JP2708578B2 - Bonded magnet - Google Patents

Bonded magnet

Info

Publication number
JP2708578B2
JP2708578B2 JP1299721A JP29972189A JP2708578B2 JP 2708578 B2 JP2708578 B2 JP 2708578B2 JP 1299721 A JP1299721 A JP 1299721A JP 29972189 A JP29972189 A JP 29972189A JP 2708578 B2 JP2708578 B2 JP 2708578B2
Authority
JP
Japan
Prior art keywords
magnetic
powder
composition
magnetic material
bonded magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1299721A
Other languages
Japanese (ja)
Other versions
JPH03160705A (en
Inventor
久理真 小林
恭彦 入山
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP1299721A priority Critical patent/JP2708578B2/en
Priority to US07/580,556 priority patent/US5164104A/en
Priority to EP90117488A priority patent/EP0417733B1/en
Priority to DE69007720T priority patent/DE69007720T2/en
Priority to AU62481/90A priority patent/AU624995C/en
Publication of JPH03160705A publication Critical patent/JPH03160705A/en
Application granted granted Critical
Publication of JP2708578B2 publication Critical patent/JP2708578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類元素−鉄−窒素−水素−酸素系磁性材
料を用いたボンド磁石に関する。
The present invention relates to a bonded magnet using a rare earth element-iron-nitrogen-hydrogen-oxygen-based magnetic material.

特にこの磁性材料粉体の結晶化度、粒径、組成及び粒
子形状を制御することにより粉体の磁気特性を制御し、
有機物、無機物又は金属をバインダーとし、その粉体を
圧縮又は射出成形あるいは圧粉成形により作製したボン
ド磁石に関する。
In particular, by controlling the crystallinity, particle size, composition and particle shape of this magnetic material powder, the magnetic properties of the powder are controlled,
The present invention relates to a bonded magnet produced by using an organic substance, an inorganic substance or a metal as a binder and compressing or injection molding or compacting the powder.

[従来の技術] ボンド磁石は機械的な加工性が良好なこと、複雑な形
状の磁石や一体成形が可能なことから近年とくに注目さ
れ、工業的な応用範囲が広がっている。とくに古くから
焼結磁石として信頼性のあるSm1Co5系やSm2Co17系の磁
性材料を用いたボンド磁石、更に高磁気特性で最近大き
な市場を獲得しつつあるNd-Fe-B系のボンド磁石は希土
類系ボンド磁石、又はプラスチック・マグネット(以下
“プラマグ”という)と呼称され、市場規模も拡大しつ
つある。
[Related Art] Bonded magnets have attracted special attention in recent years because of their good mechanical workability, magnets having complicated shapes and their ability to be integrally formed, and their industrial applications are expanding. Bond magnets using Sm 1 Co 5 or Sm 2 Co 17 magnetic materials, which are reliable sintered magnets for a long time, and Nd-Fe-B materials, which have recently gained a large market due to their high magnetic properties Is called a rare earth-based bonded magnet or a plastic magnet (hereinafter referred to as “Pramag”), and the market scale is expanding.

しかしSm-Co系は、その成分であるSm、Coがともに高
価で供給も不安定であること、物性的にもNd-Fe-B系に
劣るために物性的に安定な材料であるにもかかわらず、
多くの用途でNd-Fe-B系磁石に変換されつつある。この
傾向は焼結磁石にとどまらず、プラマグに関しても一般
的である。又、Nd-Fe-B系は焼結磁石でその(BH)max
が40MGOe以上と非常に高いことと、Nd、Fe、Bともに比
較的安価で供給も安定したものであることから、近年と
みに需要が増大しているが、耐食性に問題があり、その
点の改良が更に望まれている。
However, the Sm-Co system is a material that is physically stable because its components Sm and Co are both expensive and the supply is unstable, and is inferior in physical properties to the Nd-Fe-B system. regardless of,
It is being converted to Nd-Fe-B magnet for many applications. This tendency is not limited to sintered magnets, but is also common for plastic magnets. The Nd-Fe-B system is a sintered magnet whose (BH) max
Is very high, 40MGOe or more, and Nd, Fe, and B are relatively inexpensive and have a stable supply. Therefore, demand is increasing in recent years, but there is a problem in corrosion resistance, and improvement in that point Is further desired.

又、ボンド磁石あるいはプラマグ用の磁性材料とし
て、これら二つの磁性材料とも不利な点がある。すなわ
ちSm2Co17系やNd-Fe-B系の磁気特性の発現機構は、そ
の焼結体の微構造に大いに依存し、粒子内部と粒界部分
の組成の相違又は粒界部分の析出相の存在が高磁気特性
の発現に必須である。そのためボンド磁石用バインダー
との混練に好都合な数μm程度の粒径まで粉砕すると、
磁気特性及び耐食性の劣化が顕著となる。又Nd-Fe-B系
の超急冷法により得た試料は細粒の調製ができるが磁気
特性は焼結体より著しく低下し、かつそのままでは等方
性磁石しか作製できないという欠点がある。
Also, both of these two magnetic materials have disadvantages as a magnetic material for a bonded magnet or a plastic magnet. In other words, the mechanism of manifesting the magnetic properties of Sm 2 Co 17 and Nd-Fe-B systems greatly depends on the microstructure of the sintered body, and the difference in the composition between the inside and the grain boundary part or the precipitation phase in the grain boundary part Is essential for the development of high magnetic properties. Therefore, when crushed to a particle size of about several μm, which is convenient for kneading with the binder for the bonded magnet,
Deterioration of magnetic properties and corrosion resistance becomes remarkable. Also, a sample obtained by the Nd-Fe-B type super-quenching method has the drawback that fine particles can be prepared, but the magnetic properties are significantly lower than that of a sintered body, and only an isotropic magnet can be produced as it is.

