JP2019040927A - Magnetic compound, method for manufacturing the same, and magnetic powder - Google Patents

Magnetic compound, method for manufacturing the same, and magnetic powder Download PDF

Info

Publication number
JP2019040927A
JP2019040927A JP2017159767A JP2017159767A JP2019040927A JP 2019040927 A JP2019040927 A JP 2019040927A JP 2017159767 A JP2017159767 A JP 2017159767A JP 2017159767 A JP2017159767 A JP 2017159767A JP 2019040927 A JP2019040927 A JP 2019040927A
Authority
JP
Japan
Prior art keywords
phase
magnetic
content
magnetic compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017159767A
Other languages
Japanese (ja)
Other versions
JP6541132B2 (en
Inventor
昭人 木下
Akito Kinoshita
昭人 木下
哲也 庄司
Tetsuya Shoji
哲也 庄司
秀史 岸本
Hideshi Kishimoto
秀史 岸本
紀次 佐久間
Noritsugu Sakuma
紀次 佐久間
和哉 横田
Kazuya Yokota
和哉 横田
久理眞 小林
Kurima Kobayashi
久理眞 小林
鈴木 俊治
Toshiharu Suzuki
俊治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Shizuoka Institute of Science and Technology
Original Assignee
Toyota Motor Corp
Shizuoka Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Shizuoka Institute of Science and Technology filed Critical Toyota Motor Corp
Priority to JP2017159767A priority Critical patent/JP6541132B2/en
Priority to CN201810722298.5A priority patent/CN109427455B/en
Priority to DE102018120212.1A priority patent/DE102018120212B4/en
Publication of JP2019040927A publication Critical patent/JP2019040927A/en
Application granted granted Critical
Publication of JP6541132B2 publication Critical patent/JP6541132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0593Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a rare earth-iron based magnetic compound having ThMntype crystal structure, a method for manufacturing the same and magnetic powder which enable further improvement of an anisotropic magnetic field and saturation magnetization.SOLUTION: A magnetic compound, a method for manufacturing the same and a magnetic powder are disclosed. The magnetic compound has a composition represented by the formula (NdRZr)(FeCo)TMA(where R represents one or more rare earth elements other than Nd, T represents one or more elements selected from a group consisting of Ti, V, Mo and W, M represents an inevitable impurity element, etc. A represents one or more elements selected from a group consisting of N, C, H and P; and 0<x≤0.3, 0≤y≤0.1, 0≤z≤0.3, 7.7<a≤9.4, b=100-a-c-d, 3.1≤c<7.7, 0≤d≤1.0 and 1≤e≤18), has ThMntype crystal structure, and satisfies the relations given by the following expressions in the above formula: a≥1.6x+7.7; and c≥-14x+7.3.SELECTED DRAWING: Figure 1

Description

本開示は、磁性化合物及びその製造方法並びに磁性紛体に関する。本開示は、特に、高異方性磁界と高飽和磁化を兼ね備えた、磁性化合物及びその製造方法並びに磁性紛体に関する。   The present disclosure relates to a magnetic compound, a method for producing the same, and a magnetic powder. The present disclosure particularly relates to a magnetic compound, a manufacturing method thereof, and a magnetic powder having both a high anisotropic magnetic field and a high saturation magnetization.

永久磁石の応用は、エレクトロニクス、情報通信、医療、工作機械分野、産業用・自動車用モータなど広範な分野に及んでいる。また、二酸化炭素排出量の抑制の要求が高まっており、ハイブリッドカーの普及、産業分野での省エネ、発電効率の向上などにより、近年、さらに高特性を有する永久磁石開発への期待が高まっている。   The application of permanent magnets covers a wide range of fields such as electronics, information communication, medical care, machine tool fields, industrial and automotive motors. In addition, there is an increasing demand for suppression of carbon dioxide emissions. In recent years, expectations for the development of permanent magnets with even higher characteristics have increased due to the spread of hybrid cars, energy saving in the industrial field, and improvement of power generation efficiency. .

現在、高性能磁石として市場を席巻しているNd−Fe−B系磁石は、HV/EHV用の駆動モータ用磁石にも使用されている。そして、昨今、モータのさらなる小型化、高出力化(磁石の残留磁化の増加)が追求されていることに対応して、新しい永久磁石材料の開発が進められている。   At present, Nd—Fe—B magnets, which are dominating the market as high-performance magnets, are also used in drive motor magnets for HV / EHV. Recently, new permanent magnet materials are being developed in response to the demand for further miniaturization and higher output of motors (increase in residual magnetization of magnets).

