JP2000040611A - Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same - Google Patents

Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same

Info

Publication number
JP2000040611A
JP2000040611A JP10208079A JP20807998A JP2000040611A JP 2000040611 A JP2000040611 A JP 2000040611A JP 10208079 A JP10208079 A JP 10208079A JP 20807998 A JP20807998 A JP 20807998A JP 2000040611 A JP2000040611 A JP 2000040611A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet material
resin
magnetic powder
mnbi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10208079A
Other languages
Japanese (ja)
Inventor
Mikio Kishimoto
幹雄 岸本
Toshio Kanzaki
壽夫 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP10208079A priority Critical patent/JP2000040611A/en
Publication of JP2000040611A publication Critical patent/JP2000040611A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the magnetization in the lower magnetic field also displaying extremely high coersive force once magnetized, by a method wherein, in the material containing MnBi magnetic powder in a specific particle size and a resin binder, the coersive force acquired by impressing a magnetic field in a specific condition is specified. SOLUTION: This permanent magnet material is composed of a mixture of MnBi in the mean particle size of 0.1-20 μm and a resin binder. Desirably, the content of the resin binder is set up to be 0.3-20 wt.% to 100 wt.% of the MnBi. As for the magnetic powder, it is recommemded that the MnBi magnetic powder is applied with the coersive force measured by impressing the magnetic field of 16 KOe within the range of 500 Oe-16000 Oe. In such a constitution, when this magnetic powder is mixed with the resin binder to be compression- molded in the magnetic field making a specific shape and then initiated, the mixture can be easily magnetized at room temperature. Furthermore, the mixture once magnetized can display the extremely high coersive force.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、MnBi磁性粉
末を用いた樹脂結合型永久磁石材料と、これを利用した
エンコーダ、および樹脂結合型永久磁石材料の着磁方法
に関する。この発明の樹脂結合型永久磁石材料は、例え
ば、ステッピングモータやサーボモータ等の制御手段と
して利用されるエンコーダに好適である。
The present invention relates to a resin-bonded permanent magnet material using MnBi magnetic powder, an encoder using the same, and a method of magnetizing the resin-bonded permanent magnet material. The resin-bonded permanent magnet material of the present invention is suitable for an encoder used as a control means of, for example, a stepping motor or a servomotor.

【0002】[0002]

【従来の技術】樹脂結合型永久磁石材料は、寸法精度が
高く、複雑な形状が可能なことや、品質、性能の均一性
が良好なことなどから、高度な寸歩精度が要求される電
子機器などにおいて多用されている。従来、この種の樹
脂結合型永久磁石材料用の磁性粉末としては、通常高保
磁力のSm−Co系やNd−Fe−B系の磁性粉末や、
Baフェライト、Srフェライトなどの磁性粉末が使用
されている。
2. Description of the Related Art Resin-bonded permanent magnet materials require high dimensional accuracy because of their high dimensional accuracy, complex shapes, and good uniformity of quality and performance. It is frequently used in equipment and the like. Conventionally, as this type of magnetic powder for a resin-bonded permanent magnet material, a Sm-Co-based or Nd-Fe-B-based magnetic powder having a normally high coercive force,
Magnetic powders such as Ba ferrite and Sr ferrite are used.

【0003】ところで、永久磁石の性能は、一般に保磁
力と残留磁束の積で表わされ、この値が大きいほど高性
能な磁石となる。一方、本来大きな磁気異方性をもった
上記のような磁性粉末を永久磁石材料とするためには、
所定形状の永久磁石に成形した後、磁性粉末の保磁力よ
り大きな磁界を特定方向に印加して着磁する必要があ
る。最も単純な永久磁石のように、単に一方向に着磁す
るだけで良い場合には、保磁力より大きな均一パルス磁
界を印加することで着磁して、永久磁石材料とすること
ができる。
The performance of a permanent magnet is generally represented by the product of a coercive force and a residual magnetic flux, and the larger the value, the higher the performance of the magnet. On the other hand, in order to make the above magnetic powder having a large magnetic anisotropy into a permanent magnet material,
After molding into a permanent magnet having a predetermined shape, it is necessary to apply a magnetic field larger than the coercive force of the magnetic powder in a specific direction to perform magnetization. When it is sufficient to simply magnetize in one direction as in the simplest permanent magnet, the magnet can be magnetized by applying a uniform pulse magnetic field larger than the coercive force to obtain a permanent magnet material.

【0004】[0004]

【発明が解決しようとする課題】しかし、小型電子機器
に使用されているモータ用の永久磁石や、ステッピング
モータやサーボモータ等のモータの回転制御に使用され
るロータリエンコーダや、駆動部品の位置制御に利用さ
れるリニアエンコーダなどにおいては、より微妙な動作
制御が求められ、そのため永久磁石材料の内部でより細
かく着磁パターンを形成することが要求される。このよ
うな用途では、上述した均一パルス磁界による着磁は困
難であり、磁気ヘッド等を用いて磁石の特定箇所に局部
的に磁界を印加して、任意の着磁パターンを形成する必
要がある。この場合、磁気ヘッド等で発生できる磁界に
は限界があるため、使用する磁性粉末の保磁力も自ずと
制限されることとなる。
However, permanent magnets for motors used in small electronic equipment, rotary encoders used for controlling the rotation of motors such as stepping motors and servomotors, and position control of driving parts In a linear encoder and the like used in the above, more delicate operation control is required, and therefore, it is required to form a more minute magnetized pattern inside the permanent magnet material. In such an application, it is difficult to magnetize with the above-described uniform pulse magnetic field, and it is necessary to locally apply a magnetic field to a specific portion of the magnet using a magnetic head or the like to form an arbitrary magnetized pattern. . In this case, since there is a limit to the magnetic field that can be generated by the magnetic head or the like, the coercive force of the magnetic powder used is naturally limited.

【0005】従って、永久磁石材料としては、高保磁力
のSm−Co系やNd−Fe−B系の磁性粉末を使用す
ることが望ましいが、上記のような用途においては、高
保磁力の磁性粉末を使用することができないため、樹脂
結合型永久磁石材料用の磁性粉末としては高々3000
Oe程度のBaフェライトやSrフェライト等の磁性粉
末に限られてしまうのが現状であった。
Therefore, it is desirable to use a high coercivity Sm-Co or Nd-Fe-B magnetic powder as a permanent magnet material. However, in the above-mentioned applications, a high coercivity magnetic powder is used. Since it cannot be used, it is at most 3000 as a magnetic powder for a resin-bonded permanent magnet material.
At present, it is limited to magnetic powder such as Ba ferrite or Sr ferrite of about Oe.

【0006】また、上記のような3000Oe程度の保
磁力の磁性粉末を材料として用いた永久磁石を磁気ヘッ
ドにより着磁する場合においても、前記のように磁石の
保磁力よりも大きな磁界を印加する必要があるため、磁
気ヘッドのヘッドギャップを大きくせざるを得ず、その
ため高い記録密度で着磁パターンを記録することが困難
であるという問題がある。
Also, when a permanent magnet using a magnetic powder having a coercive force of about 3000 Oe as a material as described above is magnetized by a magnetic head, a magnetic field larger than the coercive force of the magnet is applied as described above. This necessitates a large head gap of the magnetic head, which makes it difficult to record a magnetized pattern at a high recording density.

【0007】さらに、エンコーダ等の用途においては、
高い検出感度が得られるように、永久磁石としての性能
をできる限り高くする必要があり、そのためには既述し
たように残留磁束と同時に保磁力をできる限り高くする
必要がある。加えて、エンコーダの使用環境として、モ
ータの回転制御に使用される場合、そのモータの近くに
は高保磁力の永久磁石が設置されることもあり、この永
久磁石の漏洩磁界の影響によりエンコーダが減磁されや
すく、検出感度が低下しやすいという問題がある。
Further, in applications such as encoders,
In order to obtain high detection sensitivity, it is necessary to increase the performance as a permanent magnet as much as possible, and for that purpose, it is necessary to increase the coercive force as much as possible simultaneously with the residual magnetic flux as described above. In addition, when the encoder is used to control the rotation of a motor, a permanent magnet with a high coercive force may be installed near the motor, and the encoder is reduced due to the leakage magnetic field of the permanent magnet. There is a problem that it is easily magnetized and the detection sensitivity is easily lowered.