そこで結局Sm2Co17系で約30μm以上、Nd-Fe-B系で
は50〜100μmの粒径が必要となり、ボンド磁石用原料
粉体としては扱いが難しい。Nd-Fe-B系では工業的に使
用可能な粉体で異方性磁石を作製する試みとしてホット
プレスやダイアプセット処理をほどこして、細粒で異方
性を有するボンド磁石原料粉体を用いることも研究さ
れ、成功しつつあるが、処理工程が長くなり、費用がか
さむという問題点は残っている。
Therefore, the Sm 2 Co 17 system needs to have a particle size of about 30 μm or more, and the Nd—Fe—B system requires a particle size of 50 to 100 μm, which is difficult to handle as a raw material powder for a bonded magnet. In the Nd-Fe-B system, hot press or diap set treatment is applied as an attempt to produce an anisotropic magnet using powder that can be used industrially, and a fine-grained anisotropic bonded magnet raw material powder is used. This has been studied and is becoming successful, but the problem of longer and more expensive processing steps remains.

[発明が解決しようとする課題] 本発明は、2〜3μm程度に微粉砕しても高い磁気特
性を有する磁性材料(特願平1-235822号)を用いて、従
来の技術における上記問題点を解決したボンド磁石を提
供しようとするものである。
[Problems to be Solved by the Invention] The present invention uses a magnetic material having high magnetic properties even when finely pulverized to about 2 to 3 μm (Japanese Patent Application No. 1-235822) to solve the above-mentioned problems in the prior art. It is an object of the present invention to provide a bonded magnet that solves the above problem.

[課題を解決するための手段] 上記課題を解決するための本発明の構成は、(1)下
記組成式で表わされ、かつ、実質的にTh2Zn17構造を有
する希土類元素−鉄−窒素−水素−酸素系磁性材料を含
有することを特徴とするボンド磁石。
Configuration of the present invention to solve the above problems [Means for Solving the Problems] (1) represented by the following composition formula, and rare earth elements have a substantially Th 2 Zn 17 structure - iron - A bonded magnet comprising a nitrogen-hydrogen-oxygen-based magnetic material.

組成式 RαFe(100−α−β−γ−δ)βγδ ただし上記組成式中、原子百分率で表わして、 5≦α≦20 10≦β≦25 1.5≦γ≦5 3≦δ≦10 Rはサマリウムを主成分とする希土類元素である。Composition formula R α Fe (100-α-β-γ-δ) N β H γ O δ In the above composition formula, represented by atomic percentage, 5 ≦ α ≦ 20 10 ≦ β ≦ 25 1.5 ≦ γ ≦ 53 ≦ δ ≦ 10 R is a rare earth element containing samarium as a main component.

(2) 上記(1)項記載の磁性粉末材料の成分のう
ち、鉄の0.1〜49原子%がコバルトと置換した組成を有
する磁性材料を含有することを特徴とする上記(1)項
記載のボンド磁石。
(2) The magnetic powder material according to (1), wherein the magnetic powder material contains a magnetic material having a composition in which 0.1 to 49 atomic% of iron is replaced with cobalt. Bond magnet.

(3) 保磁力が100 Oe乃至15kOe、 飽和磁化が5〜15kG、 角型比として飽和磁化に対する残留磁化をとると0.1
〜0.99、 磁気異方性として試料の配向方向の磁化に対する垂直
方向の磁化をとると0.1〜0.7である上記(1)項又は
(2)項記載のボンド磁石である。
(3) The coercive force is 100 Oe to 15 kOe, the saturation magnetization is 5 to 15 kG, and the squareness ratio is 0.1 when the residual magnetization with respect to the saturation magnetization is taken.
The bond magnet according to the above (1) or (2), wherein the magnetic anisotropy is 0.1 to 0.7 when the magnetization in the direction perpendicular to the orientation direction of the sample is taken as the magnetic anisotropy.

本発明で用いる希土類元素−鉄−窒素−水素−酸素系
磁性材料は先願(特願平1-235822号)に記載されている
磁性材料であり、2〜3μm程度の微細粒子としたとき
も高い磁気特性を有する特徴がある。又、その基本的性
質としては希土類元素−鉄のいわゆる2−17構造中に窒
素、水素及び酸素を遍在あるいは局在させることにより
磁気特性を発現させ得るが、その組成及び粒子径、粒子
形状を変化させることにより磁気特性を制御することが
可能であるという特徴がある。
The rare earth element-iron-nitrogen-hydrogen-oxygen-based magnetic material used in the present invention is the magnetic material described in the prior application (Japanese Patent Application No. 1-235822). It has the characteristic of having high magnetic properties. The basic property is that the magnetic properties can be expressed by ubiquitous or localized nitrogen, hydrogen and oxygen in the so-called 2-17 structure of rare earth element-iron. There is a characteristic that the magnetic characteristics can be controlled by changing.

ここでいう2−17構造とは、Th2Zn17あるいはTh2Ni17
構造をさす。[文献Handbook on the Physics and Chem
istry of Rare-Earths,Volume 2−Alloys and Inter-me
tallics(North-Holland Publishing Company,1979)p.
6,Fig 13.3]。より実用的であるSmなどの軽希土類はTh
2Zn17構造をとるので、本発明においては2−17構造の
うち、Th2Zn17構造が好ましい。
Here, the 2-17 structure means Th 2 Zn 17 or Th 2 Ni 17
Refers to the structure. [Literature Handbook on the Physics and Chem
istry of Rare-Earths, Volume 2−Alloys and Inter-me
tallics (North-Holland Publishing Company, 1979) p.
6, Fig 13.3]. Lighter rare earths such as Sm which are more practical
Since it has a 2 Zn 17 structure, a Th 2 Zn 17 structure is preferable in the present invention among the 2-17 structures.

更に、本発明の磁性材料における希土類元素はサマリ
ウムが好ましい。しかし、本発明の目的を達成できる範
囲内であればサマリウム以外の希土類元素が少量混在し
ていても良い。
Further, the rare earth element in the magnetic material of the present invention is preferably samarium. However, a rare earth element other than samarium may be present in a small amount as long as the object of the present invention can be achieved.

従って、本発明は、該磁性材料が有する上記特徴を生
かして調製した、保磁力が100Oe〜15kOe、飽和磁化が5k
Gから15kG、角型比が0.1から0.99、磁気異方性が0.1か
ら0.7の範囲にあるボンド磁石に関する。
Accordingly, the present invention provides a coercive force of 100 Oe to 15 kOe and a saturation magnetization of 5 kOe prepared by taking advantage of the above characteristics of the magnetic material.
The present invention relates to a bonded magnet having a G to 15 kG, a squareness ratio of 0.1 to 0.99, and a magnetic anisotropy of 0.1 to 0.7.

