to the intended application, but the residual magnetic flux density is preferably 350 to 800 mT (3.5 to 8.0 kG), and the coercive force 238.7 to 1428.5 kA / m (3000 to 18000 Oe) is preferable, the maximum energy product is 23.9 to 158.7 kJ / m 3 ( 3 to 20 MGOe), and more preferably 80.0 to 158.7 kJ / m 3 (10 to 20 MGOe). .
[0058]
The molding density of the bonded magnet is preferably 4.5 to 5.0 g / cm 3 .
[0059]
The bonded magnet in the present invention is molded by a known molding method such as injection molding, extrusion molding, compression molding or calendar molding using the resin composition for bonded magnet, and then electromagnetized or pulsed magnetized according to a conventional method. By magnetizing, a bonded magnet can be obtained.
[0060]
DETAILED DESCRIPTION OF THE INVENTION
A typical embodiment of the present invention is as follows.
[0061]
The degree of stabilization treatment in the present invention was calculated according to the following method.
[0062]
That is, the weight ratio of the oxide film was calculated by heating in air at 600 ° C. using thermogravimetry TG and measuring the weight increase. For example, in a mixture in which the Sm content is 110% with respect to the stoichiometric ratio of Sm 2 Fe 17 , assuming that the weight increase due to oxidation is 29%, by calculating according to the following formula, The provided oxide film can be calculated to be about 7.0 wt% of the entire iron particles.
[0063]
The weight increase ratio is D, the ratio of Fe atoms contained in the magnetite in the total amount of Fe atoms in the iron particles is x, and the mixing ratio of Sm to the stoichiometric ratio of Sm 2 Fe 17 is z (z × 100 (%)). ), The magnetite weight ratio y in the iron particles was calculated according to the following equations 1 and 2. [Fe 2 O 3 ], [Sm 2 O 3 ], [Fe 3 O 4 ] and [Fe] are atomic weights or molecular weights of the respective compositions.
[0064]
[Expression 1]
Weight increase ratio D:
Figure 0004370555
[0065]
[Expression 2]
Magnetite weight ratio y in iron particles:
Figure 0004370555
[0066]
The shape of the Sm—Fe—N magnetic powder was observed with a scanning electron microscope.
[0067]
The particle size distribution of the iron oxide particle powder and the Sm—Fe—N magnetic powder was measured by HELOS, and when the cumulative ratio with respect to the particle diameter was determined with the total volume of each particle powder as 100%, the cumulative ratio was 10%, 50 % And 90% are indicated as D 10 , D 50 (average particle diameter), and D 90 , respectively.
[0068]
The magnetic properties of the Sm-Fe-N magnetic powder are as follows. After placing wax and magnetic powder in an acrylic capsule and orienting the magnetic powder, the sample is magnetized with a pulse magnetic field of about 8T maximum, The value was measured with a total VSM (manufactured by Toei Industry Co., Ltd.).
[0069]
The kneading stability of the resin composition for bonded magnets was as follows: 90.3 parts by weight of Sm—Fe—N magnetic powder, 8.2% by weight of 12 nylon resin, 0.5% by weight of antioxidant, and 1.0% of surface treatment agent. % By weight using a Henschel mixer, kneading with a twin-screw extrusion kneader (kneading temperature 190 ° C.), and kneading torque is 0 when the resulting composition is kneaded continuously for 120 minutes with a plast mill. When (A) is the minimum torque value and (B) is the torque value after 120 minutes without exceeding 2 kg · m, [(B)-(A)] / (A) × 100 (%).
[0070]
The flowability (MFR) of the resin composition for bonded magnets was measured using a semi-melt indexer (model 2A, manufactured by Toyo Seiki Co., Ltd.) under the conditions of a heating temperature of 270 ° C. and a load of 10 kgf.
[0071]
The magnetic properties of the bonded magnet containing the Sm—Fe—N based magnetic powder were measured with a BH tracer (Toei Kogyo Co., Ltd.) for the bonded magnet molded in an orientation magnetic field.
[0072]
The density of the bonded magnet was obtained by sufficiently cooling the molded bonded magnet to room temperature of about 25 ° C., then measuring the size of the bonded magnet, and determining the volume from the measured value. Next, the weight of the shaped bonded magnet was measured and indicated by a value obtained by dividing the weight value (g) by the volume value.
[0073]
<Manufacture of Sm-Fe-N magnetic powder>