Nd−Fe−B系磁石を超える性能を有する材料開発の一つとして、ThMn12型の結晶構造を有する希土類−鉄系磁性化合物の研究が進められている。 As one of the development of materials having performance exceeding that of Nd—Fe—B based magnets, research on rare earth-iron based magnetic compounds having a ThMn 12 type crystal structure is underway.

例えば、特許文献1には、式(R(1−x)Zr(Fe(1−y)Co(Rは1種以上の希土類元素であり、TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素であり、Mは不可避的不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素であり、AはN、C、H及びPからなる群より選ばれる1種以上の元素であり、0≦x≦0.5、0≦y≦0.6、4≦a≦20、b=100−a−c−d、0<c<7、0≦d≦1、及び1≦e≦18である)で表される組成を有し、かつ、ThMn12型の結晶構造を有する磁性化合物が開示されている。 For example, Patent Document 1 discloses that the formula (R (1-x) Zr x ) a (Fe (1-y) Co y ) b T cM d A e (R is one or more rare earth elements, and T Is one or more elements selected from the group consisting of Ti, V, Mo and W, and M is one or more elements selected from the group consisting of inevitable impurity elements and Al, Cr, Cu, Ga, Ag and Au. A is one or more elements selected from the group consisting of N, C, H and P, and 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.6, 4 ≦ a ≦ 20, b = 100-acd, 0 <c <7, 0 ≦ d ≦ 1, and 1 ≦ e ≦ 18), and a magnetic material having a ThMn 12 type crystal structure Compounds are disclosed.

特開2016−58707号公報Japanese Patent Laid-Open No. 2006-58707

特許文献1に開示される磁性化合物においては、α−Fe相の含有量の低減が充分でなく、異方性磁界と飽和磁化の一層の向上には限界があった。このことから、ThMn12型の結晶構造を有する希土類−鉄系磁性化合物において、異方性磁界と飽和磁化の一層の向上が望まれている、という課題を、本発明者らは、見出した。 In the magnetic compound disclosed in Patent Document 1, the content of the α-Fe phase is not sufficiently reduced, and there is a limit to further improvement of the anisotropic magnetic field and saturation magnetization. Accordingly, the present inventors have found that a rare earth-iron-based magnetic compound having a ThMn 12 type crystal structure is desired to further improve the anisotropic magnetic field and saturation magnetization.

本開示は、上記課題を解決するためになされたものであり、異方性磁界と飽和磁化を一層向上させた、ThMn12型の結晶構造を有する希土類−鉄系磁性化合物及びその製造方法並びに磁性紛体を提供することを目的とする。 The present disclosure has been made in order to solve the above-described problems. A rare earth-iron-based magnetic compound having a ThMn 12 type crystal structure, an anisotropic magnetic field and a saturation magnetization are further improved, a method for producing the same, and magnetism The purpose is to provide powder.