又、ホンド磁石のバインダーとして、一般に用いられ
る有機系バインダー以外に無機系及び金属系のバインダ
ーも用い得る。
Further, as the binder for the magnet, inorganic or metallic binders may be used in addition to the organic binders generally used.

〈製造方法〉 本発明の構成用件の第1は希土類元素−鉄−窒素−水
素−酸素系磁性材料にあり、第2は該磁性材料の磁気特
性を粉体の作製条件により変化させるうることにあり、
第3は該磁性粉体を用いて、有機系、無機系、金属系の
バインダーにより構成するボンド磁石にある。
<Manufacturing method> The first of the constitutional requirements of the present invention is a rare earth element-iron-nitrogen-hydrogen-oxygen-based magnetic material, and the second is that the magnetic properties of the magnetic material can be changed depending on the powder preparation conditions. In
Thirdly, there is provided a bonded magnet made of an organic, inorganic or metallic binder using the magnetic powder.

以下に第1の構成要件から述べる。ただし、この方法
に限定されるわけではない。希土類元素−鉄−窒素−水
素−酸素系磁性材料の製造工程は以下の4段階に大別で
きる。
The first configuration requirement will be described below. However, it is not limited to this method. The process for producing a rare earth element-iron-nitrogen-hydrogen-oxygen-based magnetic material can be roughly divided into the following four stages.

(1) 希土類元素−鉄系母合金の作製 (2) 粗粉砕 (3) 窒化、水素化 (4) 微粉砕すなわち粉体特性の調整 全般的な注意事項として以下のことがある。(1) Preparation of rare earth element-iron-based master alloy (2) Coarse pulverization (3) Nitriding and hydrogenation (4) Fine pulverization, that is, adjustment of powder characteristics The following are general precautions.

(4)の微粉砕時に酸素量および水素量を制御するこ
とができ、それにより磁性粉体の特性を変化させ得る。
又(1)の母合金の合成後に組成を均一化するため、更
に(3)の窒化・水素化後に組成の均一化と粒子に発生
した機械的応力を取り除くためにアニールを行うことは
磁気特性の向上にとって効果がある。
The amount of oxygen and the amount of hydrogen can be controlled during the fine pulverization in (4), so that the characteristics of the magnetic powder can be changed.
Annealing to homogenize the composition after synthesizing the mother alloy in (1), and further homogenizing the composition and removing mechanical stress generated in the particles after nitriding and hydrogenating in (3) are magnetic properties. Is effective for improving

以下、これらの工程について説明する。 Hereinafter, these steps will be described.

(1) 母合金の合成 原料合金は高周波炉、アーク溶解炉によっても、又液
体超急冷法によっても作製できる。そのR−Fe母合金に
おける組成はRが5〜25原子%、Feが75〜95原子%の範
囲にあることが好ましい。R−Fe母合金におけるRの組
成量が5原子%未満では合金中にα−Fe相が多くの存在
し、高保磁力が得られない。また、R−Fe母合金におけ
るRの組成量が25原子%を越えると高い飽和磁束密度が
得られない。
(1) Synthesis of mother alloy The raw material alloy can be prepared by a high-frequency furnace or an arc melting furnace, or by a liquid quenching method. The composition of the R-Fe mother alloy is preferably such that R is in the range of 5 to 25 atomic% and Fe is in the range of 75 to 95 atomic%. If the composition of R in the R-Fe master alloy is less than 5 atomic%, a large amount of α-Fe phase is present in the alloy, and a high coercive force cannot be obtained. On the other hand, if the composition ratio of R in the R—Fe master alloy exceeds 25 atomic%, a high saturation magnetic flux density cannot be obtained.

なお、R−Fe−N−H−O磁性材料中のRの組成範囲
としては5〜20原子%である必要がある。Rが5原子%
未満の場合には高保磁力が得られず、また20原子%を越
えると高い飽和磁化が得られない。
The composition range of R in the R-Fe-NHO magnetic material needs to be 5 to 20 atomic%. R is 5 atomic%
If it is less than 1, a high coercive force cannot be obtained, and if it exceeds 20 at%, a high saturation magnetization cannot be obtained.

鉄の0.1〜49原子%のコバルトで置換することは磁気
特性の温度特性を高める効果がある。鉄のコバルトによ
る置換量が0.1原子%未満の場合は、磁気特性の温度特
性を高める効果があまり見られず、また49原子%を越え
る場合は飽和磁化が低下して好ましくない。コバルト置
換の場合、通常はこの母合金作製時にコバルトを添加す
る。
Replacing iron with 0.1 to 49 atomic% of cobalt has the effect of improving the temperature characteristics of the magnetic characteristics. When the substitution amount of iron by cobalt is less than 0.1 atomic%, the effect of improving the temperature characteristics of the magnetic characteristics is not so much seen, and when it exceeds 49 atomic%, the saturation magnetization is undesirably lowered. In the case of cobalt substitution, cobalt is usually added at the time of producing this master alloy.

高周波炉及びアーク溶解炉を用いた場合、溶融状態か
ら合金が凝固する際にFeが析出し易く、このことは磁気
特性、とくに保磁力の低下をひきおこす。そこでFe単体
での相を消失させ、合金の組成の均一化および結晶性の
向上を目的として焼鈍を行うことが有効である。この焼
鈍は800℃〜1280℃で行う場合に効果が顕著である。こ
の方法で作製した合金は液体超急冷法などと比較して結
晶性が良好であり、高い飽和磁化を有している。
When a high-frequency furnace and an arc melting furnace are used, Fe is easily precipitated when the alloy solidifies from a molten state, which causes a decrease in magnetic properties, particularly, coercive force. Therefore, it is effective to perform annealing for the purpose of eliminating the phase of Fe alone and making the composition of the alloy uniform and improving the crystallinity. This annealing has a remarkable effect when performed at 800 ° C to 1280 ° C. The alloy produced by this method has good crystallinity and high saturation magnetization as compared with the liquid quenching method or the like.