【0008】本発明の目的は、エンコーダ等の用途に最
適な永久磁石材料として、通常の磁気ヘッド等の磁界印
加手段により低い磁界で容易に着磁でき、しかも一度着
磁すると極めて大きな保磁力を示し、大きな磁気エネル
ギーを有する樹脂結合型永久磁石材料を提供すること、
およびこれを利用したエンコーダならびに当該磁石材料
の着磁方法を提供することにある。
An object of the present invention is to provide a permanent magnet material that is optimal for applications such as an encoder and the like, which can be easily magnetized with a low magnetic field by a magnetic field applying means such as a normal magnetic head, and that once magnetized, an extremely large coercive force is obtained. To provide a resin-bonded permanent magnet material having high magnetic energy,
And an encoder using the same and a method of magnetizing the magnet material.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明の樹脂
結合型永久磁石材料は、平均粒子サイズが0.1μm以上
20μm以下のMnBi磁性粉末と、樹脂バインダーと
を含有し、温度300Kで16KOeの磁界を印加して
測定した保磁力が3000Oe以上16000Oe以下
であることを特徴とする。好適には、樹脂バインダーの
含有量を、MnBi磁性粉末100重量部に対して0.3
〜20重量部に設定する。
That is, the resin-bonded permanent magnet material of the present invention contains MnBi magnetic powder having an average particle size of 0.1 μm or more and 20 μm or less, and a resin binder. The coercive force measured by applying a magnetic field is 3000 Oe or more and 16000 Oe or less. Preferably, the content of the resin binder is 0.3 to 100 parts by weight of the MnBi magnetic powder.
Set to ~ 20 parts by weight.

【0010】また、本発明のエンコーダは、上記樹脂結
合型永久磁石材料を利用したもので、永久磁石材料を構
成部材として有し、その永久磁石材料が上記樹脂結合型
永久磁石材料によって構成されていることを特徴とす
る。
The encoder of the present invention uses the above-mentioned resin-bonded permanent magnet material, has a permanent magnet material as a constituent member, and the permanent magnet material is made of the resin-bonded permanent magnet material. It is characterized by being.

【0011】さらに、本発明の樹脂結合型永久磁石材料
の着磁方法は、MnBi磁性粉末と樹脂バインダーとを
含有してなる樹脂結合型永久磁石材料に所定の着磁パタ
ーンを形成する着磁方法において、磁界中で前記樹脂結
合型磁石材料を所望の形状に成形した後、低温に冷却し
て消磁状態とし、室温において外部磁界を印加すること
により着磁することを特徴とする。この場合、外部磁界
の印加手段としては、電磁石、永久磁石あるいは磁気ヘ
ッドなどを用いることができる。
Further, the method of magnetizing a resin-bonded permanent magnet material of the present invention is a method of forming a predetermined magnetization pattern on a resin-bonded permanent magnet material containing MnBi magnetic powder and a resin binder. Wherein the resin-bonded magnet material is formed into a desired shape in a magnetic field, cooled to a low temperature to be in a demagnetized state, and magnetized by applying an external magnetic field at room temperature. In this case, as the means for applying the external magnetic field, an electromagnet, a permanent magnet, a magnetic head, or the like can be used.

【0012】樹脂結合型永久磁石材料に要求される特性
としては、前記のように保磁力および残留磁束が大きい
ことが要求され、またエンコーダ用の永久磁石材料とし
て使用される場合には検出感度が高く、しかも着磁時に
は容易に着磁できるという相反する特性を具備する必要
がある。加えて、高度な寸法精度が要求されることか
ら、樹脂結合型永久磁石材料は磁性粉末と樹脂バインダ
ーとの混錬物とし、これを所定の形状に成形する必要が
あるため、樹脂バインダーとの混合状態における分散性
も要求される。さらに磁気ヘッド等で着磁するととも
に、エンコーダとしての検出を容易にするため、磁性粉
末の充填性と成形物の表面性も要求される。従って、小
さな粒子径となる磁性粉末を使用する必要がある。
As a characteristic required of the resin-bonded permanent magnet material, a large coercive force and a large residual magnetic flux are required as described above, and when used as a permanent magnet material for an encoder, the detection sensitivity is low. It is necessary to have the contradictory characteristics that it is high and can be easily magnetized at the time of magnetization. In addition, because high dimensional accuracy is required, the resin-bonded permanent magnet material must be a kneaded mixture of magnetic powder and a resin binder, and it is necessary to mold this into a predetermined shape. Dispersibility in a mixed state is also required. Further, in order to be magnetized by a magnetic head or the like and to facilitate detection as an encoder, the magnetic powder is required to have a filling property of magnetic powder and a surface property of a molded product. Therefore, it is necessary to use a magnetic powder having a small particle size.

【0013】本発明者等はかかる知見のもと、種々の磁
性粉末について検討したところ、MnBi磁性粉末を使
用し、特定の着磁方法を利用することにより上記課題を
一挙に解決できること見出した。すなわち、MnBi磁
性粉末は、室温で5000Oe程度以上もの極めて大き
な保磁力を示すが、低温では保磁力は500Oe以下と
なる。また、MnBi磁性粉末は、低温に冷却した後、
室温(15〜30℃)に戻すと(すなわち、初期化する
と)、室温で容易に信号が記録できるようになり、かつ
一度記録すると保磁力は初期化前の5000Oe以上と
なるため、その後は信号の書き換えも消去もできないと
いう特性を有する。しかも、エンコーダに利用される樹
脂結合型永久磁石材料用の磁性粉末として好適な微粒子
粉末とすることができるとともに、前記磁性粉末は結晶
異方性を有するため、微粒子になるほど高保磁力となる
という特質をも有する。
The present inventors have studied various magnetic powders based on such knowledge, and have found that the above problems can be solved at once by using a MnBi magnetic powder and using a specific magnetizing method. That is, the MnBi magnetic powder shows a very large coercive force of about 5000 Oe or more at room temperature, but has a coercive force of 500 Oe or less at a low temperature. Further, after cooling the MnBi magnetic powder to a low temperature,
When the temperature is returned to room temperature (15 to 30 ° C.) (that is, after initialization), a signal can be easily recorded at room temperature, and once recorded, the coercive force becomes 5000 Oe or more before the initialization. It has the characteristic that it cannot be rewritten or erased. In addition, it is possible to obtain a fine particle powder suitable as a magnetic powder for a resin-bonded permanent magnet material used in an encoder, and since the magnetic powder has a crystalline anisotropy, the finer the particles, the higher the coercive force. It also has

【0014】したがって、このような性質を有するMn
Bi磁性粉末を樹脂バインダーと混合し、磁界中で所定
形状に圧縮成形した後に初期化処理を行うと、室温で容
易に磁化できるようになり、一方、一度磁化すると極め
て大きな保磁力を示すようになり、樹脂結合型永久磁石
材料として優れた性能を示すようになる。この樹脂結合
型永久磁石材料を用いれば、エンコーダ用の構成部材と
して、寸法精度が良く、しかも微妙な動作制御に必要と
なる細かな着磁パターンを有する高性能な永久磁石材料
を作ることができる。また、こうして得られた高性能な
永久磁石材料を構成部材として有するエンコーダは、高
い検出感度を持つから、ステッピングモータやサーボモ
ータ等の制御モータを備えた駆動制御システムにおい
て、当該システムを構成する他の電気的あるいは機械的
手段と協働して、より微妙に制御モータの回転を制御す
ることが可能となる。さらに、MnBi磁性粉末の上記
特性を樹脂結合型永久磁石材料に利用することにより、
これまでの樹脂結合型永久磁石材料では実現できなかっ
た新たな用途を開拓できる。
Therefore, Mn having such properties
When the Bi magnetic powder is mixed with a resin binder, and compression-molded into a predetermined shape in a magnetic field and then subjected to an initialization treatment, the magnetic material can be easily magnetized at room temperature, while once magnetized, it exhibits an extremely large coercive force. Thus, the resin-bonded permanent magnet material exhibits excellent performance. If this resin-bonded permanent magnet material is used, a high-performance permanent magnet material having good dimensional accuracy and a fine magnetized pattern required for delicate operation control can be produced as a constituent member for the encoder. . In addition, since the encoder having the high-performance permanent magnet material obtained as a constituent member has a high detection sensitivity, the encoder may be included in a drive control system including a control motor such as a stepping motor or a servomotor. In cooperation with the electric or mechanical means, the rotation of the control motor can be more finely controlled. Further, by utilizing the above properties of the MnBi magnetic powder for a resin-bound permanent magnet material,
New applications that could not be realized with conventional resin-bonded permanent magnet materials can be developed.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て具体的に説明する。 〔本発明に係る永久磁石材料の磁化曲線の一例〕図1
は、MnBi磁性粉末を用いた樹脂結合型永久磁石材料
の磁化曲線の一例を示したものである。この永久磁石材
料は、平均粒子サイズ1.8μmのMnBi磁性粉末を樹
脂バインダーと共に混合して磁界中で圧縮成形したもの
を、まず初期化した後、室温で初期磁化曲線と減磁曲線
を測定したものである。この図より、低温に冷却して初
期化を行うと、室温では2000Oe程度の低い磁界で
容易に磁化できるが、一度磁化すると11000Oe程
度もの極めて大きな保磁力を示すことが分かる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below. [Example of magnetization curve of permanent magnet material according to the present invention] FIG.
Shows an example of a magnetization curve of a resin-bonded permanent magnet material using MnBi magnetic powder. This permanent magnet material was prepared by mixing MnBi magnetic powder having an average particle size of 1.8 μm with a resin binder and compression-molding in a magnetic field. After initializing the material, the initial magnetization curve and demagnetization curve were measured at room temperature. Things. From this figure, it can be seen that when initialization is performed by cooling to a low temperature, magnetization can be easily performed at room temperature with a magnetic field as low as about 2000 Oe, but once magnetized, an extremely large coercive force of about 11000 Oe is exhibited.