本発明者らは、上記目的を達成すべく、鋭意検討を重ね、本開示の磁性化合物及びその製造方法並びに磁性粉末を完成させた。その要旨は次のとおりである。
〈1〉式(Nd(1−x−y)Zr(Fe(1−z)Co
(前記式中、RはNd以外の1種以上の希土類元素であり、
TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素であり、
Mは不可避的不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素であり、
AはN、C、H及びPからなる群より選ばれる1種以上の元素であり、かつ、
0<x≦0.3、
0≦y≦0.1、
0≦z≦0.3、
7.7<a≦9.4、
b=100−a−c−d、
3.1≦c<7.7、
0≦d≦1.0、及び、
1≦e≦18である)
で表される組成を有し、
前記式中、a≧1.6x+7.7及びc≧−14x+7.3の関係を満足し、かつ、
ThMn12型の結晶構造を有する、
磁性化合物。
〈2〉前記式中、3.1≦c≦7.3である、〈1〉項に記載の磁性化合物。
〈3〉前記式中、7.7<a≦8.7である、〈1〉項又は〈2〉項に記載の磁性化合物。
〈4〉式(Nd(1−x−y)Zr(Fe(1−z)Co
(前記式中、RはNd以外の1種以上の希土類元素であり、
TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素であり、
Mは不可避的不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素であり、かつ、
0<x≦0.3、
0≦y≦0.1、
0≦z≦0.3、
7.7<a≦9.4、
b=100−a−c−d、
3.1≦<c<7.7、及び、
0≦d≦1.0である)
で表される組成を有し、かつ、
前記式中、a≧1.6x+7.7及びc≧−14x+7.3の関係を満足する溶湯を準備すること、
前記溶湯を、1×10〜1×10K/secの速度で急冷して、薄片を得ること、及び、
前記薄片に、A(N、C、H及びBからなる群より選ばれる1種以上の元素)を侵入させること、
を含む、〈1〉項に記載の磁性化合物の製造方法。
〈5〉前記薄片を、前記侵入の前に粉砕して、粉末を得ること、をさらに含む、〈4〉項に記載の方法。
〈6〉前記薄片を、800〜1300℃で2〜120時間にわたり熱処理することをさらに含む、〈5〉項に記載の方法。
〈7〉前記粉末を、さらに、800〜1300℃で2〜120時間にわたり熱処理することをさらに含む、〈5〉項又は〈6〉項に記載の方法。
〈8〉前記式中、3.1≦c≦7.3である、〈4〉項〜〈7〉項のいずれか一項に記載の方法。
〈9〉前記式中、7.7<a≦8.7である、〈4〉項〜〈8〉項のいずれか一項に記載の方法。
〈10〉式(Nd(1−x−y)Zr(Fe(1−z)Co
(前記式中、RはNd以外の1種以上の希土類元素であり、
TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素であり、
Mは不可避的不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素であり、
AはN、C、H及びPからなる群より選ばれる1種以上の元素であり、かつ、
0<x≦0.3、
0≦y≦0.1、
0≦z≦0.3、
7.7<a≦9.4、
b=100−a−c−d、
3.1≦c<7.7、
0≦d≦1.0、及び、
1≦e≦18である)
で表される組成を有し、
前記式中、a≧1.6x+7.7及びc≧−14x+7.3の関係を満足し、かつ、
ThMn12型の結晶構造を有する、
磁性紛体。
In order to achieve the above object, the present inventors have made extensive studies and completed the magnetic compound of the present disclosure, a method for producing the same, and a magnetic powder. The summary is as follows.
<1> formula (Nd (1-x-y ) R y Zr x) a (Fe (1-z) Co z) b T c M d A e
(In the above formula, R is one or more rare earth elements other than Nd,
T is one or more elements selected from the group consisting of Ti, V, Mo and W,
M is an inevitable impurity element and one or more elements selected from the group consisting of Al, Cr, Cu, Ga, Ag and Au,
A is one or more elements selected from the group consisting of N, C, H and P, and
0 <x ≦ 0.3,
0 ≦ y ≦ 0.1,
0 ≦ z ≦ 0.3,
7.7 <a ≦ 9.4,
b = 100-acd,
3.1 ≦ c <7.7,
0 ≦ d ≦ 1.0, and
1 ≦ e ≦ 18)
Having a composition represented by
In the above formula, the relationship of a ≧ 1.6x + 7.7 and c ≧ −14x + 7.3 is satisfied, and
It has a ThMn 12 type crystal structure,
Magnetic compound.
<2> The magnetic compound according to <1>, wherein 3.1 ≦ c ≦ 7.3.
<3> The magnetic compound according to <1> or <2>, wherein 7.7 <a ≦ 8.7 in the formula.
<4> formula (Nd (1-x-y ) R y Zr x) a (Fe (1-z) Co z) b T c M d
(In the above formula, R is one or more rare earth elements other than Nd,
T is one or more elements selected from the group consisting of Ti, V, Mo and W,
M is an inevitable impurity element and one or more elements selected from the group consisting of Al, Cr, Cu, Ga, Ag and Au, and
0 <x ≦ 0.3,
0 ≦ y ≦ 0.1,
0 ≦ z ≦ 0.3,
7.7 <a ≦ 9.4,
b = 100-acd,
3.1 ≦ <c <7.7, and
(0 ≦ d ≦ 1.0)
And having a composition represented by:
Preparing a molten metal satisfying the relationship of a ≧ 1.6x + 7.7 and c ≧ −14x + 7.3 in the formula,
Quenching the molten metal at a rate of 1 × 10 2 to 1 × 10 7 K / sec to obtain flakes; and
Intruding A (one or more elements selected from the group consisting of N, C, H and B) into the flakes;
The manufacturing method of the magnetic compound as described in <1> containing.
<5> The method according to <4>, further comprising grinding the flakes before the intrusion to obtain a powder.
<6> The method according to <5>, further comprising heat-treating the flakes at 800 to 1300 ° C. for 2 to 120 hours.
<7> The method according to <5> or <6>, further comprising heat-treating the powder at 800 to 1300 ° C. for 2 to 120 hours.
<8> The method according to any one of <4> to <7>, wherein 3.1 ≦ c ≦ 7.3.
<9> The method according to any one of <4> to <8>, wherein 7.7 <a ≦ 8.7 in the formula.
<10> formula (Nd (1-x-y ) R y Zr x) a (Fe (1-z) Co z) b T c M d A e
(In the above formula, R is one or more rare earth elements other than Nd,
T is one or more elements selected from the group consisting of Ti, V, Mo and W,
M is an inevitable impurity element and one or more elements selected from the group consisting of Al, Cr, Cu, Ga, Ag and Au,
A is one or more elements selected from the group consisting of N, C, H and P, and
0 <x ≦ 0.3,
0 ≦ y ≦ 0.1,
0 ≦ z ≦ 0.3,
7.7 <a ≦ 9.4,
b = 100-acd,
3.1 ≦ c <7.7,
0 ≦ d ≦ 1.0, and
1 ≦ e ≦ 18)
Having a composition represented by
In the above formula, the relationship of a ≧ 1.6x + 7.7 and c ≧ −14x + 7.3 is satisfied, and
It has a ThMn 12 type crystal structure,
Magnetic powder.