液体超急冷法、ロール回転法などの合金作製法でも、
目的組成の合金を作製できる。しかも、これらの方法に
より作製した合金の結晶粒は微細であり、条件によって
はサブミクロンの粒子も調製できる。ただし、冷却速度
が大きい場合には合金の非晶質化が起こり、窒化、水素
化後にも飽和磁化、保磁力が他の方法ほど上昇しない。
この場合にも焼鈍等の後処理が必要である。
Even with alloy manufacturing methods such as liquid quenching method and roll rotation method,
An alloy having a desired composition can be produced. In addition, the crystal grains of the alloy produced by these methods are fine, and submicron particles can be prepared depending on the conditions. However, when the cooling rate is high, the alloy becomes amorphous, and the saturation magnetization and coercive force do not increase as much as other methods even after nitriding or hydrogenating.
Also in this case, post-treatment such as annealing is necessary.

母合金はいずれの方法で合金した場合でも300〜500pp
m程度の酸素を含有している。この段階におけるこの程
度の酸素含有量は工程中で行う通常の操作で導入される
ものである。
The mother alloy is 300-500pp regardless of the method of alloying
It contains about m oxygen. This level of oxygen content at this stage is what is introduced in the normal operation performed in the process.

(2) 粗粉砕 この段階の粉砕はジョークラッシャー、スタンプミル
のような粗粉のみを調製するような方法でもよいし、ボ
ールミル、ジェットミルによっても条件次第で可能であ
る。しかし、この粉砕は次の段階における窒化、水素化
を均一に行わしめるためのものであり、その条件とあわ
せて十分な反応性を有し、かつ酸化は進行しない粉体状
態に調製することが重要である。
(2) Coarse pulverization The pulverization at this stage may be a method of preparing only coarse powder such as a jaw crusher or a stamp mill, or a ball mill or a jet mill depending on the conditions. However, this pulverization is intended to uniformly perform nitriding and hydrogenation in the next stage, and it is necessary to prepare a powder state having sufficient reactivity in accordance with the conditions, and oxidation does not proceed. is important.

この粗粉砕後の材料が含有する酸素量も母合金と大差
なく1000ppm以下である。
The amount of oxygen contained in the material after the coarse pulverization is 1000 ppm or less without much difference from the mother alloy.

(3) 窒化、水素化 粉砕された原料母合金中に窒素及び水素を化合もしく
は含浸させる方法としては原料合金粉末をアンモニアガ
ス或いはアンモニアガスを含む還元性の混合ガス中で加
圧あるいは加熱処理する方法が有効である。合金中に含
まれる窒素及び水素量はアンモニアガス含有混合ガスの
混合成分比、及び加熱温度、加圧力、処理時間によって
制御し得る。
(3) Nitriding and hydrogenation As a method for compounding or impregnating nitrogen and hydrogen in the pulverized raw material mother alloy, the raw material alloy powder is pressurized or heated in an ammonia gas or a reducing mixed gas containing an ammonia gas. The method is effective. The amounts of nitrogen and hydrogen contained in the alloy can be controlled by the mixed component ratio of the mixed gas containing ammonia gas, the heating temperature, the pressure, and the processing time.

混合ガスとしては水素、ヘリウム、ネオン、窒素及び
アルゴンのいずれか、もしくは2種以上とアンモニアガ
スを混合したガスが有効である。混合比は処理条件との
関連で変化させ得るが、アンモニアガス分圧としては、
とくに0.02〜0.75atmが有効であり、処理温度は200〜65
0℃の範囲が好ましい。低温では侵入速度が小さく、650
℃以上の高温では鉄の窒化物が生成し、磁気特性は低下
する。加圧処理では10atm程度の加圧でも窒素、水素の
含有量を変化させ得る。
As the mixed gas, any one of hydrogen, helium, neon, nitrogen, and argon, or a mixture of two or more of them and ammonia gas is effective. The mixing ratio can be changed in relation to the processing conditions, but as the ammonia gas partial pressure,
Especially 0.02-0.75atm is effective, processing temperature is 200-65
A range of 0 ° C. is preferred. The penetration rate is low at low temperatures, 650
At a high temperature of not less than ℃, iron nitrides are formed and the magnetic properties are degraded. In the pressure treatment, the contents of nitrogen and hydrogen can be changed even with a pressure of about 10 atm.

アンモニアガス以外のガスを窒化、水素化雰囲気の主
成分とすると、反応効率は著しく低下する。しかし、た
とえば水素ガスと窒素ガスの混合ガスを用い長時間反応
を行うと窒素及び水素の導入は可能である。
When a gas other than ammonia gas is used as a main component in the nitriding or hydrogenating atmosphere, the reaction efficiency is significantly reduced. However, if a long-term reaction is performed using a mixed gas of hydrogen gas and nitrogen gas, nitrogen and hydrogen can be introduced.

窒素は原子百分比で10〜25%であることが必要であ
る。10%未満では保磁力が極めて小さくなってしまう。
一方、25%を越えると保磁力とともに飽和磁化が大きく
低下する。
Nitrogen needs to be 10-25% by atomic percent. If it is less than 10%, the coercive force becomes extremely small.
On the other hand, if it exceeds 25%, the coercive force and the saturation magnetization are greatly reduced.

窒化・水素化工程は低酸素分圧中で行われるが、工程
終了時の酸素量は多少増大し1000ppm前後となる。
The nitridation / hydrogenation step is performed at a low oxygen partial pressure, but the amount of oxygen at the end of the step slightly increases to about 1000 ppm.

組成式における水素量は1.5≦γ≦5の範囲にあるこ
とが好ましい。1.5未満では、保磁力及び耐食性が低
く、5を越えると飽和磁化が低く実用的でない。
The amount of hydrogen in the composition formula is preferably in the range of 1.5 ≦ γ ≦ 5. If it is less than 1.5, the coercive force and corrosion resistance are low, and if it exceeds 5, the saturation magnetization is low and it is not practical.

