JPH0669010A - Manufacture method of r-t-m-n based bonded magnet - Google Patents

Manufacture method of r-t-m-n based bonded magnet

Info

Publication number
JPH0669010A
JPH0669010A JP4244327A JP24432792A JPH0669010A JP H0669010 A JPH0669010 A JP H0669010A JP 4244327 A JP4244327 A JP 4244327A JP 24432792 A JP24432792 A JP 24432792A JP H0669010 A JPH0669010 A JP H0669010A
Authority
JP
Japan
Prior art keywords
powder
crystal structure
resin
less
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4244327A
Other languages
Japanese (ja)
Inventor
Takashi Ikegami
尚 池上
Satoru Hirozawa
哲 広沢
Akira Makita
顕 槇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP4244327A priority Critical patent/JPH0669010A/en
Publication of JPH0669010A publication Critical patent/JPH0669010A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0593Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To devise a manufacturing method for a R-T-M-N based bonded magnet having ThMn12 type crystal structure substituting for an Nd-Ti-Fe nitride base magnet easily producing the particles having super-fine crystal structure gaining coersive force exceeding 3kOe easily processed later. CONSTITUTION:Nd-N-Fe based powder in specific composition (where M: contains at least one out of Cr, V, Mo or a part thereof can be substituted with Ti not exceeding 50%) are formed into a mixture in atomic order by mechanical alloying step and then further heated for diffusion at 600-850 deg.C to produce particles of a specific mean crystalline particle diameter in the main phase of RT12x-Mx (where x=1-2) having TyMn12 type crystal structure to be nitrified in N2 gas atmosphere meeting specific requirements for making the produced Nd-M-Fe based powder coupled with resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種モーター、アク
チュエーターなどに用いることが可能な希土類濃度が低
く、低コスト、高耐食性のR−T−M−N系ボンド磁石
の製造方法に係り、所要組成に配合、混合した所要金属
粉末または合金粉末を特定雰囲気にてメカニカルアロイ
ングし、拡散処理にてThMn12型結晶構造を有するR
12-■(但しα=1〜2)を主相とする微細結晶
組織の集合粉体となし、さらに窒化処理を行い、これを
樹脂で結合した高保磁力を有するR−T−M−N系ボン
ド磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an R-T-M-N-based bonded magnet which has a low rare earth concentration and can be used in various motors and actuators, is low in cost, and has high corrosion resistance. The required metal powder or alloy powder mixed and mixed with the composition is mechanically alloyed in a specific atmosphere, and R having a ThMn 12 type crystal structure is subjected to diffusion treatment.
T 12- ■ M (where α = 1 to 2) as the main phase is an aggregate powder with a fine crystal structure, which is further nitrided and is bonded with a resin to have a high coercive force R-T-M -It is related with the manufacturing method of a N type bond magnet.

【0002】[0002]

【従来の技術】樹脂結合磁石は、寸法精度のよさ、多部
材との一体成形によるコストダウンメリット、薄肉成形
品での歩留りの良さ等の理由により多方面で使用されて
おり、その原料としてNd−Fe−B系粉末がある。N
d−Fe−B系永久磁石用粉末としては、超急冷法など
により得られた超微細組織を有する磁石用粉末が用いら
れてきた。Nd−Fe−B系永久磁石用粉末は、キュー
リ点(Tc)が300℃前後と低くBr、iHcの温度
係数が大きいため、磁石特性の温度係数が大きいという
問題があり、Co等の添加によりTcを上昇させてBr
の温度係数を改善することが可能であるが、Brの温度
係数αはせいぜい−0.08%/deg程度が限度であ
った。
2. Description of the Related Art Resin-bonded magnets are used in various fields for reasons such as good dimensional accuracy, cost reduction advantage of integral molding with multiple members, and good yield in thin-wall molded products. There is a -Fe-B type powder. N
As the d-Fe-B based permanent magnet powder, a magnet powder having an ultrafine structure obtained by a superquenching method or the like has been used. The Nd-Fe-B system permanent magnet powder has a low Curie point (Tc) of around 300 ° C and a large temperature coefficient of Br and iHc, and thus has a problem that the temperature coefficient of magnet characteristics is large. Bring up Tc
However, the temperature coefficient α of Br is limited to about −0.08% / deg at most.

【0003】最近、R2Fe17化合物はN2を吸蔵するこ
とにより、Tcが絶対温度で2倍近く高くなり、Nd−
Fe−B系のTcよりも160℃も高く、さらにSm2
Fe17窒化物ではR2Fe14Bの異方性を上回る異方性
磁界が得られることが報告されている。
Recently, the R 2 Fe 17 compound has occluded N 2 to increase Tc nearly twice as much as an absolute temperature, resulting in Nd-
160 ° C higher than Tc of Fe-B system, and further Sm 2
It has been reported that the Fe 17 nitride can provide an anisotropic magnetic field exceeding the anisotropy of R 2 Fe 14 B.

【0004】[0004]

【発明が解決しようとする課題】Sm2Fe17窒化物は
資源的に少ないSmを多く含有することから比較的高価
になる問題があり、資源的に豊富な他元素を含有する永
久磁石粉末が求められている。
Since the Sm 2 Fe 17 nitride contains a large amount of Sm, which is a small amount of resources, there is a problem that it becomes relatively expensive, and a permanent magnet powder containing abundant resources of other elements is used. It has been demanded.