本開示によれば、磁性相での成分組成を考慮して、磁性化合物の全体組成を特定することにより、磁性化合物中のα−Fe相の含有量を極少化することができる。そして、本開示によれば、窒化の効果とも相まって、異方性磁界と飽和磁化の両者が一層向上した磁性化合物及びその製造方法並びに磁性紛体を提供することができる。   According to the present disclosure, the content of the α-Fe phase in the magnetic compound can be minimized by specifying the overall composition of the magnetic compound in consideration of the component composition in the magnetic phase. And according to this indication, coupled with the effect of nitriding, it is possible to provide a magnetic compound in which both the anisotropic magnetic field and the saturation magnetization are further improved, its manufacturing method, and magnetic powder.

図1は、表1の分析結果から、実施例1〜7及び比較例1〜8の磁性化合物の全体組成について、Zrの含有割合xと、希土類サイトの含有量a及びTi含有量cとの関係を纏めたグラフである。FIG. 1 shows that the Zr content ratio x, the rare earth site content a, and the Ti content c for the entire compositions of Examples 1 to 7 and Comparative Examples 1 to 8 are shown in Table 1. It is a graph summarizing the relationship. 図2は、Nd−Fe−Tiの三元系状態図である。FIG. 2 is a ternary phase diagram of Nd—Fe—Ti. 図3は、R’Fe12−v化合物中のT成分の安定領域を示すグラフである。Figure 3 is a graph showing the stable region of the T component of R'Fe 12-v T v compound. 図4は、ストリップキャスト法に用いる装置の概略図である。FIG. 4 is a schematic view of an apparatus used in the strip casting method. 図5は、比較例5の試料のSEM像を示す図である。FIG. 5 is a view showing an SEM image of the sample of Comparative Example 5. 図6は、表4から、実施例1〜7及び比較例1〜8の磁性相の組成について、Zrの含有割合x’と、希土類サイトの含有量pとの関係を纏めたグラフである。FIG. 6 is a graph summarizing the relationship between the content ratio x ′ of Zr and the content p of rare earth sites for the compositions of the magnetic phases of Examples 1 to 7 and Comparative Examples 1 to 8 from Table 4.

以下、本開示の磁性化合物及びその製造方法並びに磁性紛体の実施形態を詳細に説明する。なお、以下に示す実施形態は、本開示の磁性化合物及びその製造方法並びに磁性紛体を限定するものではない。   Hereinafter, embodiments of the magnetic compound, the manufacturing method thereof, and the magnetic powder of the present disclosure will be described in detail. In addition, embodiment shown below does not limit the magnetic compound of this indication, its manufacturing method, and a magnetic powder.

本開示の磁性化合物は、ThMn12型の結晶構造を有する。本開示の磁性化合物は、Nd、Fe、及びTiを主要元素とするため、ThMn12型の結晶構造が安定し易くなる組成を、Nd−Fe−Tiの三元系で説明する。 The magnetic compound of the present disclosure has a ThMn 12 type crystal structure. Since the magnetic compound of the present disclosure contains Nd, Fe, and Ti as main elements, a composition that facilitates stabilization of the ThMn 12 type crystal structure will be described using a ternary system of Nd—Fe—Ti.

図2は、Nd−Fe−Tiの三元系状態図を示す(出典:A.Margarian,et al., Journal of Applied Physics 76, 6153 (1994))。図2から分かるように、Nd−Fe−Tiの三元系においては、NdFe12−wTi相、NdFe29−wTi相、及びNdFe17−wTi相が存在し得る。これらの相は、図2において、それぞれ、「1:12」、「3:29」、及び「2:17」で表されている。これらの相のうち、NdFe12−wTi相が、ThMn12型の結晶構造を有する。NdFe12−wTi相としては、例えば、NdFe11Ti相が挙げられる。なお、以下、NdFe12−wTi相、NdFe29−wTi相、及びNdFe17−wTi相を、それぞれ、1-12相、3-29相、及び2−17相と表すことがある。 FIG. 2 shows a ternary phase diagram of Nd—Fe—Ti (Source: A. Margarian, et al., Journal of Applied Physics 76, 6153 (1994)). As can be seen from FIG. 2, in the ternary system of Nd—Fe—Ti, there are NdFe 12-w Ti w phase, Nd 3 Fe 29-w Ti w phase, and Nd 2 Fe 17-w Ti w phase. obtain. These phases are represented in FIG. 2 by “1:12”, “3:29”, and “2:17”, respectively. Among these phases, the NdFe 12-w Ti w phase has a ThMn 12 type crystal structure. Examples of the NdFe 12-w Ti w phase include an NdFe 11 Ti phase. Hereinafter, the NdFe 12-w Ti w phase, the Nd 3 Fe 29-w Ti w phase, and the Nd 2 Fe 17-w Ti w phase are respectively referred to as a 1-12 phase, a 3-29 phase, and a 2-17 phase. Sometimes expressed as a phase.