(4) 微粉砕すなわち粉体特性の調整 本発明における希土類元素−鉄−窒素−水素−酸素系
磁性材料は基本的には希土類元素−鉄系の2−17構造を
有する。従って組成式としてR2Fe17XYZと表わせ
る。同構造を基本とした場合、X量は4〜5付近まで安
定に存在し得るが、それにつれて保磁力も100〜1500 Oe
程度の変化を示す。又、H、O量、すなわちY、Zにつ
いても保磁力を含む磁気特性は若干の依存性を示し、Y
については0.01〜1、Zについては0.01〜10程度で得ら
れた粉体の機械的性質、耐食性などを含む特性に影響を
与える。この中で0量については原子百分率で表わす
と、特に3〜10%の範囲にあることが望ましい。3%未
満では保磁力と耐食性が低く、また10%を超えると飽和
磁化の低下が著しく実用的ではない。
(4) Fine grinding, that is, adjustment of powder characteristics The rare earth element-iron-nitrogen-hydrogen-oxygen based magnetic material in the present invention basically has a 2-17 structure of a rare earth element-iron system. Accordingly, the composition formula can be expressed as R 2 Fe 17 N X H Y O Z. In the case of the same structure, the amount of X can exist stably up to about 4 to 5, but the coercive force also becomes 100 to 1500 Oe
Indicates a change in degree. The magnetic properties including the coercive force also show some dependence on the amounts of H and O, that is, Y and Z.
Of about 0.01 to about 1 and about 0.01 to about Z affect the properties of the powder obtained, including mechanical properties and corrosion resistance. Of these, the amount 0 is desirably in the range of 3 to 10% in terms of atomic percentage. If it is less than 3%, the coercive force and corrosion resistance are low, and if it exceeds 10%, the saturation magnetization is significantly reduced and is not practical.

上記の組成を変化させた材料の粉体の磁気特性は組成
以外の粒径、結晶化度及び粒子形状によっても変化す
る。これは単磁区粒子径と現実の粒子径の相違や形状磁
気異方性の相違によって生じる結果である。微粉砕工程
はこれら組成と粒子状態の双方に関連する工程である。
The magnetic properties of the powder of the material having the above composition changed also vary depending on the particle size, crystallinity, and particle shape other than the composition. This is a result of a difference between a single magnetic domain particle diameter and an actual particle diameter or a difference in shape magnetic anisotropy. The pulverization step is a step relating to both the composition and the particle state.

微粉砕の方法としては、回転型ボールミル、振動ボー
ルミル、遊星ボールミル、ジェットミル、アイガーミル
など種々の方法を用い得るが、該磁性材料はいずれの方
法でも比較的容易に数μm以下の粒子径まで粉砕し得
る。又粒子形状についても粉砕に用いる粉砕球の材質、
重量、個数、そして溶媒の種類と量、更に装置の運転条
件によって比較的針状のものから球状に近いものまで調
製することができる。
Various methods such as a rotary ball mill, a vibrating ball mill, a planetary ball mill, a jet mill, and an Eiger mill can be used as the method of fine pulverization, but the magnetic material can be relatively easily pulverized to a particle diameter of several μm or less by any method. I can do it. Also, regarding the particle shape, the material of the grinding ball used for grinding,
Depending on the weight, number, type and amount of the solvent, and operating conditions of the apparatus, it can be prepared from a relatively acicular to a nearly spherical one.

以上のようにして粒子径でサブミクロンのものから10
0μm以上のものまで調製すると、保磁力が100 Oe〜15k
Oe、飽和磁化が5kGから15kG、角型比が0.1〜0.99、磁気
異方性が0.1〜0.7の範囲にある各種磁性粉体を作製でき
る。
From the submicron particle size as above, 10
When prepared up to 0 μm or more, coercive force is 100 Oe ~ 15k
Oe, various magnetic powders having a saturation magnetization of 5 to 15 kG, a squareness ratio of 0.1 to 0.99, and a magnetic anisotropy of 0.1 to 0.7 can be produced.

次に本発明の主たる構成要件であるボンド磁石の作製
方法について述べる。
Next, a method for manufacturing a bonded magnet, which is a main component of the present invention, will be described.

以下に5種類の作製法を示す。 The following are five types of manufacturing methods.

使用可能なバインダーとして以下のものをあげること
ができる。
The following binders can be used as usable binders.

第一グループとして天然ゴム、ポリクロロプレン、ニ
トリル・ブチルゴム、ポリイソブチレン、シリコンゴ
ム、ポリイソプレンゴムとそれらの2種以上の混合物。
As a first group, natural rubber, polychloroprene, nitrile / butyl rubber, polyisobutylene, silicone rubber, polyisoprene rubber and a mixture of two or more thereof.

第二グループとしてエポキシ樹脂、フェノール樹脂、
合成ゴム、ポリエステル樹脂、尿素樹脂とそれらの2種
以上の混合物。
Epoxy resin, phenol resin,
Synthetic rubbers, polyester resins, urea resins and mixtures of two or more thereof.

第三グループとしてポリアミド、ポリブチレンテレフ
タレート、ポリフェニレンサルファイド、液晶ポリマ
ー、ポリフェニレンオキサイド、ポリカーボネート、ポ
リエーテルサルフォン、ポリエチレン、ポリプロピレ
ン、エチレン酢酸ビニルコポリマー、塩素化ポリエチレ
ン、エラストマー、軟質塩化ビニルと、それらの2種以
上の混合物。
The third group is polyamide, polybutylene terephthalate, polyphenylene sulfide, liquid crystal polymer, polyphenylene oxide, polycarbonate, polyether sulfone, polyethylene, polypropylene, ethylene vinyl acetate copolymer, chlorinated polyethylene, elastomer, and soft vinyl chloride. The above mixture.

第四グループとしてアルミナセメント、マグネシアセ
メントとその混合物。
A fourth group is alumina cement, magnesia cement and mixtures thereof.

第五グループとしてCu、Ag、Zn、Al、Ga、In、Sn、P
b、Bi金属及びそれらの2種以上の合金。
Fifth group Cu, Ag, Zn, Al, Ga, In, Sn, P
b, Bi metals and alloys of two or more thereof.

(A) 圧縮成形 希土類元素−鉄−窒素−水素−酸素系磁性粉体の磁気
特性を調整後、耐食処理、カップリング処理などを行
い、エポキシ樹脂、フェノール樹脂、合成ゴム、ポリエ
ステル樹脂、尿素樹脂等と混練し必要量を金型中で圧縮
成形する。この際磁場を印加する場合と印加しない場合
がある。これを加熱硬化した後、金型から取り出し、消
磁又は着磁した後、製品とする。
(A) Compression molding After adjusting the magnetic properties of the rare earth element-iron-nitrogen-hydrogen-oxygen-based magnetic powder, a corrosion resistance treatment, a coupling treatment and the like are performed, and an epoxy resin, a phenol resin, a synthetic rubber, a polyester resin, and a urea resin are used. And kneading with a required amount in a mold. At this time, a magnetic field may or may not be applied. After this is cured by heating, it is taken out of the mold and demagnetized or magnetized to obtain a product.