【0016】〔MnBi磁性粉末の作製方法〕次に、上
記MnBi磁性粉末の作製方法について説明する。この
発明で用いられるMnBi磁性粉末は、粉末冶金法、ア
ーク炉溶解法、高周波溶解法、溶融急冷法等によりMn
Biインゴットとし、これを粉砕して製造される。たと
えば、粉末冶金法で製造する場合には、インゴットを
作製する工程、これを粉砕する工程、安定化処理工
程に分けて下記のようにして製造される。なお必ずしも
粉砕法によらずMnBi磁性粉末としてもよい。
[Production Method of MnBi Magnetic Powder] Next, a production method of the MnBi magnetic powder will be described. The MnBi magnetic powder used in the present invention is obtained by powder metallurgy, arc furnace melting, high frequency melting, melting quenching, or the like.
Bi ingot is manufactured by crushing the ingot. For example, in the case of manufacturing by the powder metallurgy method, the ingot is manufactured as follows, divided into a process of manufacturing the ingot, a process of pulverizing the ingot, and a stabilization process. Note that MnBi magnetic powder may be used instead of the pulverization method.

【0017】 インゴットの作製 インゴットの作製は、50〜300メッシュのMn粉お
よびBi粉を充分に混合し、これを加圧プレスして成型
体とし、インゴットが作製される。Mn粉およびBi粉
を混合する場合、その比率(Mn/Bi)はモル比で4
5:55から65:35の範囲にするのが好ましく、B
iに比べてMnを多くすると、MnBi磁性粉末とした
ときにその表面にMnの酸化物や水酸化物を形成するこ
とにより、MnBi磁性粉末の耐食性が向上し、良質な
磁性粉末が得られる。このため、Biに比べてMnを多
くするのがより好ましい。
Production of Ingot In production of an ingot, Mn powder and Bi powder of 50 to 300 mesh are sufficiently mixed, and the mixture is pressed under pressure to form a molded body, thereby producing an ingot. When Mn powder and Bi powder are mixed, the ratio (Mn / Bi) is 4 in molar ratio.
Preferably, the ratio is in the range of 5:55 to 65:35.
When Mn is increased as compared with i, the corrosion resistance of the MnBi magnetic powder is improved by forming an oxide or hydroxide of Mn on the surface of the MnBi magnetic powder, and a good quality magnetic powder can be obtained. Therefore, it is more preferable to increase Mn as compared with Bi.

【0018】ここで使用されるMn粉およびBi粉とし
ては、不純物の含有量が少ないものを使用するのが好ま
しいが、磁気特性を調整するときには、これにNi、A
l、Cu、Pt、Zn、Feなどの金属を添加して使用
される。このような金属を添加する場合、その添加量
は、MnBiに対して0.6原子%以上とすることにより
磁気特性を良好に制御することができ、5.0原子%より
少なくすることによりMnBiの結晶構造自体を良好に
維持することができMnBi本来の特性を発揮できるた
め、0.6〜5.0原子%の範囲内になるようにするのが好
ましい。また、これらの添加方法としては、あらかじめ
Mnとこれらの元素の合金を作っておくことが好まし
い。
As the Mn powder and Bi powder used here, it is preferable to use those having a small impurity content. However, when adjusting the magnetic characteristics, Ni and A powders should be added.
Metals such as l, Cu, Pt, Zn, and Fe are used in addition. When such a metal is added, the magnetic property can be controlled well by setting the addition amount to 0.6 at% or more with respect to MnBi, and by adding less than 5.0 at% to MnBi. Since the crystal structure itself can be favorably maintained and the original characteristics of MnBi can be exhibited, it is preferable that the content be in the range of 0.6 to 5.0 atomic%. In addition, it is preferable that an alloy of Mn and these elements is prepared in advance as a method of adding these elements.

【0019】Mn粉またはBi粉としては、あらかじめ
粉砕してあったものを用いてもよいし、フレークあるい
はショット等の塊を粉砕により微粉化して用いてもよ
い。焼結反応により合成する場合には、MnとBiの接
触界面を通しての拡散反応によりMnBiが生成するた
め、Mn粉およびBi粉は50〜300メッシュに微粉
化したものを用いると生成反応がスムーズに進む。これ
らMn粉およびBi粉の混合は、自動乳鉢、ボールミル
など任意の手段で行われる。
As the Mn powder or Bi powder, a powder that has been pulverized in advance may be used, or a lump such as flakes or shots may be pulverized into fine powder for use. In the case of synthesizing by sintering reaction, MnBi is generated by a diffusion reaction through a contact interface between Mn and Bi. Therefore, when Mn powder and Bi powder are finely divided into 50 to 300 mesh, the generation reaction is smooth. move on. Mixing of these Mn powder and Bi powder is performed by any means such as an automatic mortar and a ball mill.

【0020】Mn粉およびBi粉を加圧プレスして成型
体とする場合、加圧力は1〜8t/cm2 にするのが好ま
しく、このような加圧力で加圧プレスして成型体とする
と、焼結反応が促進されて均一なインゴットが作製され
る。加圧力を1t/cm2 以上とすることによりMnBi
インゴットをより均一にすることができ、8t/cm2
下とすることにより生産性を向上することができる。
When the Mn powder and the Bi powder are pressed and formed into a molded body, the pressing force is preferably set to 1 to 8 t / cm 2. As a result, the sintering reaction is promoted to produce a uniform ingot. By setting the pressure to 1 t / cm 2 or more, MnBi
The ingot can be made more uniform, and productivity can be improved by setting the ingot to 8 t / cm 2 or less.

【0021】得られた成型体は、ガラス容器あるいは金
属容器に密封され、容器内は真空あるいは不活性ガス雰
囲気とし、熱処理中の酸化が防止される。不活性ガスと
しては、水素、窒素、アルゴン等が使用できるが、コス
トの点から窒素ガスが最適なものとして使用される。こ
のように成型体を密封した容器は、次いで、電気炉に入
れられて、260〜271℃で2〜15日間熱処理され
る。熱処理温度を260℃以上とすることにより熱処理
を短時間で行うことができるとともに、得られるインゴ
ットの磁化量を高くすることができ、また271℃以下
とすることによりBiの融解を抑制し、均一なインゴッ
トが得られるため、Biの融点直下で行うことが好まし
い。
The obtained molded body is sealed in a glass container or a metal container, and the inside of the container is set to a vacuum or an inert gas atmosphere to prevent oxidation during the heat treatment. As the inert gas, hydrogen, nitrogen, argon, or the like can be used, but nitrogen gas is used as the optimal gas in terms of cost. The container in which the molded body is sealed in this way is then placed in an electric furnace and heat-treated at 260 to 271 ° C for 2 to 15 days. By setting the heat treatment temperature to 260 ° C. or higher, the heat treatment can be performed in a short time, the amount of magnetization of the obtained ingot can be increased, and by setting the temperature to 271 ° C. or lower, the melting of Bi can be suppressed and uniform. It is preferable to perform the process immediately below the melting point of Bi, since a proper ingot can be obtained.