これらの相において、FeとTiの含有量を1としたときのNdの含有割合(モル比)は、1−12相、3−29相、及び2−17相について、それぞれ、0.083、0.103、及び0.118である。すなわち、3−29相及び2−17相は、1−12相に比べて、Ndの含有割合が高い。   In these phases, the content ratio (molar ratio) of Nd when the Fe and Ti contents are set to 1 is 0.083 for the 1-12 phase, the 3-29 phase, and the 2-17 phase, respectively. 0.103 and 0.118. That is, the 3-29 phase and the 2-17 phase have a higher Nd content ratio than the 1-12 phase.

図2から分かるように、Nd−Fe−Tiの三元系においては、1−12相、3−29相、及び2−17相の他に、α−Fe相も存在し得る。そして、Ndの含有量が7.7原子%のときに、1−12相の安定が最も達成され易く、かつ、α−Fe相の含有量が減少し易い。Ndの含有量が7.7原子%よりも少ないと、3−19相及び2−17相等が存在し難く、かつ、α−Fe相の含有量が増加し易い。一方、Ndの含有量が7.7原子%よりも多いと、3−29相及び2−17相等の含有量が増加し易く、α−Fe相の含有量が減少し易い。なお、「3−29相及び2−17相等」とは、1−12相と比べて、Ndの含有量が多い相の総称を意味する。このような相としては、3−29相及び2−17相の他に、例えば、3−29相及び2−17相で、一部のNdが欠落している相、及び、3−29相及び2−17相に、さらに少数のNd原子が侵入している相を挙げることができる。   As can be seen from FIG. 2, in the ternary system of Nd—Fe—Ti, an α-Fe phase can also exist in addition to the 1-12 phase, the 3-29 phase, and the 2-17 phase. When the Nd content is 7.7 atomic%, the stability of the 1-12 phase is most easily achieved, and the content of the α-Fe phase is likely to decrease. When the Nd content is less than 7.7 atomic%, the 3-19 phase, the 2-17 phase, and the like are unlikely to exist, and the α-Fe phase content is likely to increase. On the other hand, when the content of Nd is more than 7.7 atomic%, the content of the 3-29 phase, the 2-17 phase, etc. is likely to increase, and the content of the α-Fe phase is likely to decrease. “3-29 phase, 2-17 phase, etc.” means a generic term for phases having a higher Nd content than the 1-12 phase. As such a phase, in addition to the 3-29 phase and the 2-17 phase, for example, a phase in which a part of Nd is missing in the 3-29 phase and the 2-17 phase, and the 3-29 phase In addition, a phase in which a smaller number of Nd atoms have intruded into the 2-17 phase can be exemplified.

図2に示したように、1−12相が安定して存在する組成領域は非常に狭い。このことから、磁性化合物全体で、Ndの含有量を少なくすると、1−12相が安定せず、α−Fe相の含有量が多くなり易い。一方、Ndの含有量を多くすると、やはり、1−12相が安定せず、3−29相及び2-17相等の含有量が多くなり易い。   As shown in FIG. 2, the composition region in which the 1-12 phase stably exists is very narrow. For this reason, if the Nd content is reduced in the entire magnetic compound, the 1-12 phase is not stabilized, and the content of the α-Fe phase tends to increase. On the other hand, when the content of Nd is increased, the 1-12 phase is not stabilized, and the contents of the 3-29 phase, the 2-17 phase and the like are likely to increase.

1−12相を安定させるために、Nd−Fe−Tiの三元系にZrを加えることは、従来から行われている。しかし、Zrの含有量については、Ndの作用効果を阻害しないように、Zrの含有割合(モル比)を、Ndの含有割合(モル比)よりも高くしないといった程度の検討しか、従来は行われていなかった。そのため、例えば、特許文献1に開示される磁性化合物では、α−Fe相の含有量を充分に低減することができなかった。   In order to stabilize the 1-12 phase, Zr is conventionally added to the ternary system of Nd—Fe—Ti. However, with regard to the Zr content, in order to prevent the effects of Nd from being inhibited, the Zr content ratio (molar ratio) is only considered to be higher than the Nd content ratio (molar ratio). It wasn't. Therefore, for example, in the magnetic compound disclosed in Patent Document 1, the content of the α-Fe phase cannot be sufficiently reduced.