【0005】また、Nd−Ti−Fe窒化物系磁石も提
案されているが、Nd−Ti−Fe窒化物系はNdを約
18wt%含有することで磁石化され、低融点の亜鉛結
合磁石の製造には使用できるが、樹脂結合磁石としては
十分な保磁力が得られなかった。これは亜鉛結合磁石で
はThMn12型結晶構造を有する主相の結晶粒径が単磁
区粒子臨界径よりはるかに大きく、数μmもあることに
よる。すなわち、ボンド磁石用粉末として亜鉛結合磁石
を粉砕すると、粒体の粒子径に比べて結晶粒径が充分小
さくないため、磁気特性に大きな粉末粒径依存性が現
れ、粒度が小さくなると固有保磁力iHcが極端に劣化
する問題がある。
Nd-Ti-Fe nitride based magnets have also been proposed, but Nd-Ti-Fe nitride based magnets are magnetized by containing about 18 wt% of Nd, which is a low melting point zinc-bonded magnet. Although it can be used for production, a sufficient coercive force was not obtained as a resin-bonded magnet. This is because in the zinc-bonded magnet, the crystal grain size of the main phase having the ThMn 12 type crystal structure is much larger than the critical diameter of single domain particles, and is several μm. That is, when a zinc-bonded magnet is pulverized as a powder for a bonded magnet, the crystal grain size is not sufficiently smaller than the grain size of the granules, so that a large dependence of the magnetic properties on the powder grain size appears, and when the grain size becomes smaller, the intrinsic coercive force becomes smaller. There is a problem that iHc is extremely deteriorated.

【0006】この発明は、Nd−Ti−Fe窒化物系磁
石に代わるThMn12型結晶構造を有するR−T−M−
N系組成のボンド磁石の提供を目的としており、また、
3kOe以上の保磁力が得られかつ超微細結晶組織を有
する粉末が容易に得られかつその後の粉末の取り扱いが
容易なR−T−M−N系ボンド磁石の製造方法の提供を
目的としている。
The present invention is an R-T-M- having a ThMn 12 type crystal structure which replaces the Nd-Ti-Fe nitride based magnet.
The purpose is to provide bonded magnets of N-based composition, and
An object of the present invention is to provide a method for producing an R-T-M-N bond magnet in which a coercive force of 3 kOe or more can be obtained, a powder having an ultrafine crystal structure can be easily obtained, and the powder can be easily handled thereafter.

【0007】[0007]

【課題を解決するための手段】この発明は、メカニカル
アロイング後にThMn12型結晶構造を晶出させる熱処
理を700℃程度にでき、その結果、晶出した結晶粒径
は単磁区粒子径と同等となり、保磁力を発現することを
期待できる組成について、Ti以外のThMn12型結晶
構造の安定化元素を目的に種々検討した結果、Cr、V
及びMoが特に有効であることを知見し、特定組成のN
d−M−Fe系粉末(M:Cr,V,Moの少なくとも
1種含有あるいはさらにその一部を80%以下のTiに
て置換できる)をメカニカルアロイングにて数十Åオー
ダーでの混合物を作製したのち、さらに600〜850
℃の加熱拡散処理することにより、ThMn12型結晶構
造を有するRT12-xx(但しx=1〜2)を主相とす
る特定平均結晶粒径を有する粉末を得ることができ、こ
れを特定条件でのN2ガス中窒化処理することにより、
3kOe以上の保磁力を有する所要のR−T−M−N系
合金粉末を製造でき、その後の粉末の取り扱いが容易に
なり、樹脂と結合することでボンド磁石を製造できるこ
とを知見しこの発明を完成した。
According to the present invention, the heat treatment for crystallizing the ThMn 12 type crystal structure after mechanical alloying can be performed at about 700 ° C., and as a result, the crystallized crystal grain size is equivalent to the single magnetic domain grain size. As a result of various investigations on the composition which can be expected to exhibit the coercive force for the purpose of stabilizing elements of the ThMn 12 type crystal structure other than Ti, Cr, V
And Mo have been found to be particularly effective, and N of a specific composition
A mixture of d-M-Fe-based powder (M: at least one of Cr, V, Mo can be substituted or a part thereof can be replaced with 80% or less of Ti) by mechanical alloying in the order of several tens of Å. After making, further 600-850
By heat diffusion treatment at ℃, it is possible to obtain a powder having a specific average crystal grain size with a main phase of RT 12-x M x (where x = 1 to 2) having a ThMn 12 type crystal structure. By nitriding in N 2 gas under specific conditions,
It has been found that a required R-T-M-N based alloy powder having a coercive force of 3 kOe or more can be produced, the handling of the powder thereafter becomes easy, and a bond magnet can be produced by binding with a resin. completed.