【0022】 インゴットの粉砕 上記のようにして作製されたMnBiインゴットは取り
出されて、予め自動乳鉢等により不活性ガス雰囲気中で
粗粉砕され、粒子サイズが100〜500μmに調整さ
れる。そして、ボールミル、遊星ボールミル等を用いた
ボールの衝撃を利用した湿式粉砕、あるいはジェットミ
ル等の乾式粉砕により粒子間や容器の壁への粒子の衝突
による衝撃により微粒子化される。
Pulverization of Ingot The MnBi ingot produced as described above is taken out and coarsely pulverized in advance in an inert gas atmosphere using an automatic mortar or the like, and the particle size is adjusted to 100 to 500 μm. Then, the particles are formed into fine particles by the impact due to the collision between the particles or the wall of the container by wet pulverization utilizing the impact of a ball using a ball mill, a planetary ball mill or the like, or dry pulverization such as a jet mill.

【0023】このボールの衝撃を利用した粉砕において
は、粉砕が進むにつれて、ボールの径を段階的に小さく
して粉砕すると、より粒子径の均一な磁性粉が得られ
る。元々、MnBiは六方晶構造を有するために、劈開
する性質を示し、このために高いエネルギーをかけて粉
砕する必要はない。湿式粉砕の場合の液体としては有機
溶媒を使用することが好ましく、さらに有機溶媒として
はトルエン等の非極性溶媒を使用し、あらかじめ溶媒中
の溶存水分を除去しておくことがことが好ましい。一
方、乾式粉砕の場合には、非酸化性雰囲気で行うことが
好ましい。この非酸化性雰囲気としては、真空あるいは
窒素ガス、アルゴンガス等の不活性ガス雰囲気が好適な
ものとして用いられる。
In the pulverization utilizing the impact of the ball, as the pulverization progresses, the diameter of the ball is reduced stepwise to obtain a magnetic powder having a more uniform particle diameter. Originally, since MnBi has a hexagonal structure, it shows a property of cleavage, so that it is not necessary to pulverize with high energy. It is preferable to use an organic solvent as the liquid in the case of wet pulverization, and it is also preferable to use a non-polar solvent such as toluene as the organic solvent and remove dissolved water in the solvent in advance. On the other hand, in the case of dry pulverization, it is preferable to perform the pulverization in a non-oxidizing atmosphere. As the non-oxidizing atmosphere, a vacuum or an inert gas atmosphere such as a nitrogen gas or an argon gas is preferably used.

【0024】このようにして得られるMnBi磁性粉末
の平均粒子径は、0.1μm以上20μm以下の範囲と
し、これらは粉砕条件により粒子径をコントロールでき
る。粒子径を0.1μmより大きくすることにより最終的
に得られる磁性粉の飽和磁化を高くすることができ、ま
た20μm以下とすることにより、磁性粉の保磁力を十
分に大きくすることができるとともに、樹脂バインダー
と混合して圧縮成形あるいは射出成形する時の成形性が
良好になり、好ましくは0.3μm以上、10μm以下、
より好ましくは0.5μm以上、5μm以下である。
The MnBi magnetic powder thus obtained has an average particle size in the range of 0.1 μm to 20 μm, and the particle size can be controlled by pulverizing conditions. By making the particle diameter larger than 0.1 μm, the saturation magnetization of the finally obtained magnetic powder can be increased, and by making the particle diameter 20 μm or less, the coercive force of the magnetic powder can be sufficiently increased. The moldability at the time of compression molding or injection molding by mixing with a resin binder is improved, preferably from 0.3 μm to 10 μm,
More preferably, it is 0.5 μm or more and 5 μm or less.

【0025】以上の工程により、本発明の永久磁石材料
に含有されるMnBi磁性粉末が得られるが、この時磁
性粉末として、16kOeの磁界を印加して測定した保
磁力が300Kにおいて5000Oe〜16000Oe
の範囲にあるMnBi磁性粉末を用いることが好まし
い。これは、永久磁石材料の保磁力は磁性粉末の充填性
にも依存するため、5000Oe以下では樹脂バインダ
ーと混合する際に充填性を余りに上げると保磁力が低下
するためであり、一方余りに保磁力が高いと磁性粉末を
微粒子化する必要があることから生産性が困難となるた
めである。なお、MnBi磁性粉末の飽和磁化量は、磁
性粉末の生産性及び樹脂バインダーでの分散性を考慮す
ると温度300Kにおいて16kOeの磁界を印加した
時に、30〜50emu/gのものを用いることが望ま
しい。
By the above steps, a MnBi magnetic powder contained in the permanent magnet material of the present invention is obtained. At this time, the coercive force measured by applying a magnetic field of 16 kOe and being 5000 Oe to 16000 Oe at 300 K is applied.
It is preferable to use a MnBi magnetic powder in the range described above. This is because the coercive force of the permanent magnet material also depends on the filling property of the magnetic powder, so that if it is less than 5000 Oe, the coercive force decreases if the filling property is excessively increased when mixed with the resin binder. If the ratio is high, the productivity becomes difficult because the magnetic powder needs to be finely divided. Considering the productivity of the magnetic powder and the dispersibility in the resin binder, the saturation magnetization of the MnBi magnetic powder is desirably 30 to 50 emu / g when a magnetic field of 16 kOe is applied at a temperature of 300K.

【0026】 安定化処理 このような方法で作製したMnBi磁性粉末は、さらに
安定化処理を施すことが好ましい。ここでは、代表的な
ものとして、酸素を利用してMnBi磁性粉末の表面に
MnおよびBiの酸化物の被膜を形成する方法について
説明する。まず、MnBi磁性粉末を、100ppmか
ら10000ppm程度の酸素を含有する窒素ガスやア
ルゴンガス中において、20〜150℃の温度で加熱す
る。加熱時間は0.5時間から40時間程度が適当であ
る。温度が低いほど、この加熱時間を長くすることが好
ましい。この処理により、MnおよびBiの酸化物が形
成される。特にこの処理において、MnBi磁性粉末の
化学的安定性に大きく寄与するMnの酸化物が優先的に
形成される。この酸化の度合いを大きくするほど表面近
傍に形成される酸化物被膜は厚くなり、化学的安定性は
向上するが、飽和磁化の初期値が低下してしまう。
Stabilization Treatment The MnBi magnetic powder produced by such a method is preferably further subjected to a stabilization treatment. Here, as a typical example, a method of forming a coating film of Mn and Bi oxides on the surface of MnBi magnetic powder using oxygen will be described. First, the MnBi magnetic powder is heated at a temperature of 20 to 150 ° C. in a nitrogen gas or an argon gas containing about 100 ppm to 10,000 ppm of oxygen. The heating time is suitably about 0.5 to 40 hours. It is preferable that the lower the temperature is, the longer the heating time is. By this treatment, oxides of Mn and Bi are formed. In particular, in this treatment, an oxide of Mn, which greatly contributes to the chemical stability of the MnBi magnetic powder, is preferentially formed. As the degree of oxidation increases, the oxide film formed near the surface becomes thicker and the chemical stability improves, but the initial value of the saturation magnetization decreases.

【0027】〔本発明で用いられる樹脂バインダー〕本
発明に用いられる結合用の樹脂バインダーとしては、従
来から公知の樹脂を用いることができるが、例えば圧縮
成形の場合には、エポキシ系樹脂、フェノール系樹脂等
の硬化性樹脂が好適なものとして挙げることができ、ま
た射出成形の場合にはナイロン等のポリアミド樹脂、ポ
リプロピレン等のポリオレフィン樹脂、ポリエチレンテ
レフタレート等のポリエステル樹脂などを好適なものと
して挙げることができる。
[Resin Binder Used in the Present Invention] As the resin binder for binding used in the present invention, conventionally known resins can be used. For example, in the case of compression molding, epoxy resin, phenol Curable resins such as a base resin can be cited as preferable ones.In the case of injection molding, polyamide resins such as nylon, polyolefin resins such as polypropylene, and polyester resins such as polyethylene terephthalate are preferable. Can be.