Predetermined amounts of water, caustic soda, and iron sulfate FeSO 4 are charged into the reaction tank, the temperature is maintained at 80 ° C., air is blown, and the reaction solution is adjusted to pH 5 to obtain reaction, synthesis, and granular magnetite particles. Next, it is filtered, washed with water and dried, and calcined in the air in the range of 800 to 1000 ° C. After firing, it was crushed with a pin mill to obtain iron oxide particle powder.
[0074]
The obtained iron oxide particle powder is hematite (α-Fe 2 O 3 ), the particle shape is almost spherical, the average particle size is 1.31 μm, D 10 0.6 μm among the particle size distribution, D 90 was 2.24 μm, and the BET specific surface area value was 2.2 m 2 / g.
[0075]
<Wet mixing>
Among the obtained iron oxide particle powders, 3118.52 g and samarium oxide (Sm 2 O 3 , particle shape: granular, average particle diameter 4.40 μm) 881.48 g were wet-mixed with water using an attritor. . The obtained slurry was filtered, dried and loosened to obtain a mixed powder.
[0076]
<Reduction reaction and stabilization treatment>
Next, 3000 g of the obtained mixed powder was charged in a rotary heat treatment furnace, and a reduction reaction was performed by heating at 600 ° C. for 5 hours while flowing 100% pure hydrogen at 40 liter / min. After the reduction reaction, it was a mixture of iron particles and samarium oxide particles. Thereafter, the atmosphere in the rotary furnace is replaced with N 2 and the temperature is cooled to 40 ° C. When the temperature was stabilized, a stabilization treatment was performed for 1 hour under a flow of N 2 containing about 2.0 vol% oxygen to gradually oxidize the particle surfaces of the iron particles, thereby forming an oxide film on the particle surfaces. When the heat of reaction is observed and the heat of reaction has subsided, the entire system is cooled to room temperature, the mixture is taken out into the atmosphere, and the mixture is loosened with reiki and formed of an oxide film on the particle surface. A black powder was obtained. The oxide film formed on the iron particles was 7.0% by weight as magnetite in the iron particles.
[0077]
<Reduction diffusion reaction and nitriding reaction>
521.51 g of the black powder obtained here and 103.49 g of granular metal Ca (600 mol% with respect to Sm 2 O 3 ) are mixed, put in a pure iron tray, and inserted into an atmosphere furnace. After evacuating the inside of the furnace, the temperature is raised to 1050 ° C. in an argon gas stream. When the temperature in the furnace reaches a predetermined temperature, it is then cooled to 250 ° C. and evacuated once to be in an N 2 gas stream. The temperature is increased at a rate of 1 ° C./min until the temperature reaches 400 ° C. after the N 2 gas flow. When the temperature is stabilized at 400 ° C., the temperature is kept at 400 ° C. and nitriding reaction is performed for 8 hours, and then cooled to room temperature.
[0078]
<Washing and drying>
The powder after nitriding reaction is poured into water. Thereby, it disintegrates naturally in water, and separation of the alloy powder and the Ca component starts. Furthermore, the Ca component in the aggregate is washed with water by adding mechanical crushing. The Ca component was removed from the powder by repeating decantation several times, followed by filtration and drying in an N 2 air stream to obtain 500 g of an Sm—Fe—N based magnetic powder.
[0079]
The obtained Sm—Fe—N-based magnetic powder has a spherical particle shape and a smooth particle surface. The average particle size is 3.0 μm, and among the particle size distributions, D 10 is 1.03 μm, and D 90 is 5 The BET specific surface area value was 0.67 m 2 / g. The magnetic properties were a coercive force of 897 kA / m (11300 Oe), a residual magnetic flux density of 1244 mT (12.44 kG), and a maximum magnetic energy product of 222 kJ / m 3 (28.0 MGOe).
[0080]
<Manufacture of resin composition for bonded magnet>
Using a Henschel mixer, 90.3% by weight of the Sm-Fe-N magnetic powder obtained here, 8.2% by weight of 12 nylon resin, 0.5% by weight of antioxidant and 1.0% by weight of surface treatment agent were used. The mixture was kneaded (kneading temperature 190 ° C.) with a twin-screw extrusion kneader to obtain a resin composition for bonded magnets.
[0081]
The kneading stability of the obtained resin composition for bonded magnets was 3% by the evaluation method described above, and the MFR showing fluidity was 430 g / 10 min under the conditions of a heating temperature of 270 ° C. and a pressure of 10 kg.
[0082]
<Manufacture of bonded magnets>
The obtained bonded magnet resin composition was injection molded to produce a bonded magnet.
[0083]