(B) 射出成形 該磁性粉体の磁気特性を調整後、耐食処理、カップリ
ング処理などを行いポリアミド、ポリブチレンテレフタ
レート、ポリフェニレンサルファイド、液晶ポリマー、
ポリフェニレンオキサイド、ポリカーボネート、ポリエ
ーテルサルフォン、ポリエチレン、ポリプロピレン、エ
チレン酢酸ビニルコポリマー、塩素化ポリエチレン、エ
ラストマー、軟質塩化ビニル等と、滑剤等の添加剤を混
練し造粒した後、磁場成形機を用い射出成形する。更に
消磁又は着磁を行って製品とする。
(B) Injection molding After adjusting the magnetic properties of the magnetic powder, the magnetic powder is subjected to a corrosion resistance treatment, a coupling treatment, and the like to obtain a polyamide, polybutylene terephthalate, polyphenylene sulfide, liquid crystal polymer,
After kneading and granulating polyphenylene oxide, polycarbonate, polyether sulfone, polyethylene, polypropylene, ethylene vinyl acetate copolymer, chlorinated polyethylene, elastomer, soft vinyl chloride, etc., and additives such as lubricants, injection using a magnetic field molding machine Molding. The product is further demagnetized or magnetized to produce a product.

(C) 圧粉成形 該磁性粉体の磁気特性を調整後、滑剤等の添加剤を加
え混練し、次いで金型を用い加圧成形する。この成形体
を取り出し、天然ゴム、ポリクロロプレン、ニトリル・
ブチルゴム、ポリイソブチレン、シリコンゴム、又はポ
リイソプレンゴムをトルエン、エタノール等で希釈した
ものを含浸又は圧入し、溶媒を揮発させて乾燥する。こ
れらの工程のいずれかの段階で脱磁又は着磁を施しボン
ド磁石とする。
(C) Compacting After adjusting the magnetic properties of the magnetic powder, additives such as a lubricant are added and kneaded, and then compacted using a mold. Take out this molded product, natural rubber, polychloroprene, nitrile
A solution obtained by diluting butyl rubber, polyisobutylene, silicone rubber, or polyisoprene rubber with toluene, ethanol, or the like is impregnated or press-fitted, and the solvent is evaporated to dryness. At any stage of these steps, demagnetization or magnetization is performed to obtain a bonded magnet.

(D) 無機物バインダーボンド磁石 該磁性粉体の磁気特性を調整後、滑剤等の添加剤と、
アルミナ・セメント、マグネシア・セメントなどを、更
に溶媒などで希釈したものを混合、混練し、金型で圧縮
成形するか、単純に成形を施した後、取り出し溶媒を揮
発させ乾燥する。これらの工程のいずれかの段階で消磁
又は着磁を施しボンド磁石とする。
(D) inorganic binder-bonded magnet After adjusting the magnetic properties of the magnetic powder, an additive such as a lubricant,
Alumina cement, magnesia cement, or the like, further diluted with a solvent or the like, are mixed and kneaded, and compression-molded with a mold or simply molded, and then the solvent is volatilized and dried. At any stage of these steps, demagnetization or magnetization is performed to obtain a bonded magnet.

(E) 金属バインダーボンド磁石 該磁性粉体の磁気特性を調整後、Cu、Ag、Zn、Al、G
a、In、Sn、Pb、Biのいずれかの金属又は2種以上の合
金の粉末と混合、混練し、セラミックス製又は金属製の
型に入れ、圧縮するか加熱圧縮する。これにより密度の
比較的高い金属バインダー磁石が作製できる。
(E) Metal binder bonded magnet After adjusting the magnetic properties of the magnetic powder, Cu, Ag, Zn, Al, G
a, In, Sn, Pb, Bi or a powder of a metal or two or more alloys, mixed and kneaded, put in a ceramic or metal mold, and compressed or heated and compressed. Thereby, a metal binder magnet having a relatively high density can be manufactured.

[実施例] 以下に本発明を実施例によって具体的に説明する。EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples.

実施例1 純度99.9%のSm及びFeをSm11Fe89組成となるように混
合し、セラミックスルツボ中に入れ、−20mmHg程度の減
圧Ar雰囲気中で1550℃で高周波溶解した後冷却し、Sm-F
e合金インゴットを作製する。次にこのインゴットを125
0℃Ar雰囲気中で約3時間焼鈍し、Sm10.4Fe89.6組成の
母合金を調製する。同母合金はX線的にほぼ物質なSm2F
e17構造である。
Example 1 Sm and Fe having a purity of 99.9% were mixed so as to have a composition of Sm 11 Fe 89 , put in a ceramic crucible, melted at 1550 ° C. in a reduced-pressure Ar atmosphere of about −20 mmHg at 1550 ° C., and then cooled. F
Make an e-alloy ingot. Then add this ingot to 125
Anneal for about 3 hours in an Ar atmosphere at 0 ° C. to prepare a mother alloy having a composition of Sm 10.4 Fe 89.6 . The same mother alloy is almost Sm 2 F in X-ray
e 17 structure.

この合金を平均粒径が約100μmになるようにコーヒ
ーミルによって粉砕し、アンモニアガス(0.35atm)−
水素ガス(0.65atm)の混合ガス中、465℃で約2時間加
熱した後、Arガス雰囲気中約2.5時間、同じ465℃で加熱
する。この結果得られるのはSm8.6Fe72.216.72.0
0.5組成の磁性材料である。この粉体をシクロヘキサン
(溶存酸素濃度50ppm、水分80ppm)に浸漬し、回転ボー
ルミルで粉砕し平均粒径が約2μmの微粉体にする。同
粉体を微粉体化する際の雰囲気及び微粉砕後のアニール
により酸素量を制御し、最終組成をSm8.0Fe68.216.3
2.74.8に調製した。この粉体は保磁力6500 Oe、飽
和磁化11.5kGの磁気特性を有する。
This alloy is pulverized by a coffee mill so that the average particle size becomes about 100 μm, and ammonia gas (0.35 atm)
After heating at 465 ° C. for about 2 hours in a mixed gas of hydrogen gas (0.65 atm), heating is performed at 465 ° C. for about 2.5 hours in an Ar gas atmosphere. The result is Sm 8.6 Fe 72.2 N 16.7 H 2.0 O
It is a 0.5 composition magnetic material. This powder is immersed in cyclohexane (dissolved oxygen concentration: 50 ppm, moisture: 80 ppm) and pulverized by a rotary ball mill to obtain a fine powder having an average particle size of about 2 μm. The oxygen content was controlled by the atmosphere when the powder was pulverized and the annealing after pulverization, and the final composition was changed to Sm 8.0 Fe 68.2 N 16.3.
H 2.7 O 4.8 . This powder has magnetic properties of a coercive force of 6500 Oe and a saturation magnetization of 11.5 kG.