【0028】樹脂バインダー量は、MnBi磁性粉末1
00重量部に対して0.3重量部以上、20重量部以下と
することが好ましく、0.5重量部以上、10重量部以下
とすることが特に好ましい。0.3重量部以上とすること
により、樹脂硬化後の永久磁石材料の機械強度をより高
めることができ、金型の摩耗を小さくすることができ
る。一方、20重量部以下とすることにより、MnBi
磁性粉末の充填量を向上し、高い磁気特性を得ることが
できる。
The amount of the resin binder was as follows: MnBi magnetic powder 1
The amount is preferably from 0.3 to 20 parts by weight, more preferably from 0.5 to 10 parts by weight, per 100 parts by weight. When the content is 0.3 parts by weight or more, the mechanical strength of the permanent magnet material after the resin is cured can be further increased, and the wear of the mold can be reduced. On the other hand, by setting the content to 20 parts by weight or less, MnBi
The filling amount of the magnetic powder can be improved, and high magnetic properties can be obtained.

【0029】〔成形法〕圧縮成形あるいは射出成形は常
法に準じて行うことができる。例えば圧縮成形の場合に
は、MnBi磁性粉末と樹脂バインダーとを混合し、こ
の混合物をプレス成形金型に供給し、配向磁石とする場
合には磁界を印加しながらプレス成形し、ついで成形体
を加熱し樹脂を硬化させれば得られる。
[Molding Method] Compression molding or injection molding can be performed according to a conventional method. For example, in the case of compression molding, a MnBi magnetic powder and a resin binder are mixed, and this mixture is supplied to a press molding die. In the case of an oriented magnet, press molding is performed while applying a magnetic field. It is obtained by heating and curing the resin.

【0030】〔樹脂結合型永久磁石材料の保磁力〕上記
のようにして得られる樹脂結合型永久磁石材料の保磁力
としては、着磁する際の条件にもよるが、温度300K
において16KOeの磁界を印加した時に、3000O
e以上16000Oe以下、好ましくは5000Oe以
上16000Oe以下、より好ましくは7000Oe以
上16000Oe以下とする必要がある。すなわち、3
000Oe以下では、永久磁石材料の性能である磁気エ
ネルギーが小さくなり、エンコーダに使用した場合に高
い出力が得られないこととなり、また、本発明の磁石近
傍に高保磁力の永久磁石が設置された場合、漏洩磁界に
よる減磁の影響を無視できないこととなる。一方、16
000Oe以上では、MnBi磁性粉末を微粒子化する
必要から生産性が低下することとなる。なお、保磁力
(iHc)は、300Kで16KOeの着磁磁界の印加
方向と逆方向に磁界を印加して、磁化が0になる磁界の
値を測定したものである。
[Coercive force of resin-bonded permanent magnet material] The coercive force of the resin-bonded permanent magnet material obtained as described above depends on the conditions at the time of magnetization.
When a magnetic field of 16 KOe was applied at 3000
e to 16000 Oe, preferably 5000 Oe to 16000 Oe, more preferably 7000 Oe to 16000 Oe. That is, 3
At 000 Oe or less, the magnetic energy, which is the performance of the permanent magnet material, becomes small, so that a high output cannot be obtained when used in an encoder. In addition, when a permanent magnet having a high coercive force is installed near the magnet of the present invention. In addition, the effect of the demagnetization due to the leakage magnetic field cannot be ignored. On the other hand, 16
If it is 000 Oe or more, the productivity will be reduced because the MnBi magnetic powder needs to be finely divided. The coercive force (iHc) is a value obtained by applying a magnetic field at 300 K in a direction opposite to the direction of application of a magnetization magnetic field of 16 KOe and measuring the value of the magnetic field at which the magnetization becomes zero.

【0031】〔着磁方法〕次に、上記のようなMnBi
磁性粉末と樹脂バインダーとを含有してなる本発明に係
る永久磁石材料の着磁方法の基本操作について説明す
る。
[Magnetization method] Next, MnBi as described above is used.
The basic operation of the method for magnetizing a permanent magnet material according to the present invention containing a magnetic powder and a resin binder will be described.

【0032】上記のようにして作製した樹脂結合型永久
磁石材料は、配向磁石の場合成形時に磁界が印加されて
いるため、既に磁化されており、そのため保磁力が30
00Oe以上、16000Oe以下の高保磁力になって
いることから、通常の磁気ヘッド等では、十分な着磁を
行うための磁界強度が得られず、高い記録密度で着磁パ
ターンを付与することができない。
In the case of an oriented magnet, the resin-bonded permanent magnet material produced as described above is already magnetized because a magnetic field is applied at the time of molding, and thus has a coercive force of 30%.
Since the coercive force is not less than 00 Oe and not more than 16000 Oe, a normal magnetic head or the like cannot provide a sufficient magnetic field strength to perform sufficient magnetization, and cannot provide a magnetization pattern with a high recording density. .

【0033】このため、まず初期化処理として、永久磁
石材料を低温処理し、室温で着磁できる状態にする必要
がある。すなわち、この低温処理によって、MnBi磁
性粉末の保磁力が500Oe以下となり、この状態で室
温に戻すと、容易に着磁することができるようになる。
しかも、このような低保磁力の状態で着磁できることか
ら、磁気ヘッドのギャップ長を小さくして低い磁界でも
着磁可能であり、従って着磁パターンを狭面積化するこ
とができ、高い記録密度を達成することができる。
Therefore, it is necessary to first perform a low-temperature treatment on the permanent magnet material so as to be able to be magnetized at room temperature as an initialization process. That is, by this low-temperature treatment, the coercive force of the MnBi magnetic powder becomes 500 Oe or less, and when the temperature is returned to room temperature in this state, the magnetization can be easily performed.
In addition, since magnetization can be performed with such a low coercive force, the gap length of the magnetic head can be reduced so that magnetization can be performed even in a low magnetic field. Can be achieved.

【0034】上記低温処理の温度としては、100K以
下とすることが好ましく、より好ましくは液体窒素温度
(77K)以下とすることが好ましい。また処理時間と
しては、生産性を考慮すると、10秒〜20分、より好
ましくは1分〜10分である。
The temperature for the low-temperature treatment is preferably 100 K or lower, more preferably, liquid nitrogen temperature (77 K) or lower. The processing time is 10 seconds to 20 minutes, more preferably 1 minute to 10 minutes, in consideration of productivity.

【0035】上記のようにして消磁状態にした磁石を、
室温(15℃〜30℃)に取り出し外部磁界を印加する
ことにより、本発明の永久磁石材料は初期化され、着磁
パターンを記録することができる。この場合、先に説明
したように、磁石材料がすでに初期化されているため、
通常の印加手段で容易に着磁させることができる。外部
磁界を印加する手段としては、電磁石、永久磁石あるい
は磁気ヘッド等の印加手段を用いることができる。特に
エンコーダのような細かな着磁パターンを記録する必要
がある場合には、磁気ヘッドを用いて本発明の永久磁石
材料を着磁することにより、高い記録密度を達成するこ
とができる。
The magnet demagnetized as described above is
By taking out at room temperature (15 ° C. to 30 ° C.) and applying an external magnetic field, the permanent magnet material of the present invention is initialized and a magnetization pattern can be recorded. In this case, as described above, since the magnet material has already been initialized,
It can be easily magnetized by ordinary application means. As a means for applying an external magnetic field, an application means such as an electromagnet, a permanent magnet, or a magnetic head can be used. In particular, when it is necessary to record a fine magnetized pattern such as an encoder, a high recording density can be achieved by magnetizing the permanent magnet material of the present invention using a magnetic head.

【0036】上記のような着磁により、本発明の永久磁
石材料は3000Oe以上16000Oe以下の高い保
磁力を有することとなり、磁石性能として優れた磁気エ
ネルギーを示し、高出力が得られるとともに、通常の方
法では減磁が極めて困難となる。
By the above-described magnetization, the permanent magnet material of the present invention has a high coercive force of 3000 Oe or more and 16000 Oe or less, exhibits excellent magnetic energy as a magnet performance, can obtain a high output, and has a high output. With the method, demagnetization becomes extremely difficult.

【0037】なお、エンコーダとしてより優れた特性を
得るためには、上述したように磁界中成形して磁性粉末
の磁気異方性の向きを特定方向に配向させることが好ま
しい。一方、成形時に磁界を印加しない場合には、磁性
粉末は無配向となる。その場合、永久磁石としての性
能、すなわち保磁力及び残留磁束は、特定方向に配向さ
せた場合に比べて低くなるが、磁性粉末が磁化されてい
ないため、上記の初期化処理を行うことなく、着磁でき
るという利点を有する。従って、本発明の永久磁石材料
を使用した場合には、このような無配向の樹脂結合型永
久磁石材料においても、従来の樹脂結合型永久磁石材料
よりさらに優れた特性を有する。
In order to obtain more excellent characteristics as an encoder, it is preferable that the magnetic powder is molded in a magnetic field to orient the magnetic powder in a specific direction as described above. On the other hand, when a magnetic field is not applied during molding, the magnetic powder becomes non-oriented. In that case, the performance as a permanent magnet, that is, the coercive force and the residual magnetic flux, are lower than when oriented in a specific direction, but since the magnetic powder is not magnetized, without performing the above-described initialization processing, It has the advantage that it can be magnetized. Therefore, when the permanent magnet material of the present invention is used, even such a non-oriented resin-bonded permanent magnet material has more excellent characteristics than the conventional resin-bonded permanent magnet material.