【0008】すなわち、この発明は、R 7〜18at
%(R:希土類元素の少なくとも1種でかつPrまたは
Ndの1種または2種を80%以上含有)、T 54〜
83at%(T:FeあるいはFeの一部を50%以下
のCoにて置換)、M 7〜16at%(M:Cr,
V,Moの少なくとも1種含有あるいはさらにその一部
を80%以下のTiにて置換)の配合組成になるよう
に、上記の所要金属粉末または合金粉末を配合、混合
後、真空中あるいはArガス中にてメカニカルアロイン
グし、さらに600〜850℃、10分〜12時間の加
熱拡散処理にて、ThMn12型結晶構造を有するRT
12-xx(但しx=1〜2)を主相とする平均結晶粒径
0.05μm〜0.5μmの微細結晶組織を有する平均
粒度0.5μm〜500μmからなる粉末を得、この粉
末を0.5〜50atmのN2ガス中で420〜650
℃に10分〜12時間保持する窒化処理を行ない、R
7〜18at%、T 54〜83at%、M 7〜16
at%、N 3〜12at%を含有する永久磁石粉末を
樹脂で結合したことを特徴とするR−T−M−N系ボン
ド磁石の製造方法である。
That is, the present invention provides R 7-18 at
% (R: at least one rare earth element and 80% or more of one or two Pr or Nd), T 54 to
83 at% (T: Fe or a part of Fe is replaced by 50% or less of Co), M 7 to 16 at% (M: Cr,
At least one of V and Mo is added, or a part of it is replaced by 80% or less of Ti), and the above-mentioned required metal powder or alloy powder is mixed and mixed, and then in a vacuum or Ar gas. RT having a ThMn 12 type crystal structure is obtained by mechanical alloying in a heat diffusion treatment at 600 to 850 ° C. for 10 minutes to 12 hours.
A powder having an average grain size of 0.5 μm to 500 μm having a fine crystal structure of 12 μx M x (where x = 1 to 2) as a main phase and having an average crystal grain size of 0.05 μm to 0.5 μm was obtained. 420 to 650 in 0.5 to 50 atm N2 gas
Perform nitriding treatment by holding at ℃ for 10 minutes to 12 hours, and
7-18 at%, T 54-83 at%, M 7-16
A method for producing an R-T-M-N based bonded magnet, characterized in that permanent magnet powder containing at% and N3-12 at% is bonded with a resin.

【0009】粉末配合組成の限定理由 この発明において、希土類元素RはY、La、Ce、P
r、Nd、Sm、Gd、Tb、Dy、Ho、Er、T
m、Luが包含され、これらのうち少なくとも1種以上
でかつPrまたはNdの1種または2種をRの80%以
上含有し、さらにRのすべてがPrまたはNdあるいは
PrとNdの場合がある。Rの50%以上をPrまたは
Ndの1種または2種とするのは、PrまたはNdの1
種または2種が50%未満では十分な磁気異方性が得ら
れないためであり、またPrあるいはNdの使用により
Smに比較して原料コストの低減効果がある。
Reasons for limiting powder composition In the present invention, the rare earth element R is Y, La, Ce or P.
r, Nd, Sm, Gd, Tb, Dy, Ho, Er, T
m and Lu are included, and at least one of them may be contained in one or two kinds of Pr or Nd in an amount of 80% or more of R, and all of R may be Pr or Nd or Pr and Nd. . It is 1 of Pr or Nd that 50% or more of R is one or two of Pr or Nd.
This is because if 50% or less of two kinds or less, sufficient magnetic anisotropy cannot be obtained, and use of Pr or Nd has an effect of reducing raw material cost as compared with Sm.

【0010】Rはメカニカルアロイング中にミル内壁や
ボール表面などに付着したり、あるいは酸化などにより
減少する傾向にあるので、配合時にThMn12型化合物
の化学量論的組成のR量より過剰にする必要がある。従
ってRは、7at%未満ではα−Feの析出により保磁
力が低下し、また18at%を超えると非磁性相や軟磁
性相が析出して残留磁束密度が劣化するため、7〜18
at%とする。
Since R tends to adhere to the inner wall of the mill, the surface of the ball, etc. during mechanical alloying, or to decrease due to oxidation, etc., it becomes excessive when compared with the amount of R in the stoichiometric composition of the ThMn 12 type compound during compounding. There is a need to. Therefore, if R is less than 7 at%, the coercive force decreases due to the precipitation of α-Fe, and if it exceeds 18 at%, the non-magnetic phase or the soft magnetic phase precipitates and the residual magnetic flux density deteriorates.
At%

【0011】鉄族元素TはFe、Coの少なくとも1種
を包含し、FeをTの50%以上含有することが重要で
ある。すなわち、T中のFeが50%未満では十分な磁
化が得られず好ましくない。なお、CoをTの50%未
満添加することはキュリー温度が上昇し特に好ましい。
Tは、54at%未満では低保磁力の化合物が析出して
保磁力と残留磁束密度が低下し、83at%を超えると
α−Fe析出により保磁力、角型性が低下するため、5
4〜83at%とする。
The iron group element T contains at least one of Fe and Co, and it is important that Fe is contained in an amount of 50% or more of T. That is, when Fe in T is less than 50%, sufficient magnetization cannot be obtained, which is not preferable. It is particularly preferable to add Co to less than 50% of T because the Curie temperature rises.
When T is less than 54 at%, a compound having a low coercive force is precipitated to reduce the coercive force and the residual magnetic flux density, and when T is more than 83 at%, the coercive force and the squareness are deteriorated due to α-Fe precipitation.
4 to 83 at%.