この粉体0.5gをエポキシ樹脂0.4gと混合し、セラミッ
クスの型中に移し、10kOeの磁場中で熱硬化させた。こ
れらの成形体を約60kOeの磁場で着磁して、この磁気特
性を振動試料型磁力計(VSM)を用いて測定し、以下の
結果を得た。
0.5 g of this powder was mixed with 0.4 g of epoxy resin, transferred into a ceramic mold, and thermally cured in a magnetic field of 10 kOe. These compacts were magnetized with a magnetic field of about 60 kOe, and their magnetic properties were measured using a vibrating sample magnetometer (VSM), and the following results were obtained.

保磁力(Hc) 6.5kOe 残留磁化(Br) 5.2kG (BH)max 4.2MGOe 次に、この成形体の曲げ強度を測定したところ、1340
kg/cm2と十分実用的な強度を有していた。
Coercive force (Hc) 6.5 kOe Remanent magnetization (Br) 5.2 kG (BH) max 4.2 MGOe Next, when the bending strength of this molded body was measured, 1340
It had a sufficiently practical strength of kg / cm 2 .

実施例2 実施例1の粉体100gと50gのナイロン−6を混練し、
5〜10mm、約7φの円柱状チップに裁断し、射出成形機
により窒素雰囲気中300℃で、3mm×12mmの断面を有する
金型に射ち込み棒状の成形体を作製し、これを60kOeの
磁場中で着磁した。同試料の磁気特性を振動試料型磁力
計(VSM)を用いて測定し、以下の結果を得た。
Example 2 100 g of the powder of Example 1 and 50 g of nylon-6 were kneaded,
It is cut into 5-10 mm, about 7φ cylindrical chips, and is injected into a mold having a cross section of 3 mm × 12 mm at 300 ° C. in a nitrogen atmosphere by an injection molding machine to produce a rod-shaped molded body, which is subjected to a magnetic field of 60 kOe. Magnetized inside. The magnetic properties of the sample were measured using a vibrating sample magnetometer (VSM), and the following results were obtained.

保磁力(Hc) 6.3kOe 残留磁化(Br) 6.4kG (BH)max 6.7MGOe 次に、この成形体の引張り強度を測定したところ、25
0kg/cm2と十分実用的な強度を有していた。
Coercive force (Hc) 6.3 kOe Remanent magnetization (Br) 6.4 kG (BH) max 6.7 MGOe Next, when the tensile strength of this compact was measured,
It had a sufficiently practical strength of 0 kg / cm 2 .

実施例3 実施例1のSm-Fe合金インゴットの焼鈍条件を変化さ
せる。第1にArガス雰囲気中1094℃で20時間焼鈍したSm
-Fe母合金(A)、同様にArガス雰囲気1094℃で10時間
焼鈍したSm-Fe母合金(B)、更にArガス雰囲気948℃で
32時間焼鈍したSm-Fe母合金(C)を調製する。これら
母合金(A)、(B)、(C)を平均粒径約100μmに
なるようにコーヒーミルで粉砕し、以下は実施例1と全
く同様の操作によって、最終組成として、 (A) Sm8.1Fe68.116.12.65.1; (B) Sm8.0Fe70.016.01.54.5; (C) Sm8.1Fe69.017.31.83.8 となる組成の磁性材料を得た。
Example 3 The annealing conditions of the Sm-Fe alloy ingot of Example 1 were changed. First, Sm annealed at 1094 ° C for 20 hours in Ar gas atmosphere
-Fe master alloy (A), Sm-Fe mother alloy (B) similarly annealed at 1094 ° C in an Ar gas atmosphere for 10 hours, and further 948 ° C in an Ar gas atmosphere
A Sm-Fe mother alloy (C) annealed for 32 hours is prepared. These master alloys (A), (B), and (C) were pulverized with a coffee mill so as to have an average particle size of about 100 μm. It was obtained (C) Sm 8.1 Fe 69.0 N 17.3 H 1.8 magnetic material O 3.8 and a composition; 8.1 Fe 68.1 N 16.1 H 2.6 O 5.1; (B) Sm 8.0 Fe 70.0 N 16.0 H 1.5 O 4.5.

まず(A)磁性体を振動ボールミルにて粉砕し、その
粉砕時間を変化させ種々の粉体を得た。次に(B)磁性
体、(C)磁性体及び(C′)磁性体については回転型
ボールミルを用い粉砕し、種々の粉体を得た。これらの
粉体を1軸型の磁場プレスで約15kOe下で5mm×10mm×2m
mの成形体とする。これらの成形体をイソプレンゴムの
2重量%トルエン溶液に浸し、液を十分含浸させたのち
取り出し乾燥する。得られた磁石を60kOeの磁場中で着
磁し、振動試料型磁力計(VSM)を用いて、これらの試
料の磁気特性を測定した。以下にそれぞれの試料につき
粉砕条件と磁気特性を記載する。
First, (A) the magnetic material was pulverized with a vibrating ball mill, and various powders were obtained by changing the pulverization time. Next, the (B) magnetic material, (C) magnetic material and (C ') magnetic material were pulverized using a rotary ball mill to obtain various powders. These powders are 5mm × 10mm × 2m under about 15kOe by uniaxial magnetic press
m molded body. These molded articles are immersed in a 2% by weight solution of isoprene rubber in toluene, and after sufficiently impregnated with the liquid, they are taken out and dried. The obtained magnet was magnetized in a magnetic field of 60 kOe, and the magnetic properties of these samples were measured using a vibrating sample magnetometer (VSM). The grinding conditions and magnetic properties for each sample are described below.