【0038】[0038]

【実施例】以下、本発明の実施例を説明する。 (実施例1) 《MnBi磁性粉末の作製》粒子サイズが200メッシ
ュになるように粉砕したMn粉末およびBi粉末を、M
nとBiがモル比で55:45になるように秤量し、ボ
ールミルを用いて十分混合した。
Embodiments of the present invention will be described below. (Example 1) << Preparation of MnBi magnetic powder >> Mn powder and Bi powder pulverized to a particle size of 200 mesh were mixed with M powder.
n and Bi were weighed so that the molar ratio was 55:45, and were sufficiently mixed using a ball mill.

【0039】次に、これらの混合物を、加圧プレス機を
用いて、3トン/cm2 の圧力で直径20mm、高さ10mm
の円柱状に成型した。この成型体を密閉式のアルミ容器
に入れ、真空に引いた後、窒素ガスを0.5気圧導入し
た。次に、この容器を電気炉に入れ、270℃の温度で
10日間熱処理した。熱処理後、MnBiインゴットを
空気中に取り出し、乳鉢で軽く粉砕して磁気特性を測定
した。300Kで最大磁界16kOeの磁界を印加して
測定した保磁力は840Oeで、磁化量は53.6emu
/gであった。
Next, these mixtures were crushed at a pressure of 3 tons / cm 2 using a press machine to a diameter of 20 mm and a height of 10 mm.
Into a cylindrical shape. The molded body was placed in a sealed aluminum container, and after vacuum was drawn, nitrogen gas was introduced at 0.5 atm. Next, the container was placed in an electric furnace and heat-treated at a temperature of 270 ° C. for 10 days. After the heat treatment, the MnBi ingot was taken out into the air, crushed lightly in a mortar, and the magnetic properties were measured. The coercive force measured by applying a maximum magnetic field of 16 kOe at 300 K is 840 Oe, and the magnetization amount is 53.6 emu.
/ G.

【0040】次に、上記の粗粉砕したMnBi粉末を、
遊星ボールミルを用いて微粉砕した。内容積1000cc
のボールミルポットに直径3mmのジルコニアボールを、
内容積の1/3を占めるように充填した。この中に、粗
粉砕したMnBi粉末500gと、溶媒としてトルエン
を500g入れ、回転数150rpmで4時間粉砕し
た。得られたMnBi磁性粉末を取り出し、トルエンを
蒸発させた後、磁気特性を測定した。温度300Kで最
大磁界16KOeの磁界を印加して測定した保磁力およ
び磁化量は、それぞれ8600Oeおよび39.2emu
/gであった。
Next, the above coarsely pulverized MnBi powder was
It was pulverized using a planetary ball mill. Internal capacity 1000cc
Zirconia balls with a diameter of 3 mm in the ball mill pot
It was filled so as to occupy 1/3 of the internal volume. Into this, 500 g of roughly pulverized MnBi powder and 500 g of toluene as a solvent were added, and pulverized at 150 rpm for 4 hours. The obtained MnBi magnetic powder was taken out, toluene was evaporated, and then the magnetic properties were measured. The coercive force and the amount of magnetization measured by applying a maximum magnetic field of 16 KOe at a temperature of 300 K were 8600 Oe and 39.2 emu, respectively.
/ G.

【0041】前記の方法により得られたMnBi磁性粉
末に、以下の方法で安定化処理を施した。トルエンに浸
した状態でMnBi磁性粉を取り出し、熱処理容器に移
して室温で約2間真空乾燥した。次に同じ容器に入れた
まま、酸素を1000ppm含有する窒素ガスを1気圧
導入し、40℃の温度において、15時間熱処理を行っ
た。
The MnBi magnetic powder obtained by the above method was subjected to a stabilization treatment by the following method. The MnBi magnetic powder was taken out in a state of being immersed in toluene, transferred to a heat treatment vessel, and vacuum dried at room temperature for about 2 minutes. Next, while keeping the same container, nitrogen gas containing 1000 ppm of oxygen was introduced at 1 atm, and heat treatment was performed at a temperature of 40 ° C. for 15 hours.

【0042】上記の方法により、最終的に得られたMn
Bi磁性粉末の平均粒子径は、1.8μmで、温度300
Kで最大磁界16KOeの磁界を印加して測定した保磁
力および磁化量は、それぞれ8500Oeおよび46.3
emu/gであった。
The Mn finally obtained by the above method
The average particle size of the Bi magnetic powder is 1.8 μm and the temperature is 300
The coercive force and the magnetization amount measured by applying a maximum magnetic field of 16 KOe at K are 8500 Oe and 46.3, respectively.
emu / g.

【0043】《樹脂結合型永久磁石材料の作製等》上記
の方法で作製したMnBi磁性粉末100重量部に対し
て、メチルエチルケトンに溶解した硬化剤を含むエポキ
シ樹脂5重量部を添加し、十分混合分散した後、真空中
脱有機剤処理を行った。次いで、このようにして得られ
た樹脂バインダーを含むMnBi磁性粉末を、外形25
mm、内径21mm、深さ30mmの凹部を有する金型に給粉
し、16KOeの磁界中、5ton/cm2 の圧力で成型
した。この成型体をさらに130℃で20分間加熱し、
樹脂バインダーを硬化させて樹脂結合型永久磁石材料を
得た。そして、初期化処理として、この成型体(樹脂結
合型永久磁石材料)を液体窒素温度で10分間冷却した
後、室温に戻した。
<< Preparation of Resin-Bound Permanent Magnet Material, etc. >> To 100 parts by weight of the MnBi magnetic powder prepared by the above method, 5 parts by weight of an epoxy resin containing a curing agent dissolved in methyl ethyl ketone was added, and the mixture was thoroughly mixed and dispersed. After that, a deorganizing agent treatment was performed in a vacuum. Next, the MnBi magnetic powder containing the resin binder obtained in this manner was applied to an outer shape 25.
The powder was fed into a mold having a concave portion having a diameter of 21 mm, an inner diameter of 21 mm and a depth of 30 mm, and was molded under a magnetic field of 16 KOe at a pressure of 5 ton / cm 2 . The molded body is further heated at 130 ° C. for 20 minutes,
The resin binder was cured to obtain a resin-bonded permanent magnet material. Then, as an initialization treatment, the molded body (resin-bonded permanent magnet material) was cooled at liquid nitrogen temperature for 10 minutes, and then returned to room temperature.

【0044】(実施例2)実施例1において、硬化剤を
含むエポキシ樹脂の添加量を5重量部から2重量部に変
更した以外は、実施例1と同様にして成型体を作製し、
樹脂結合型永久磁石材料を得た。得られた樹脂結合型永
久磁石材料を、実施例1と同様にして初期化処理を行っ
たのち、室温に戻した。
Example 2 A molded article was prepared in the same manner as in Example 1, except that the amount of the epoxy resin containing the curing agent was changed from 5 parts by weight to 2 parts by weight.
A resin-bonded permanent magnet material was obtained. The obtained resin-bonded permanent magnet material was subjected to an initialization treatment in the same manner as in Example 1, and then returned to room temperature.

【0045】(実施例3)実施例1において、MnBi
磁性粉末として、平均粒子径が1.2μmで、温度300
Kで最大磁界16kOeの磁界を印加して測定した保磁
力および磁化量が、それぞれ11200Oeおよび39.
4emu/gのものを使用した以外は、実施例1と同様
にして成型体を作製し、樹脂結合型永久磁石材料を得
た。得られた樹脂結合型永久磁石材料を、実施例1と同
様にして初期化処理を行ったのち、室温に戻した。
(Example 3) In Example 1, MnBi
As a magnetic powder, the average particle size is 1.2 μm and the temperature is 300
The coercive force and the magnetization amount measured by applying a maximum magnetic field of 16 kOe at K are 11200 Oe and 39.
A molded body was produced in the same manner as in Example 1 except that a material having a viscosity of 4 emu / g was used, and a resin-bonded permanent magnet material was obtained. The obtained resin-bonded permanent magnet material was subjected to an initialization treatment in the same manner as in Example 1, and then returned to room temperature.