【0012】M、すなわちCr,V,Moの少なくとも
1種含有、あるいはさらにその一部を50%以下のTi
にて置換でき、ThMn12型構造を有するRFe12-x
x化合物を生成させる必須元素であり、7at%未満
(xが1未満)ではR2Fe17相やα−Feが析出して
目的とする上記化合物が得られず、また16at%を超
える(xが2.0を超える)と磁化が著しく低下するた
め、7〜16at%とする。Tiは、ThMn12型構造
の安定化元素の1つであり、Mの一部として使用できる
が、TiがMの50%を超えるとThMn12型構造の安
定温度範囲が850℃以上となり、上述の微細結晶組織
が得られなくなるので、TiはMの80%以下とする。
M, that is, at least one of Cr, V, and Mo is contained, or a part of the content is 50% or less of Ti.
RFe 12-x M having a ThMn 12 type structure
It is an essential element for forming the x compound, and if it is less than 7 at% (x is less than 1), the R 2 Fe 17 phase and α-Fe are not precipitated to obtain the desired compound, and more than 16 at% (x Is more than 2.0), the magnetization is remarkably reduced, so the content is set to 7 to 16 at%. Ti is one of the stabilizing elements of the ThMn 12 type structure, and can be used as a part of M. However, when Ti exceeds 50% of M, the stable temperature range of the ThMn 12 type structure becomes 850 ° C. or higher. Therefore, Ti is set to 80% or less of M because the fine crystal structure of No.

【0013】またNは、3at%未満では十分な一軸異
方性が得られず、また12at%を超えるとThMn1
2型構造が不安定となり、母相がR2Fe17相やα−F
eに分解して好ましくないため、3〜12at%とす
る。
When N is less than 3 at%, sufficient uniaxial anisotropy cannot be obtained, and when it exceeds 12 at%, ThMn1
The type 2 structure becomes unstable, and the parent phase is the R 2 Fe 17 phase or α-F.
Since it is not preferable because it decomposes into e, it is set to 3 to 12 at%.

【0014】製造条件の限定理由 この発明において、メカニカルアロイング法は所要組成
に配合した純金属粉末あるいは合金粉末を混合調整した
後、真空中またはArガス中で鋼球などの微粉砕媒体を
収容した微粉砕装置により、機械的に合金化するもので
ある。メカニカルアロイングに使用する装置は、容器内
が不活性ガス置換が可能であれば、ボールミル、振動ミ
ル、遊星ボールミル、アトライター等が使用できるが、
その性能などにより運転条件が異なるので、適宜選定さ
れる必要がある。
Reasons for Limiting Manufacturing Conditions In the present invention, the mechanical alloying method involves mixing and adjusting a pure metal powder or an alloy powder mixed in a required composition, and then storing a finely pulverized medium such as steel balls in a vacuum or Ar gas. The alloy is mechanically alloyed by the fine pulverizer. As a device used for mechanical alloying, a ball mill, a vibration mill, a planetary ball mill, an attritor, etc. can be used if the inside of the container can be replaced with an inert gas,
Since the operating conditions differ depending on the performance, etc., it must be selected appropriately.

【0015】メカニカルアロイング後はα−Feと元素
M(Cr,V,Mo)のピーク以外の回折線は、粉末X
線回折パターンには現れないのが通例であり、その状態
に到達するまでメカニカルアロイング処理を行うことが
好ましい。メカニカルアロイング後の拡散処理条件を6
00〜850℃、10分〜12時間に限定した理由は以
下のとおりである。拡散処理温度が600℃未満では構
成元素の拡散速度が遅いため、メカニカルアロイング後
得られた構成元素が微視的オーダーで混合した組成物か
らThMn12型構造を有するRFe12-xx化合物が析
出する速度が極めて遅くなり反応に長時間を要するため
好ましくなく、また850℃を超えるとThMn12型R
Fe12-xx化合物は速やかに生成するが、粗大結晶と
なり保磁力が低下して好ましくない。拡散処理時間が1
0分未満では粉末全体を均一な組織にすることが困難と
なり、また12時間を超えると粗大粒成長による保磁力
の低下及び熱処理中の粉末酸化により、磁気特性の低下
を招来しまた処理費用が高騰するため好ましくない。よ
り好ましい拡散処理時間は30〜60分である。
After mechanical alloying, diffraction lines other than the peaks of α-Fe and the element M (Cr, V, Mo) are powder X.
It usually does not appear in the line diffraction pattern, and it is preferable to perform the mechanical alloying treatment until the state is reached. Diffusion treatment condition after mechanical alloying is 6
The reason for limiting the temperature to 00 to 850 ° C. for 10 minutes to 12 hours is as follows. If the diffusion treatment temperature is lower than 600 ° C., the diffusion rate of the constituent elements is slow, and therefore, from the composition obtained by mixing the constituent elements obtained after mechanical alloying in a microscopic order, an RFe 12-x M x compound having a ThMn 12 type structure is obtained. It is not preferable because the rate of precipitation of iron is extremely slow and the reaction takes a long time. If it exceeds 850 ° C, ThMn 12 R
The Fe 12-x M x compound is rapidly produced, but it becomes coarse crystals and the coercive force is lowered, which is not preferable. Spreading processing time is 1
If it is less than 0 minutes, it will be difficult to make the entire powder into a uniform structure, and if it exceeds 12 hours, the coercive force will decrease due to the growth of coarse grains and the powder will be oxidized during the heat treatment, resulting in a decrease in magnetic properties and a processing cost. It is not preferable because it rises sharply. A more preferable diffusion processing time is 30 to 60 minutes.

【0016】拡散処理後の粉末の平均結晶粒径を0.0
5μm〜0.5μmに限定した理由は、0.05μm未
満では事実上生成が困難であり、0.05μm未満の結
晶が得られたとしても特性上の利点はなく、また0.5
μmを超えると単磁区粒子臨界径より大きくなり、粉末
の保持力が減少して永久磁石用粉末として好ましくない
ためである。
The average crystal grain size of the powder after the diffusion treatment is 0.0
The reason for limiting the thickness to 5 μm to 0.5 μm is that it is practically difficult to generate crystals with a thickness of less than 0.05 μm, and even if crystals with a size of less than 0.05 μm are obtained, there is no advantage in terms of properties,
This is because if it exceeds μm, it becomes larger than the critical diameter of the single domain particle, and the coercive force of the powder decreases, which is not preferable as the powder for permanent magnet.