磁性化合物中には、磁性相と粒界相が存在する。粒界相には様々な相が混在しており、複雑である。また、磁性化合物の磁気特性は、磁性相に由来する特性が多い。そこで、先ず、磁性相において、Zrの含有割合を調査した。   A magnetic compound has a magnetic phase and a grain boundary phase. The grain boundary phase is complicated by various phases. In addition, the magnetic properties of magnetic compounds are often derived from the magnetic phase. Therefore, first, the content ratio of Zr in the magnetic phase was investigated.

理論に拘束されないが、磁性化合物中のZrの多くは、Ndの一部と置換されていると考えられている。そこで、磁性相でのNdとZrの合計含有量を1としたときのZrの含有割合(モル比)x’と、磁性相全体に対するNdとZrの合計含有量(原子%)pとの関係を調査した。   Without being bound by theory, it is believed that most of Zr in the magnetic compound is substituted for a part of Nd. Therefore, the relationship between the content ratio (molar ratio) x ′ of Zr when the total content of Nd and Zr in the magnetic phase is 1, and the total content (atomic%) p of Nd and Zr with respect to the entire magnetic phase. investigated.

その結果、本発明者らは、次のことを知見した。   As a result, the present inventors have found the following.

磁性相における数値である、x’とpは、直線関係(比例関係)にあり、その傾きは正である。このことから、磁性相でのZr比率x’を増加させると、磁性相でのNd(1−x−y)Zrで表される希土類サイトの含有量pが増加するといえる。 The numerical values in the magnetic phase, x ′ and p, are in a linear relationship (proportional relationship), and the slope thereof is positive. From this, it can be said that when the Zr ratio x ′ in the magnetic phase is increased, the content p of the rare earth site represented by Nd (1-xy) R y Zr x in the magnetic phase increases.

また、磁性相でのx’と全体組成でのxは、ほぼ等しい。このことから、全体組成でのNdとZrの合計含有量を1としたときのZrの含有割合(モル比)をx、全体組成でのNdとZrの合計含有量(原子%)をaとして、その関係を調査した。その結果、磁性相の場合と同様に、全体組成でのZr比率xを増加させると、全体組成でのNd(1−x−y)Zrで表される希土類サイトの含有量aが増加することがわかった。 Further, x ′ in the magnetic phase and x in the overall composition are substantially equal. From this, the content ratio (molar ratio) of Zr, where the total content of Nd and Zr in the overall composition is 1, is x, and the total content (atomic%) of Nd and Zr in the overall composition is a. , Investigated the relationship. As a result, as in the case of the magnetic phase, when the Zr ratio x in the overall composition is increased, the content a of the rare earth site represented by Nd (1-xy) R y Zr x in the overall composition is increased. It turned out to increase.

さらに、xとaの関係においては、a<1.6x+7.7であると、磁性相が安定せず、多くのα−Fe相が粒界相に存在することが分かった。これは、図2で示したNd−Fe−Tiの三元系(Zrを含有しない)の状態図で、Ndの含有量が少ないと、α−Fe相の含有量が多くなり易いことに相当する。   Furthermore, in the relationship between x and a, it was found that when a <1.6x + 7.7, the magnetic phase is not stable and many α-Fe phases exist in the grain boundary phase. This is a state diagram of the ternary system of Nd—Fe—Ti (not containing Zr) shown in FIG. 2 and corresponds to the fact that the content of α-Fe phase tends to increase when the content of Nd is small. To do.

一方、a≧1.6x+7.7であると、粒界相に存在するα−Fe相の含有量が少なくなる。また、粒界相には、少量の3−29相及び2−17相等が存在することが分かった。これは、図2で示したNd−Fe−Tiの三元系(Zrを含有しない)の状態図で、Ndの含有量が多いと、α−Fe相の含有量が少なくなり易く、3−29相及び2−17相が存在し易くなることに相当する。   On the other hand, when a ≧ 1.6x + 7.7, the content of the α-Fe phase existing in the grain boundary phase is reduced. Moreover, it turned out that a small amount of 3-29 phase, 2-17 phase, etc. exist in a grain boundary phase. This is a phase diagram of the ternary system of Nd—Fe—Ti (not containing Zr) shown in FIG. 2. When the content of Nd is large, the content of the α-Fe phase tends to decrease. This corresponds to the 29 phase and the 2-17 phase easily existing.