The room temperature magnetic properties of the obtained injection-molded bonded magnet are a residual magnetic flux density of 763 mT (7.63 kG), a coercive force of 635 kA / m (8.01 kOe), and a maximum magnetic energy product of 103 kJ / m 3 (13.0 MGOe). Yes, the density was 4.76 g / cc.
[0084]
[Action]
In the present invention, a mixture of samarium oxide and iron oxide particle powder is reduced with hydrogen and then stabilized to form an oxide film on the particle surface of the iron particles, and an alloy of iron and samarium after the reduction diffusion reaction After cooling to below the nitriding reaction temperature, the temperature is raised again to perform the nitriding reaction.
[0085]
By forming an oxide film on the particle surface of the iron particles, the oxide film layer of each iron particle generates heat during the reduction diffusion reaction, and a uniform reduction diffusion reaction can be performed as a whole. By cooling to below, it is possible to suppress the generation of impurity phases that are likely to occur at high temperatures and the decomposition reaction of the produced Sm—Fe—N magnetic powder, and to promote only the production reaction of the Sm—Fe—N magnetic powder. It is estimated that this was due to the fact that
[0086]
That is, after the reduction-diffusion reaction, in addition to the Sm-Fe alloy, there are surplus metal Ca and oxide Ca, and a small amount of surplus metal Sm. The impurity phase such as metallic Ca also causes a nitriding reaction in the same manner as the Sm-Fe alloy, and the nitriding reaction of the impurity phase is considered to be an exothermic reaction. However, if the overall heat generation occurs in a short time, the temperature will be pushed up until it decomposes SmFeN. Therefore, in the present invention, by rapidly cooling to below the nitriding reaction temperature, a rapid exothermic reaction of the impurity phase can be suppressed, and a decomposition reaction of the generated Sm—Fe—N magnetic powder is suppressed. Was able to.
[0087]
Furthermore, in the present invention, by gradually raising the temperature to the nitriding reaction temperature, it is possible to suppress the occurrence of a local high temperature portion due to an excessive exothermic reaction and to initiate the nitriding reaction with a uniform temperature distribution. Estimated.
[0088]
Further, it is known that the particle shape and particle size distribution of the Sm—Fe—N magnetic powder grow depending on the starting material, particularly the particle shape and particle size distribution of the iron oxide particle powder. In the present invention, by using the iron oxide particle powder having a uniform particle size distribution, the obtained Sm-Fe-N magnetic powder has a more uniform particle size distribution.
[0089]
In the present invention, a uniform nitriding reaction can be efficiently performed for the reasons described above, so that an Sm—Fe—N based magnetic powder having high magnetic properties can be obtained.
[0090]
【Example】
Next, examples and comparative examples are given.
[0091]
Examples 1-4, Comparative Examples 1-5:
An Sm—Fe—N based magnetic powder was obtained in the same manner as in the above embodiment except that the average particle size and particle size distribution of the iron oxide particle powder and the conditions for the stabilization treatment were variously changed.
[0092]
The production conditions at this time are shown in Table 1, and various properties of the obtained Sm—Fe—N magnetic powder are shown in Table 2. The weight% of the oxide film in the stabilization treatment is the weight ratio of magnetite in the iron particles with respect to the magnetite (oxide film) formed on the particle surface of the iron particles.
[0093]
[Table 1]
Figure 0004370555
[0094]
[Table 2]
Figure 0004370555
[0095]
In all of the Sm—Fe—N magnetic powders obtained in Examples 1 to 4, the particle shape was almost spherical and the particle surface was smooth.
[0096]
Examples 5-8, Comparative Examples 6-10:
A bonded magnet was obtained in the same manner as in the above-described embodiment except that the Sm—Fe—N magnetic powder was variously changed.
[0097]
Table 3 shows the manufacturing conditions and various characteristics of the bonded magnet.
[0098]
[Table 3]
Figure 0004370555
[0099]
【The invention's effect】
The Sm—Fe—N magnetic powder for bonded magnets having excellent fluidity and kneading stability can be obtained by the method for producing the Sm—Fe—N magnetic powder for bonded magnets according to the present invention. It is suitable as a method for producing Fe-N magnetic powder.