【0017】この発明において、微細結晶組織を有する
微粉末の平均粒度を0.5〜500μmに限定したの
は、0.5μm未満では粉末の酸化による磁性劣化の恐
れがあり、また500μmを超えると窒化処理に長時間
を要して好ましくないためである。
In the present invention, the average particle size of the fine powder having a fine crystal structure is limited to 0.5 to 500 μm. When the average particle size is less than 0.5 μm, there is a risk of magnetic deterioration due to oxidation of the powder, and when it exceeds 500 μm. This is because nitriding requires a long time and is not preferable.

【0018】窒化処理時のN2圧力を0.5〜50at
mに限定した理由は、0.5atm未満では窒化反応速
度が遅く、圧力を上げると反応は速やかに進行するが、
50atmを超えると、処理設備が大きくなりすぎ、工
業生産コスト的に好ましくないためである。窒化処理時
の温度を420〜650℃に限定した理由は、420℃
未満では窒化が進行せず、650℃を超えるとα−Fe
とRNが生成してR−T−M化合物(RT12-xx)が
分解し、磁石特性の劣化を招来するためである。また、
窒化処理時の保持時間は10分未満では十分な窒化が進
行せず、また12時間を超えると分解が起こり磁石特性
の劣化を招来するため、10分〜12時間とする。
The N 2 pressure during the nitriding treatment is 0.5 to 50 at.
The reason for limiting to m is that the nitriding reaction rate is slow when the pressure is less than 0.5 atm and the reaction proceeds rapidly when the pressure is increased.
If it exceeds 50 atm, the processing equipment becomes too large, which is not preferable in terms of industrial production cost. The reason for limiting the temperature during nitriding treatment to 420 to 650 ° C is 420 ° C.
If it is less than 650 ° C, nitriding does not proceed, and if it exceeds 650 ° C, α-Fe
And RN are generated and the RTM compound (RT 12-x M x ) is decomposed, resulting in deterioration of magnet characteristics. Also,
If the holding time during the nitriding treatment is less than 10 minutes, sufficient nitriding does not proceed, and if it exceeds 12 hours, decomposition occurs and deterioration of magnet characteristics is caused, so that the holding time is set to 10 minutes to 12 hours.

【0019】この発明によるFe−B−R系ボンド磁石
は、異方性及び等方性磁石に関するものであり、以下に
示す圧縮成型、射出成型、押し出し成型、圧延成型、樹
脂含浸法等、公知のいずれの製造方法であってもよい。
圧縮成型の場合は、磁性粉末に熱硬化性樹脂、カップリ
ング剤、滑剤等を添加混練した後、圧縮成型後加熱し、
樹脂を硬化して得られる。射出成型、押し出し成型、圧
延成型の場合は、磁性粉末に熱可塑性樹脂、カップリン
グ剤、滑剤等を添加混練した後、射出成型、押し出し成
型、圧延成型のいずれかの方法で成型して得られる。樹
脂含浸法においては、磁性粉末を圧縮成型後、必要に応
じて熱処理した後、熱硬化性樹脂を含浸し、加熱して樹
脂を硬化させて得る。また、磁性粉末を圧縮成型後、必
要に応じて熱処理した後、熱可塑性樹脂を含浸して得
る。
The Fe-BR bond magnet according to the present invention relates to anisotropic and isotropic magnets, and is well known in the following compression molding, injection molding, extrusion molding, rolling molding, resin impregnation method and the like. Any of the above manufacturing methods may be used.
In the case of compression molding, a thermosetting resin, a coupling agent, a lubricant, etc. are added to the magnetic powder and kneaded, followed by heating after compression molding,
It is obtained by curing a resin. In the case of injection molding, extrusion molding, and rolling molding, it is obtained by adding and kneading a magnetic powder with a thermoplastic resin, a coupling agent, a lubricant, etc., and then molding by injection molding, extrusion molding, or rolling molding. . In the resin impregnation method, the magnetic powder is compression-molded, heat-treated as required, impregnated with a thermosetting resin, and heated to cure the resin. In addition, the magnetic powder is obtained by compression molding, heat treatment if necessary, and then impregnated with a thermoplastic resin.

【0020】この発明において、ボンド磁石中の磁性粉
末の充填率は、前記製造方法により異なるが、70〜9
9.5wt%であり、残部0.5〜30wt%が樹脂そ
の他である。圧縮成型法の場合、磁性粉末の充填率は9
5〜99.5wt%、射出成型法の場合、90〜95w
t%、樹脂含浸法の場合、96〜99.5wt%が好ま
しい。この発明において、バインダーとして用いる合成
樹脂は熱硬化性、熱可塑性のいずれも利用できるが、熱
的に安定な樹脂が好ましく、例えばボリアミド、ポリイ
ミド、ポリエステル、フェノール樹脂、フッ素樹脂、ケ
イ素樹脂、エポキシ樹脂などが適宜選択される。
In the present invention, the filling rate of the magnetic powder in the bonded magnet depends on the manufacturing method, but is 70-9.
It is 9.5 wt% and the balance 0.5 to 30 wt% is resin or the like. In the case of compression molding, the filling rate of magnetic powder is 9
5-99.5 wt%, 90-95w in case of injection molding method
t%, and in the case of the resin impregnation method, 96 to 99.5 wt% is preferable. In the present invention, the synthetic resin used as the binder may be either thermosetting or thermoplastic, but a thermally stable resin is preferable, for example, polyamide, polyimide, polyester, phenol resin, fluororesin, silicon resin, epoxy resin. Etc. are appropriately selected.