これまで、1−12相を安定させるため、Nd−Fe−Tiの三元系に、Zrを加えたときの知見について説明してきた。1−12相をさらに安定させるため、Tiの含有量を検討して得られた知見について、次に説明する。   Until now, in order to stabilize the 1-12 phase, the knowledge when adding Zr to the ternary system of Nd—Fe—Ti has been described. The knowledge obtained by examining the Ti content in order to further stabilize the 1-12 phase will now be described.

磁性化合物中には、磁性相と粒界相が存在する。粒界相には様々な相が混在しており、複雑である。また、磁性化合物の磁気特性は、磁性相に由来する特性が多い。そこで、先ず、磁性相において、Zrの含有割合を調査した。   A magnetic compound has a magnetic phase and a grain boundary phase. The grain boundary phase is complicated by various phases. In addition, the magnetic properties of magnetic compounds are often derived from the magnetic phase. Therefore, first, the content ratio of Zr in the magnetic phase was investigated.

そこで、磁性相におけるNdとZrの合計含有量を1としたときのZrの含有割合(モル比)x’と、磁性相全体に対するTiの含有量(原子%)qとの関係を調査した。   Therefore, the relationship between the Zr content ratio (molar ratio) x ′ when the total content of Nd and Zr in the magnetic phase is 1 and the Ti content (atomic%) q with respect to the entire magnetic phase was investigated.

その結果、本発明者らは、次のことを知見した。   As a result, the present inventors have found the following.

磁性相でのx’と全体組成でのxは、ほぼ等しい。このことから、全体組成でのNdとZrの合計含有量を1としたときのZrの含有割合(モル比)をx、全体組成でのTiの含有量(原子%)をcとして、その関係を調査した。その結果、全体組成でのZr比率xの変化に伴って、全体組成でのNd(1−x−y)Zrで表される希土類サイトの含有量cが変化することがわかった。 X ′ in the magnetic phase and x in the overall composition are approximately equal. From this, it is assumed that the content ratio (molar ratio) of Zr when the total content of Nd and Zr in the overall composition is 1, and the content (atomic%) of Ti in the overall composition is c, and the relationship. investigated. As a result, it was found that the content c of the rare earth site represented by Nd (1-xy) R y Zr x in the overall composition changes with the change in the Zr ratio x in the overall composition.

さらに、xとcの関係においては、c<−14x+7.3であると、磁性相が安定せず、多くのα−Fe相が粒界相に存在することが分かった。これは、図2で示したNd−Fe−Tiの三元系(Zrを含有しない)の状態図で、Ndの含有量が少ないと、α−Fe相の含有量が多くなり易いことに相当する。   Furthermore, in the relationship between x and c, it was found that when c <−14x + 7.3, the magnetic phase was not stable and many α-Fe phases existed in the grain boundary phase. This is a state diagram of the ternary system of Nd—Fe—Ti (not containing Zr) shown in FIG. 2 and corresponds to the fact that the content of α-Fe phase tends to increase when the content of Nd is small. To do.

一方、c≧−14x+7.3であると、粒界相に存在するα−Fe相の含有量が少なくなる。また、粒界相には、少量の3−29相及び2−17相等が存在することが分かった。これは、図2で示したNd−Fe−Tiの三元系(Zrを含有しない)の状態図で、Ndの含有量が多いと、α−Fe相の含有量が少なくなり易く、3−29相及び2−17相が存在し易くなることに相当する。   On the other hand, when c ≧ −14x + 7.3, the content of the α-Fe phase existing in the grain boundary phase is reduced. Moreover, it turned out that a small amount of 3-29 phase, 2-17 phase, etc. exist in a grain boundary phase. This is a phase diagram of the ternary system of Nd—Fe—Ti (not containing Zr) shown in FIG. 2. When the content of Nd is large, the content of the α-Fe phase tends to decrease. This corresponds to the 29 phase and the 2-17 phase easily existing.

これまで説明してきた知見等によって完成された、本開示の磁性化合物及びその製造方法並びに磁性紛体の構成要件を、次に説明する。   The constituents of the magnetic compound of the present disclosure, the manufacturing method thereof, and the magnetic powder, which have been completed based on the knowledge described so far, will be described below.

《磁性化合物》
本開示の磁性化合物は、式(Nd(1−x−y)Zr(Fe(1−z)Coで表される組成を有する。この式は、本開示の磁性化合物の全体組成を表す。
《Magnetic compound》
Magnetic compounds of the present disclosure, having a composition represented by the formula (Nd (1-x-y ) R y Zr x) a (Fe (1-z) Co z) b T c M d A e. This formula represents the overall composition of the magnetic compound of the present disclosure.