Claims (3)

酸化鉄粒子粉末と酸化サマリウム粒子粉末とを混合した後、当該混合物を還元反応を行って鉄粒子と酸化サマリウム粒子との混合物とし、次いで、30〜150℃の温度範囲、酸素含有雰囲気下で安定化処理を行って前記鉄粒子の粒子表面に酸化被膜を形成した後、金属Caを混合して800〜1200℃の温度範囲、不活性ガス雰囲気下で還元拡散反応を行い、次いで、不活性ガス雰囲気下で300℃未満に冷却した後、窒素雰囲気に切り替え、300〜600℃の温度範囲の所定の温度になるまで昇温し、引き続き、300〜600℃の温度範囲で窒化反応を行うことを特徴とするボンド磁石用Sm−Fe−N系磁性粉末の製造法。After mixing iron oxide particle powder and samarium oxide particle powder, the mixture is subjected to a reduction reaction to form a mixture of iron particles and samarium oxide particles, and then stable in a temperature range of 30 to 150 ° C. in an oxygen-containing atmosphere. After forming an oxide film on the surface of the iron particles by performing a oxidization treatment, the metal Ca is mixed and subjected to a reduction diffusion reaction in an inert gas atmosphere at a temperature range of 800 to 1200 ° C., and then an inert gas After cooling to less than 300 ° C. under an atmosphere, switching to a nitrogen atmosphere, raising the temperature to a predetermined temperature in the temperature range of 300 to 600 ° C., and subsequently performing a nitriding reaction in the temperature range of 300 to 600 ° C. A method for producing an Sm-Fe-N magnetic powder for bonded magnets. 請求項1記載のボンド磁石用Sm−Fe−N系磁性粉末の製造法において、不活性ガス雰囲気下で300℃未満に冷却した後、窒素雰囲気に切り替え、0.5〜3℃/分の昇温速度で300〜600℃の温度範囲の所定の温度範囲まで昇温し、引き続き、300〜600℃の温度範囲で窒化反応を行うことを特徴とするボンド磁石用Sm−Fe−N系磁性粉末の製造法。The method for producing an Sm-Fe-N magnetic powder for bonded magnets according to claim 1, wherein after cooling to less than 300 ° C under an inert gas atmosphere, switching to a nitrogen atmosphere and raising the temperature to 0.5 to 3 ° C / min. Sm—Fe—N-based magnetic powder for bonded magnets, characterized in that the temperature is increased to a predetermined temperature range of 300 to 600 ° C. at a temperature rate, and then a nitriding reaction is performed in the temperature range of 300 to 600 ° C. Manufacturing method. 請求項1又は2記載のボンド磁石用Sm−Fe−N系磁性粉末の製造法で得られたボンド磁石用Sm−Fe−N系磁性粉末を含有することを特徴とするボンド磁石。A bonded magnet comprising the Sm-Fe-N-based magnetic powder for bonded magnets obtained by the method for producing an Sm-Fe-N-based magnetic powder for bonded magnets according to claim 1 or 2.
JP2003092556A 2003-03-28 2003-03-28 Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet Expired - Lifetime JP4370555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092556A JP4370555B2 (en) 2003-03-28 2003-03-28 Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092556A JP4370555B2 (en) 2003-03-28 2003-03-28 Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet

Publications (2)

Publication Number Publication Date
JP2004303821A JP2004303821A (en) 2004-10-28
JP4370555B2 true JP4370555B2 (en) 2009-11-25

Family

ID=33405606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092556A Expired - Lifetime JP4370555B2 (en) 2003-03-28 2003-03-28 Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet

Country Status (1)

Country Link
JP (1) JP4370555B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045868B2 (en) * 2005-07-22 2012-10-10 戸田工業株式会社 Composite magnetic powder for bonded magnet, resin composition for bonded magnet, and bonded magnet
CN106384638B (en) * 2016-10-28 2018-04-03 北京科技大学 A kind of preparation method of high-performance anisotropy Sm Fe N permanent magnets

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181554A (en) * 1981-04-30 1982-11-09 Kanto Denka Kogyo Kk Magnetic powder for electrophotographic magnetic toner and its manufacture
JPH06136401A (en) * 1992-10-28 1994-05-17 Kao Corp Production of magnetic metal powder
JP3769982B2 (en) * 1999-05-25 2006-04-26 日亜化学工業株式会社 Rare earth iron nitrogen alloy powder and method for producing the same
JP3770032B2 (en) * 2000-02-04 2006-04-26 日亜化学工業株式会社 Method for producing rare earth iron nitrogen-based alloy powder
JP2002038206A (en) * 2000-07-24 2002-02-06 Nichia Chem Ind Ltd Method for producing rare earth-transition metal- nitrogen-based alloy powder
JP3800589B2 (en) * 2001-03-09 2006-07-26 日亜化学工業株式会社 SmFeN magnet powder and bonded magnet using the same
JP2002343623A (en) * 2001-05-21 2002-11-29 Nichia Chem Ind Ltd Plastic sheet magnet molded body and manufacturing method therefor

Also Published As

Publication number Publication date
JP2004303821A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
US20230268105A1 (en) Anisotropic magnetic powders
JP5831866B2 (en) Ferromagnetic particle powder and method for producing the same, anisotropic magnet, bonded magnet, and compacted magnet
JP5769223B2 (en) Ferromagnetic particle powder and production method thereof, anisotropic magnet and bonded magnet
JP6155440B2 (en) Method for producing ferromagnetic iron nitride particle powder, method for producing anisotropic magnet, bonded magnet and dust magnet
JP5924657B2 (en) Method for producing ferromagnetic iron nitride particle powder, anisotropic magnet, bonded magnet and dust magnet
JP5822188B2 (en) Ferromagnetic particle powder and production method thereof, anisotropic magnet and bonded magnet
KR20140078625A (en) Method for manufacturing ferromagnetic iron nitride powder, anisotropic magnet, bond magnet, and compressed-powder magnet
JP2018127716A (en) Rare-earth-iron-nitrogen based magnetic powder and method for producing the same
JP4623308B2 (en) Sm-Fe-N-based magnetic particle powder for bonded magnet and method for producing the same, resin composition for bonded magnet, and bonded magnet
WO2022004081A1 (en) Rare earth-iron-nitrogen-based magnetic powder, compound for bond magnet, bond magnet, and method for producing rare earth-iron-nitrogen-based magnetic powder
Coey et al. Bonded Sm-Fe-N permanent magnets
JP6485066B2 (en) Iron nitride magnet
WO2001035424A1 (en) Ferrite magnet powder and magnet using the magnet powder, and method for preparing them
JP4296379B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP2006283094A (en) Sm-Fe-N MAGNETIC PARTICLE POWDER, ITS MANUFACTURING METHOD, AND BOND MAGNET
JP4370555B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP2007277692A (en) Sm-Fe-N BASED MAGNETIC PARTICLE POWDER, ITS PRODUCTION METHOD, RESIN COMPOSITION FOR BOND MAGNET COMPRISING Sm-Fe-N BASED MAGNETIC PARTICLE POWDER
JP4662061B2 (en) Method for producing Sm-Fe-N magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N magnetic particle powder, and bonded magnet
JP5110296B2 (en) Method for producing Sm-Fe-N-based magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N-based magnetic particle powder, and bonded magnet
JP2021055188A (en) Method for producing anisotropic magnetic powder
JP2017183322A (en) Bond magnet arranged by use of iron nitride-based magnetic powder
JP4345588B2 (en) Rare earth-transition metal-nitrogen magnet powder, method for producing the same, and bonded magnet obtained
JP2000040611A (en) Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same
JP2006002187A (en) Sm-Fe-N-BASED MAGNETIC PARTICLE POWDER, AND BOND MAGNET CONTAINING THE Sm-Fe-N-BASED MAGNETIC PARTICLE POWDER
JP2002217010A (en) Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4370555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term