【0021】[0021]

【作用】この発明は、ThMn12型結晶構造の安定化元
素としてCr、V及びMoの少なくとも1種含有あるい
はさらにその一部をTiにて置換するため、メカニカル
アロイング後にThMn12型結晶構造を晶出させる熱処
理を700℃程度にでき、その結果、晶出した結晶粒径
は単磁区粒子径と同等となり、保磁力を発現する。ま
た、この発明は、特定組成のR−T−M−N系合金粉末
をメカニカルアロイングにて原子オーダーでの混合物を
作製したのち、さらに600〜850℃の加熱拡散処理
することにより、ThMn12型結晶構造を有するRT
12-■(但しα=1〜2)を主相とする特定平均結
晶粒径を有する粉末を得ることができ、これを特定条件
でのN2ガス中窒化処理することにより、3kOe以上
の保磁力を有する所要のR−T−M−N系合金粉末を製
造でき、その後の粉末の取り扱いが容易になり、これを
樹脂で結合することにより、容易にR−T−M−N系ボ
ンド磁石を製造できる。
According to the present invention, since at least one of Cr, V and Mo is contained as a stabilizing element of the ThMn 12 type crystal structure or a part thereof is replaced by Ti, the ThMn 12 type crystal structure is mechanically alloyed after mechanical alloying. The heat treatment for crystallization can be performed at about 700 ° C., and as a result, the crystal grain size of the crystal is equal to the single domain grain size, and the coercive force is exhibited. Further, the present invention is, after the prepared mixture in atomic order the R-T-M-N based alloy powder of a specific composition in mechanical alloying by heating diffusion treatment further 600 to 850 ° C., ThMn 12 Having a crystal structure
It is possible to obtain a powder having a specific average crystal grain size of 12- ■ M (where α = 1 to 2) as a main phase, and subjecting this to nitriding treatment in N 2 gas under specific conditions to give 3 kOe or more. The required R-T-M-N based alloy powder having a coercive force of 1 can be produced, the subsequent handling of the powder becomes easy, and the R-T-M-N based alloy powder can be easily bonded by binding it with a resin. A bonded magnet can be manufactured.

【0022】[0022]

【実施例】【Example】

実施例 原料金属粉末として粒度250μm以下のNd粉末、粒
度150μm以下のFe粉末、Co粉末、Mo粉末、C
r粉末、Ti粉末、V粉末を表1に示す組成に配合後、
この配合原料の36gを直径128mm×長さ132m
m寸法のボールミル内に挿入し、さらに微粉砕媒体とし
て直径9.8mmのステンレス鋼球を装入し、このボー
ルミル内をArガスにて置換後、回転数95rpm、回
転時間100時間の条件にてメカニカルアロイング処理
した。メカニカルアロイングの結果、実施例No.1〜
11の原料は平均粒度1.5μmの微粉末となった。こ
の粉末はX線回折によりアモルファス相と結晶質のα−
FeおよびM(M:Cr,V,Mo)の混合物相であっ
た。
Examples Nd powder having a particle size of 250 μm or less, Fe powder having a particle size of 150 μm or less, Co powder, Mo powder, and C as raw metal powders
After mixing r powder, Ti powder and V powder into the composition shown in Table 1,
36g of this blended raw material is 128mm in diameter x 132m in length
It is inserted into a ball mill of m size, and further, a stainless steel ball having a diameter of 9.8 mm is charged as a finely pulverizing medium. After replacing the inside of the ball mill with Ar gas, the rotation speed is 95 rpm and the rotation time is 100 hours. Mechanically alloyed. As a result of mechanical alloying, Example No. 1 to
The raw material of No. 11 was a fine powder having an average particle size of 1.5 μm. This powder was found to have an amorphous phase and crystalline α- by X-ray diffraction.
It was a mixture phase of Fe and M (M: Cr, V, Mo).

【0023】次に、Arガス中にて表1に示す拡散処理
条件にて熱処理を行い、ThMn12型結晶構造を有する
RT12-xx(但しx=1〜2)を主相とする粉末を得
た。粉末の平均結晶粒径並びに平均粒度はそれぞれ0.
1μm及び1.5μmであった。SEM観察したところ
粉末粒度分布が大きく、さらに各粉末は細かな粒子が凝
集したように見えた。
Next, heat treatment is performed in Ar gas under the diffusion treatment conditions shown in Table 1, and RT 12-x M x (where x = 1 to 2) having a ThMn 12 type crystal structure is used as a main phase. A powder was obtained. The average crystal grain size and the average grain size of the powder are respectively 0.
It was 1 μm and 1.5 μm. As a result of SEM observation, the particle size distribution of the powder was large, and each powder appeared to be agglomerated with fine particles.