実施例4 実施例1および2で得られた成形体をそれぞれ成形体
をそれぞれ成形体AおよびBとする。これらの成形体を
恒温恒湿槽に入れ、温度80℃、湿度90%で150時間保持
した。目視により錆の発生を調べた結果、成形体Aおよ
びBいずれも錆は認められなかった。
Example 4 The molded articles obtained in Examples 1 and 2 are referred to as molded articles A and B, respectively. These compacts were placed in a thermo-hygrostat and kept at a temperature of 80 ° C. and a humidity of 90% for 150 hours. As a result of visually examining the occurrence of rust, no rust was observed in any of the molded articles A and B.

[発明の効果] 以上説明したように、本発明のボンド磁石は従来のボ
ンド磁石に比較してその磁気特性が優れており、かつ、
製造も比較的容易である。
[Effects of the Invention] As described above, the bonded magnet of the present invention has excellent magnetic properties as compared with conventional bonded magnets, and
Manufacturing is relatively easy.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記組成式で表わされ、かつ、実質的にTh
2Zn17構造を有する希土類元素−鉄−窒素−水素−酸素
系磁性材料を含有することを特徴とするボンド磁石。 組成式 RαFe(100−α−β−γ−δ)βγδ ただし上記組成式中、原子百分率で表わして、 5≦α≦20 10≦β≦25 1.5≦γ≦5 3≦δ≦10 Rはサマリウムを主成分とする希土類元素である。
(1) The composition is represented by the following composition formula and is substantially Th
2 A bonded magnet comprising a rare earth element-iron-nitrogen-hydrogen-oxygen based magnetic material having a Zn 17 structure. Composition formula R α Fe (100-α-β-γ-δ) N β H γ O δ In the above composition formula, represented by atomic percentage, 5 ≦ α ≦ 20 10 ≦ β ≦ 25 1.5 ≦ γ ≦ 53 ≦ δ ≦ 10 R is a rare earth element containing samarium as a main component.
【請求項2】請求項(1)に記載の磁性材料の成分のう
ち、鉄の0.1〜49原子%がコバルトと置換した組成を有
する磁性材料を含有することを特徴とする請求項(1)
記載のボンド磁石。
2. The magnetic material according to claim 1, further comprising a magnetic material having a composition in which 0.1 to 49 atomic% of iron is substituted with cobalt.
The bonded magnet as described.
【請求項3】保磁力が100 Oe乃至15kOe、 飽和磁化が5〜15kG、 角型比として飽和磁化に対する残留磁化をとると0.1〜
0.99、 磁気異方性として試料の配向方向の磁化に対する垂直方
向の磁化をとると0.1〜0.7 であることを特徴とする上記請求項(1)又は(2)記
載のボンド磁石。
3. The coercive force is 100 Oe to 15 kOe, the saturation magnetization is 5 to 15 kG, and the squareness ratio is 0.1 to 0.1 when the residual magnetization with respect to the saturation magnetization is taken.
The bond magnet according to claim 1 or 2, wherein the magnetic anisotropy is 0.1 to 0.7 when the magnetization in the direction perpendicular to the magnetization in the orientation direction of the sample is taken.
JP1299721A 1989-09-13 1989-11-20 Bonded magnet Expired - Lifetime JP2708578B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1299721A JP2708578B2 (en) 1989-11-20 1989-11-20 Bonded magnet
US07/580,556 US5164104A (en) 1989-09-13 1990-09-11 Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen and bonded magnet containing the same
EP90117488A EP0417733B1 (en) 1989-09-13 1990-09-11 Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen
DE69007720T DE69007720T2 (en) 1989-09-13 1990-09-11 Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen.
AU62481/90A AU624995C (en) 1989-09-13 1990-09-12 Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1299721A JP2708578B2 (en) 1989-11-20 1989-11-20 Bonded magnet

Publications (2)

Publication Number Publication Date
JPH03160705A JPH03160705A (en) 1991-07-10
JP2708578B2 true JP2708578B2 (en) 1998-02-04

Family

ID=17876164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1299721A Expired - Lifetime JP2708578B2 (en) 1989-09-13 1989-11-20 Bonded magnet

Country Status (1)

Country Link
JP (1) JP2708578B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315679A (en) 2000-03-24 2001-10-03 日立金属株式会社 Magnetic roller
WO2001084563A1 (en) * 2000-04-28 2001-11-08 Sumitomo Osaka Cement Co., Ltd. Hydraulic-composition bond magnet
JP4970693B2 (en) * 2002-10-23 2012-07-11 旭化成ケミカルズ株式会社 Solid material for magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204862A (en) * 1984-03-28 1985-10-16 Toshiba Corp Rare earth element-iron type permanent magnet alloy
JP2708568B2 (en) * 1989-09-13 1998-02-04 旭化成工業株式会社 Magnetic material

Also Published As

Publication number Publication date
JPH03160705A (en) 1991-07-10

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
US5538565A (en) Rare earth cast alloy permanent magnets and methods of preparation
JPH01704A (en) Rare earth-iron permanent magnet
JPH08316014A (en) Magnet and its manufacture
JPS62198103A (en) Rare earth-iron permanent magnet
JP2708578B2 (en) Bonded magnet
JP2708568B2 (en) Magnetic material
JP3634565B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3370013B2 (en) Rare earth magnet material and rare earth bonded magnet using the same
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP2926161B2 (en) Manufacturing method of permanent magnet
JP2000216015A (en) Compressed type rigid magnetic material and manufacture thereof
JP3209291B2 (en) Magnetic material and its manufacturing method
WO2022202760A1 (en) Magnetic material for high frequency use, and method for producing same
JPH06112019A (en) Nitride magnetic material
JP2691034B2 (en) Method for producing rare earth element-iron-nitrogen based magnetic material with controlled microstructure
JP3209292B2 (en) Magnetic material and its manufacturing method
JPH0669010A (en) Manufacture method of r-t-m-n based bonded magnet
JP3200201B2 (en) Nitride magnetic powder and method for producing the same
JP3157302B2 (en) Nitride magnetic materials
JPWO2022202760A5 (en)
JPH05230502A (en) Production of rare-earth element bond magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 13

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 13