【0046】(比較例1)実施例1で得られた樹脂結合
型永久磁石材料の初期化処理を行わなかった以外は、実
施例1と同様にした。
Comparative Example 1 The procedure of Example 1 was repeated except that the resin-bonded permanent magnet material obtained in Example 1 was not initialized.

【0047】(比較例2)実施例1における磁性粉末と
して、保磁力が約12000OeのNdFeB磁性粉末
を使用した以外は、実施例1と同様にして成型体を作製
し、樹脂結合型永久磁石材料を得た。
(Comparative Example 2) A molded body was produced in the same manner as in Example 1 except that NdFeB magnetic powder having a coercive force of about 12000 Oe was used as the magnetic powder in Example 1, and a resin-bonded permanent magnet material was prepared. I got

【0048】(比較例3)実施例1における磁性粉末と
して、保磁力が2800OeのSrフェライト磁性粉末
を使用した以外は、実施例1と同様にして成型体を作製
し、樹脂結合型永久磁石材料を得た。
(Comparative Example 3) A molded body was produced in the same manner as in Example 1 except that a Sr ferrite magnetic powder having a coercive force of 2800 Oe was used as the magnetic powder in Example 1, and a resin-bonded permanent magnet material was prepared. I got

【0049】(評価)実施例1〜3および比較例1〜3
で得た樹脂結合型永久磁石材料の一部を切り出し、以下
の方法により磁石性能および着磁性を評価した。以下の
測定温度は、すべて300Kとした。
(Evaluation) Examples 1-3 and Comparative Examples 1-3
A part of the resin-bonded permanent magnet material obtained in the above was cut out, and the magnet performance and the magnetization were evaluated by the following methods. The following measurement temperatures were all 300K.

【0050】磁石性能のうち、残留磁束は16KOeの
磁界中成形後の状態で測定し、この値をBr(+16
K)とした。
Among the magnet performances, the residual magnetic flux was measured in a state after molding in a magnetic field of 16 KOe, and this value was expressed as Br (+16
K).

【0051】着磁性については、測定試料として、実施
例1〜3は上記残留磁束を測定した試料とは別に初期化
処理したものを用い、磁石成形加工時に印加した方向と
は逆方向に、5000Oeの磁界を印加し、残留磁束B
r(−5K)を測定し、前記Br(+16K)との比、
すなわちBr(−5K)/Br(+16K)の値から評
価した。すなわち、この値が負の時は、−5000Oe
の逆磁界印加により磁化が反転し、着磁しやすいことを
示しており、この値が−1に近づくほど永久磁石が最も
着磁性に優れていることとなる。
Regarding the magnetism, as a measurement sample, in Examples 1 to 3, a sample subjected to an initialization treatment separately from the sample whose residual magnetic flux was measured was used, and 5000 Oe was applied in a direction opposite to the direction applied during the magnet forming process. And the residual magnetic flux B
r (−5K) was measured, and the ratio with the above Br (+ 16K) was determined.
That is, evaluation was made from the value of Br (−5K) / Br (+ 16K). That is, when this value is negative, -5000 Oe
This indicates that the magnetization is easily reversed by application of the reverse magnetic field, and that the closer the value is to -1, the more excellent the permanent magnet is.

【0052】磁石性能のうち、保磁力(iHc)は、着
磁性測定後に16KOeの磁界中ヒステリシス曲線を測
定し、このヒステリシス曲線において磁束が0Gとなる
磁界(iHc)を測定した。永久磁石としての性能は、
上記iHc×Br(+16K)の値から評価した。すな
わち、この値が大きいほど磁石性能が優れていることを
示している。
Among the magnet properties, the coercive force (iHc) was measured by measuring a hysteresis curve in a magnetic field of 16 KOe after the magnetization measurement, and a magnetic field (iHc) at which the magnetic flux became 0 G in the hysteresis curve. The performance as a permanent magnet is
It was evaluated from the value of iHc × Br (+ 16K). That is, the larger the value, the better the magnet performance.

【0053】表1に、実施例1〜3および比較例1〜3
の各樹脂結合型永久磁石材料について、上記のようにし
て測定したBr(−5K)、Br(+16K)、Br
(−5K)/Br(+16K)、およびiHc×Br
(+16K)の結果をそれぞれ示す。
Table 1 shows Examples 1 to 3 and Comparative Examples 1 to 3.
Br (-5K), Br (+ 16K), Br
(−5K) / Br (+ 16K), and iHc × Br
The results of (+ 16K) are shown.

【0054】[0054]

【表1】 [Table 1]

【0055】表1において、Br(−5K)/Br(+
16K)が正の値の磁石材料(比較例1と比較例2)が
あるが、これは、着磁時に印加した磁界方向と逆方向に
5000Oeの磁界を印加しても、iHcが5000O
eより大きいため、磁化反転がほとんどできないためで
ある。
In Table 1, Br (-5K) / Br (+
16K) has a positive value (Comparative Example 1 and Comparative Example 2). This is because even if a magnetic field of 5000 Oe is applied in a direction opposite to the magnetic field applied at the time of magnetization, iHc is 5000 Oe.
This is because magnetization reversal can hardly be performed because of being larger than e.

【0056】表1より明らかなように、本発明のMnB
i磁性粉末を使用し、かつ初期化処理を行った実施例1
〜3の樹脂結合型永久磁石材料は、Br(−5K)/B
r(+16K)が−1に近い値を示し、着磁性能が良好で
あり、かつiHc×Br(+16K)も大きな値を示し、
磁石性能も優れている。
As is clear from Table 1, the MnB of the present invention
Example 1 Using i Magnetic Powder and Initializing
The resin-bonded permanent magnet materials of Nos. 1 to 3 are Br (-5K) / B
r (+ 16K) shows a value close to -1, good magnetization performance, and iHc × Br (+ 16K) also shows a large value;
Magnet performance is also excellent.

【0057】これに対して、MnBi磁性粉末を使用し
たものでも、初期化処理を行わない比較例1では、Br
(−5K)/Br(+16K)の値が正であり、着磁しに
くいことがわかる。
On the other hand, even in the case where the MnBi magnetic powder was used, in Comparative Example 1 where no initialization treatment was performed, Br was used.
The value of (−5K) / Br (+ 16K) is positive, which indicates that magnetization is difficult.

【0058】また、NdFeB磁性粉末を用いた比較例
2では、iHc×Br(+16K)が大きく、磁石性能は
優れているが、Br(−5K)/Br(+16K)は正の
値であり、しかも+1に近い値であることから、500
0Oe程度の磁界では、磁化反転せず、ほとんど着磁で
きないことがわかる。
In Comparative Example 2 using NdFeB magnetic powder, iHc × Br (+ 16K) is large and magnet performance is excellent, but Br (−5K) / Br (+ 16K) is a positive value. Moreover, since the value is close to +1, 500
It can be seen that at a magnetic field of about 0 Oe, the magnetization is not reversed and the magnetization is hardly possible.

【0059】さらに、Srフェライトを用いた比較例3
では、iHcが低いためBr(+5K)/Br(+16
K)は負の値を示し、比較的着磁性は良好であるが、反
面iHcが低いためiHc×Br(+16K)が小さく磁
石性能が劣ることがわかる。
Further, Comparative Example 3 using Sr ferrite
In this case, since the iHc is low, Br (+ 5K) / Br (+16
K) indicates a negative value, indicating that the magnetism is relatively good, but on the other hand, iHc × Br (+ 16K) is small due to low iHc, and magnet performance is inferior.

【0060】こうして、MnBi磁性粉末を使用し、か
つ初期化処理を行った本発明実施例1〜3の各樹脂結合
型磁石材料は、着磁しやすく、かつ着磁後の磁石性能が
良好であるという、通常の磁石材料では実現不可能であ
った極めて有用な特性を実現できることが確認された。
Thus, each of the resin-bonded magnet materials of Examples 1 to 3 of the present invention using the MnBi magnetic powder and subjected to the initialization treatment is easy to magnetize and has good magnet performance after magnetization. It has been confirmed that extremely useful characteristics that cannot be realized with ordinary magnet materials can be realized.