【0024】さらに、N2圧力1atmのN2ガス流気中
で表2に示す条件にて窒化処理した後冷却した。得られ
た粉末合金の組成を表1に示す。また、得られた粉末合
金に2.0wt%のエポキシ樹脂を加え、樹脂結合した
後、ボンド磁石の特性を測定し表2に示す。
Further, nitriding was performed under the conditions shown in Table 2 in N 2 gas stream having N 2 pressure of 1 atm, and then cooled. The composition of the obtained powder alloy is shown in Table 1. Further, 2.0 wt% of epoxy resin was added to the obtained powder alloy, and after resin bonding, the characteristics of the bonded magnet were measured and shown in Table 2.

【0025】比較例 実施例と同一の原料粉末を用いて、表1に示す組成に配
合後、実施例と同一のメカニカルアロイング処理を施
し、得られた粉末を300℃で15分間保持する拡散熱
処理を行い、さらに実施例と同一の窒化処理を行い磁石
用粉末(比較例No.12)を得た。得られた粉末の組
成を表1に、特性を測定し表2に示す。実施例No.2
試料と同一の組成に配合後、実施例と同一のメカニカル
アロイング処理並びに拡散熱処理を施し、900℃、N
2圧力2気圧の窒化処理した後冷却し、得られた粉末
(比較例No.13)の組成を表1に、実施例と同様の
方法で樹脂結合後のボンド磁石の特性を測定し表2に示
す。
Comparative Example Using the same raw material powder as in Example, the composition shown in Table 1 was added, and then the same mechanical alloying treatment as in Example was applied, and the obtained powder was held at 300 ° C. for 15 minutes for diffusion. The heat treatment was performed, and the same nitriding treatment as in the example was performed to obtain a magnet powder (Comparative Example No. 12). The composition of the obtained powder is shown in Table 1, and the characteristics are shown in Table 2. Example No. Two
After blending to the same composition as the sample, the same mechanical alloying treatment and diffusion heat treatment as those in the example are applied to obtain 900 ° C., N
2 and cooled after nitriding treatment pressure of 2 atmospheres, the resulting powder (Comparative Example No.13) the composition of Table 1, the properties of the bonded magnet after the resin binding in the same manner as in Example were measured Table 2 Shown in.

【0026】実施例と同一の原料粉末を用いて、Nd1
4at%、Fe79at%、Ti7at%の配合組成に
なるように混合した後、実施例と同一のメカニカルアロ
イング処理を行い、さらに800℃で10時間のArガ
ス中の拡散熱処理を施し、得られた粉末をX線回折した
結果、得られた粉末(比較例No.14)は、NdFe
7、NdFe7、TiFe2の混合物であることが分かっ
た。この比較例粉末を650℃で15分間保持する窒化
処理を行っても、得られたボンド磁力の保磁力は1kO
e以下であった。
Using the same raw material powder as in the example, Nd1
After mixing so as to have a compounding composition of 4 at%, Fe 79 at%, and Ti 7 at%, the same mechanical alloying treatment as in the example was performed, and further, a diffusion heat treatment in Ar gas was performed at 800 ° C. for 10 hours, which was obtained. As a result of X-ray diffraction of the powder, the obtained powder (Comparative Example No. 14) was NdFe.
It was found to be a mixture of 7 , NdFe 7 and TiFe 2 . Even when the nitriding treatment of holding the powder of Comparative Example at 650 ° C. for 15 minutes was performed, the coercive force of the obtained bond magnetic force was 1 kO.
It was below e.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】この発明は、ThMn12型結晶構造の安
定化元素のMとしてCr,V,Moの少なくとも1種含
有あるいはさらにその一部を80%以下のTiにて置換
した特定組成のR−M−Fe系配合粉末とすることによ
り、メカニカルアロイング後の加熱拡散処理を600〜
850℃と比較的低い温度とすることができ、この拡散
処理により容易にThMn12型結晶構造を有するRT
12-■(但しα=1〜2)を主相とする特定平均結
晶粒径を有する粉末を得ることができ、これを特定条件
でのN2ガス中窒化処理することにより、3kOe以上
の保磁力を有する所要のR−T−M−N系合金粉末を製
造でき、その後の粉末の取り扱いが容易になり、樹脂と
結合することで種々形態のR−T−M−N系ボンド磁石
を容易に製造できる。
According to the present invention, at least one of Cr, V, and Mo is contained as M of the stabilizing element of the ThMn 12 type crystal structure, or a part thereof is replaced by 80% or less of Ti in a specific composition. By using the -M-Fe-based compounded powder, the heat diffusion treatment after mechanical alloying is 600-
The temperature can be set to a relatively low temperature of 850 ° C., and this diffusion treatment facilitates RT having a ThMn 12 type crystal structure.
It is possible to obtain a powder having a specific average crystal grain size of 12- ■ M (where α = 1 to 2) as a main phase, and subjecting this to nitriding treatment in N 2 gas under specific conditions to give 3 kOe or more. The required R-T-M-N based alloy powder having the above coercive force can be produced, the subsequent handling of the powder becomes easy, and various forms of R-T-M-N based bonded magnet can be obtained by combining with the resin. Can be easily manufactured.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/08 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display area H01F 1/08 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R 7〜18at%(R:希土類元素の
少なくとも1種でかつPrまたはNdの1種または2種
を80%以上含有)、T 54〜83at%(T:Fe
あるいはFeの一部を50%以下のCoにて置換)、M
7〜16at%(M:Cr,V,Moの少なくとも1
種含有あるいはさらにその一部を80%以下のTiにて
置換)の配合組成になるように、所要金属粉末または合
金粉末を配合、混合後、真空中あるいはArガス中にて
メカニカルアロイングし、さらに600〜850℃、1
0分〜12時間の加熱拡散処理にて、ThMn12型結晶
構造を有するRT12-xx(但しx=1〜2)を主相と
する平均結晶粒径0.05μm〜0.5μmの微細結晶
組織を有する平均粒度0.5μm〜500μmからなる
粉末を得、この粉末を0.5〜50atmのN2ガス中
で420〜650℃に10分〜12時間保持する窒化処
理を行い、R 7〜18at%、T 54〜83at
%、M 7〜16at%、N 3〜12at%を含有す
る合金粉末を得、これを樹脂で結合したことを特徴とす
るR−T−M−N系ボンド磁石の製造方法。
1. R 7-18 at% (R: at least one rare earth element and 80% or more of one or two Pr or Nd), T 54-83 at% (T: Fe
Alternatively, a part of Fe is replaced with 50% or less of Co), M
7 to 16 at% (M: Cr, V, Mo at least 1
The required metal powder or alloy powder is mixed and mixed, and then mechanically alloyed in a vacuum or in Ar gas so that the content of the seed or the composition thereof is replaced by 80% or less of Ti). Further 600-850 ℃, 1
By heat diffusion treatment for 0 minutes to 12 hours, RT 12-x M x (where x = 1 to 2) having a ThMn 12 type crystal structure as a main phase and an average crystal grain size of 0.05 μm to 0.5 μm A powder having a fine crystal structure and an average particle size of 0.5 μm to 500 μm is obtained, and the powder is subjected to a nitriding treatment in which the powder is kept at 420 to 650 ° C. for 10 minutes to 12 hours in 0.5 to 50 atm of N 2 gas, and R 7-18 at%, T 54-83 at
%, M 7 to 16 at% and N 3 to 12 at% are obtained, and this is bonded with a resin, and a method for producing an R-T-M-N bond magnet is characterized.
JP4244327A 1992-08-19 1992-08-19 Manufacture method of r-t-m-n based bonded magnet Pending JPH0669010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4244327A JPH0669010A (en) 1992-08-19 1992-08-19 Manufacture method of r-t-m-n based bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4244327A JPH0669010A (en) 1992-08-19 1992-08-19 Manufacture method of r-t-m-n based bonded magnet

Publications (1)

Publication Number Publication Date
JPH0669010A true JPH0669010A (en) 1994-03-11

Family

ID=17117067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4244327A Pending JPH0669010A (en) 1992-08-19 1992-08-19 Manufacture method of r-t-m-n based bonded magnet

Country Status (1)

Country Link
JP (1) JPH0669010A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1085531A2 (en) * 1999-09-14 2001-03-21 Yingchang Yang Multielement interstitial hard magnetic material and process for producing magnetic powder and magnet using the same
CN108831659A (en) * 2018-09-10 2018-11-16 重庆科技学院 It is a kind of to prepare a nanometer method and nanometer permanent magnetism powder for neodymium iron nitrogen permanent-magnet powder
JP2019040927A (en) * 2017-08-22 2019-03-14 トヨタ自動車株式会社 Magnetic compound, method for manufacturing the same, and magnetic powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1085531A2 (en) * 1999-09-14 2001-03-21 Yingchang Yang Multielement interstitial hard magnetic material and process for producing magnetic powder and magnet using the same
EP1085531A3 (en) * 1999-09-14 2001-08-29 Yingchang Yang Multielement interstitial hard magnetic material and process for producing magnetic powder and magnet using the same
JP2019040927A (en) * 2017-08-22 2019-03-14 トヨタ自動車株式会社 Magnetic compound, method for manufacturing the same, and magnetic powder
CN108831659A (en) * 2018-09-10 2018-11-16 重庆科技学院 It is a kind of to prepare a nanometer method and nanometer permanent magnetism powder for neodymium iron nitrogen permanent-magnet powder

Similar Documents

Publication Publication Date Title
JP3171558B2 (en) Magnetic materials and bonded magnets
USRE37666E1 (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
JP3317646B2 (en) Manufacturing method of magnet
JPH1041116A (en) R-t-m-n permanent magnetic powder and manufacture of anisotropic bond magnet
JPH09190909A (en) Manufacture of r-t-n permanent magnet powder and of anisotropic bond magnet
JP3504735B2 (en) Method for producing RTMN based anisotropic bonded magnet
JPH0669010A (en) Manufacture method of r-t-m-n based bonded magnet
JP3615177B2 (en) Magnet material and method of manufacturing bonded magnet using the same
JPH0774011A (en) Manufacture of permanent magnet powder
JP3148514B2 (en) Method for producing R-Fe-M-N bonded magnet
JP3157659B2 (en) Manufacturing method of permanent magnet powder
JP3623564B2 (en) Anisotropic bonded magnet
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JPH08335506A (en) High coercive force iron base permanent magnet and bonded magnet
JP2000049006A (en) Rare earth magnet material and rare earth bond magnet using it
JP3231000B2 (en) Manufacturing method of rare earth permanent magnet
JP3795694B2 (en) Magnetic materials and bonded magnets
JP3652751B2 (en) Anisotropic bonded magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
JP2002217010A (en) Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet
JPH07176417A (en) Iron based bonded magnet and its manufacture
JP3209292B2 (en) Magnetic material and its manufacturing method
JP3623583B2 (en) Anisotropic bonded magnet
JP2925840B2 (en) Fe-BR bonded magnet
JP2005272924A (en) Material for anisotropic exchange spring magnet, and manufacturing method therefor