【0061】[0061]

【発明の効果】以上のように、MnBi磁性粉末を使用
し、かつ初期化処理を行った本発明の樹脂結合型永久磁
石材料は、低い磁界で容易に着磁できる優れた着磁性を
示し、かつ一度着磁した後は、大きな保磁力を示すた
め、優れた磁石性能を示す。このような特性は、従来の
樹脂結合型磁石材料では実現不可能であり、本発明の樹
脂結合型磁石材料により初めて実現できたものである。
本発明の樹脂結合型永久磁石材料は、発生磁界強度に限
界のある磁気ヘッドや、永久磁石等を用いて任意の着磁
パターンを形成する必要があるエンコーダ等において特
に有効である。そして、本発明の着磁方法によれば、前
記樹脂結合型永久磁石材料に対し、用途に応じて必要と
する着磁パターンを容易に形成することができる。
As described above, the resin-bonded permanent magnet material of the present invention using the MnBi magnetic powder and subjected to the initialization treatment exhibits excellent magnetizability that can be easily magnetized in a low magnetic field. Further, once magnetized, it exhibits a large coercive force, and thus exhibits excellent magnet performance. Such characteristics cannot be realized by the conventional resin-bonded magnet material, but can be realized for the first time by the resin-bonded magnet material of the present invention.
The resin-bonded permanent magnet material of the present invention is particularly effective in a magnetic head having a limited generated magnetic field strength, an encoder which needs to form an arbitrary magnetized pattern using a permanent magnet, or the like. According to the magnetization method of the present invention, a required magnetization pattern can be easily formed on the resin-bonded permanent magnet material according to the intended use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る樹脂結合型永久磁石材料の初期磁
化曲線および減磁曲線を示す図である。
FIG. 1 is a diagram showing an initial magnetization curve and a demagnetization curve of a resin-bonded permanent magnet material according to the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子サイズが0.1μm以上20μm
以下のMnBi磁性粉末と、樹脂バインダーとを含有
し、温度300Kで16KOeの磁界を印加して測定し
た保磁力が3000Oe以上16000Oe以下である
ことを特徴とする樹脂結合型永久磁石材料。
1. An average particle size of 0.1 μm or more and 20 μm or more.
A resin-bonded permanent magnet material comprising the following MnBi magnetic powder and a resin binder, wherein a coercive force measured by applying a magnetic field of 16 KOe at a temperature of 300 K is 3,000 Oe to 16,000 Oe.
【請求項2】 樹脂バインダーの含有量がMnBi磁性
粉末100重量部に対して0.3〜20重量部である、請
求項1記載の樹脂結合型永久磁石材料。
2. The resin-bonded permanent magnet material according to claim 1, wherein the content of the resin binder is 0.3 to 20 parts by weight based on 100 parts by weight of the MnBi magnetic powder.
【請求項3】 永久磁石材料を構成部材として有するエ
ンコーダであって、前記永久磁石材料が、請求項1に記
載の樹脂結合型永久磁石材料によって構成されているこ
とを特徴とするエンコーダ。
3. An encoder having a permanent magnet material as a constituent member, wherein the permanent magnet material is made of the resin-bonded permanent magnet material according to claim 1.
【請求項4】 MnBi磁性粉末と樹脂バインダーとを
含有してなる樹脂結合型永久磁石材料に所定の着磁パタ
ーンを形成する着磁方法であって、磁界中で前記樹脂結
合型永久磁石材料を所望の形状に成形した後、低温に冷
却して消磁状態とし、室温において外部磁界を印加する
ことにより着磁することを特徴とする樹脂結合型永久磁
石材料の着磁方法。
4. A magnetizing method for forming a predetermined magnetized pattern on a resin-bonded permanent magnet material containing MnBi magnetic powder and a resin binder, wherein the resin-bonded permanent magnet material is formed in a magnetic field. A method of magnetizing a resin-bonded permanent magnet material, comprising: forming into a desired shape, cooling to a low temperature to be in a demagnetized state, and magnetizing at room temperature by applying an external magnetic field.
【請求項5】 外部磁界は、電磁石、永久磁石あるいは
磁気ヘッドのいずれかにより印加される、請求項4に記
載の樹脂結合型永久磁石材料の着磁方法。
5. The method according to claim 4, wherein the external magnetic field is applied by any one of an electromagnet, a permanent magnet, and a magnetic head.
JP10208079A 1998-07-23 1998-07-23 Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same Withdrawn JP2000040611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10208079A JP2000040611A (en) 1998-07-23 1998-07-23 Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10208079A JP2000040611A (en) 1998-07-23 1998-07-23 Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same

Publications (1)

Publication Number Publication Date
JP2000040611A true JP2000040611A (en) 2000-02-08

Family

ID=16550301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10208079A Withdrawn JP2000040611A (en) 1998-07-23 1998-07-23 Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same

Country Status (1)

Country Link
JP (1) JP2000040611A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075572A1 (en) * 2005-01-11 2006-07-20 Ntn Corporation Magnetic encoder and wheel bearing comprising same
JP2015075467A (en) * 2013-10-11 2015-04-20 Ntn株式会社 Magnetic encoder device and rotation detection device
WO2016143664A1 (en) * 2015-03-06 2016-09-15 戸田工業株式会社 Mnbi-based magnetic powder, method for producing same, compound for bonded magnets, bonded magnet and metal magnet
CN108780688A (en) * 2016-01-07 2018-11-09 户田工业株式会社 MnBi based magnetic powders and its manufacturing method and bonded permanent magnet mixture, bonded permanent magnet, MnBi systems metallic magnet and its manufacturing method
CN112136188A (en) * 2018-05-15 2020-12-25 马克斯·普朗克科学促进学会 Hard magnet without rare earth metal
WO2023063539A1 (en) * 2021-10-14 2023-04-20 한국재료연구원 Method for manufacturing mn-bi-based resin magnet, and mn-bi-based resin magnet manufactured therefrom

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075572A1 (en) * 2005-01-11 2006-07-20 Ntn Corporation Magnetic encoder and wheel bearing comprising same
JP2015075467A (en) * 2013-10-11 2015-04-20 Ntn株式会社 Magnetic encoder device and rotation detection device
WO2016143664A1 (en) * 2015-03-06 2016-09-15 戸田工業株式会社 Mnbi-based magnetic powder, method for producing same, compound for bonded magnets, bonded magnet and metal magnet
CN107408438A (en) * 2015-03-06 2017-11-28 户田工业株式会社 MnBi based magnetic powders and its manufacture method and bonded permanent magnet mixture, bonded permanent magnet and metallic magnet
CN108780688A (en) * 2016-01-07 2018-11-09 户田工业株式会社 MnBi based magnetic powders and its manufacturing method and bonded permanent magnet mixture, bonded permanent magnet, MnBi systems metallic magnet and its manufacturing method
CN112136188A (en) * 2018-05-15 2020-12-25 马克斯·普朗克科学促进学会 Hard magnet without rare earth metal
WO2023063539A1 (en) * 2021-10-14 2023-04-20 한국재료연구원 Method for manufacturing mn-bi-based resin magnet, and mn-bi-based resin magnet manufactured therefrom

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
EP0369097B1 (en) Magnetic materials containing rare earth element iron nitrogen and hydrogen
EP0195219A2 (en) Quenched permanent magnetic material
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
US4834812A (en) Method for producing polymer-bonded magnets from rare earth-iron-boron compositions
JP2000040611A (en) Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same
JP2002057015A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JP2708568B2 (en) Magnetic material
US5004499A (en) Rare earth-iron-boron compositions for polymer-bonded magnets
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP2708578B2 (en) Bonded magnet
JP2857824B2 (en) Rare earth-iron permanent magnet manufacturing method
JP2002057014A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JP4240988B2 (en) Rare earth alloy granulated powder manufacturing method, rare earth alloy granulated powder manufacturing apparatus, and rare earth alloy sintered body manufacturing method
JP2000216015A (en) Compressed type rigid magnetic material and manufacture thereof
JPS6353201A (en) Production of permanent magnet material
JP3209291B2 (en) Magnetic material and its manufacturing method
JP4370555B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JPH06112019A (en) Nitride magnetic material
JP3209292B2 (en) Magnetic material and its manufacturing method
JPH10189320A (en) Anisotropic magnet alloy powder, and its manufacture
JP2002332507A (en) Rare earth magnet and production method therefor
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPH03222304A (en) Manufacture of permanent magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004