上記式中、Ndはネオジム、RはNd以外の1種以上の希土類元素、Zrはジルコニウム、Feは鉄、そして、Coはコバルトを示す。TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素である。Tiはチタン、Vはバナジウム、Moはモリブデン、そして、Wはタングステンを示す。Mは、不可避的不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素である。Alはアルミニウム、Crはクロム、Cuは銅、Gaはガリウム、Agは銀、そして、Auは金を示す。AはN、C、H及びPからなる群より選ばれる1種以上の元素である。Nは窒素、Cは炭素、Hは水素、そして、Pはリンを示す。   In the above formula, Nd is neodymium, R is one or more rare earth elements other than Nd, Zr is zirconium, Fe is iron, and Co is cobalt. T is one or more elements selected from the group consisting of Ti, V, Mo and W. Ti represents titanium, V represents vanadium, Mo represents molybdenum, and W represents tungsten. M is an inevitable impurity element and at least one element selected from the group consisting of Al, Cr, Cu, Ga, Ag, and Au. Al is aluminum, Cr is chromium, Cu is copper, Ga is gallium, Ag is silver, and Au is gold. A is one or more elements selected from the group consisting of N, C, H and P. N represents nitrogen, C represents carbon, H represents hydrogen, and P represents phosphorus.

x及びyは、それぞれ、Nd(1−x−y)Zrで表される希土類サイト全体を1としたときの、Zr及びRの含有割合(モル比)である。希土類サイトで、Ndは、R及びZrの残部である。 x and y are content ratios (molar ratios) of Zr and R, respectively, where the entire rare earth site represented by Nd (1-xy) R y Zr x is 1. At the rare earth site, Nd is the balance of R and Zr.

zは、Fe(1−z)Coで表される鉄族サイト全体を1としたときの、Coの含有割合(モル比)である。鉄族サイトで、Feは、Coの残部である。 z is the content ratio (molar ratio) of Co when the entire iron group site represented by Fe (1-z) Co z is 1. At the iron group site, Fe is the balance of Co.

a、b、c、及びdは、それぞれ、本開示の磁性化合物のうち、(Nd(1−x−y)Zr(Fe(1−z)Coで表される磁性化合物前駆体全体を100原子%としたときの、希土類サイト、鉄族サイト、T、及びMの含有量(原子%)である。上記式で、b=100−a−c−dであるため、磁性化合物前駆体全体で、鉄族サイトは、希土類サイト、T、及びMの残部である。そして、Aは、(Nd(1−x−y)Zr(Fe(1−z)Coで表される磁性化合物前駆体に侵入している元素である。eは、磁性化合物前駆体全体に対するAの含有量(原子%)である。したがって、a+b+c+d+eは100原子%を超える。 a, b, c, and d, respectively, of the magnetic compound of the present disclosure, (Nd (1-x- y) R y Zr x) a (Fe (1-z) Co z) b T c M d The content (atomic%) of rare earth sites, iron group sites, T, and M, when the entire magnetic compound precursor represented by formula (1) is 100 atomic%. In the above formula, since b = 100-acd, the iron group sites are the remainder of rare earth sites, T, and M in the entire magnetic compound precursor. Then, A is an element that is entering the magnetic compound precursor represented by (Nd (1-x-y ) R y Zr x) a (Fe (1-z) Co z) b T c M d is there. e is the content (atomic%) of A with respect to the whole magnetic compound precursor. Therefore, a + b + c + d + e exceeds 100 atomic%.

上記式の構成元素について、次に説明する。   Next, the constituent elements of the above formula will be described.

〈Nd〉
Ndは、希土類元素であり、永久磁石特性を発現するため、本開示の磁性化合物に必須の成分である。
<Nd>
Nd is a rare earth element and is an essential component for the magnetic compound of the present disclosure because it exhibits permanent magnet characteristics.

〈R〉
Rは、Nd以外の1種以上の希土類元素である。なお、本明細書において、希土類元素は、特に断りがない限り、Y、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuである。
<R>
R is one or more rare earth elements other than Nd. In the present specification, unless otherwise specified, the rare earth elements are Y, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

本開示の磁性化合物は、磁性化合物中の希土類元素をNdに特定し、そのNdの含有量を特定して、磁性化合物中のα−Fe相の含有量を極少化する。Ndの原材料で、Nd以外の希土類元素Rを皆無にすることは難しい。しかし、Nd(1−x−y)Zrで表される希土類サイトで、yの値が0〜0.1であれば、本開示の磁性化合物の特性は、Rが皆無であるときと、実質的に同等と考えてよい。 The magnetic compound of the present disclosure specifies the rare earth element in the magnetic compound as Nd, specifies the content of Nd, and minimizes the content of the α-Fe phase in the magnetic compound. It is difficult to eliminate the rare earth element R other than Nd from the Nd raw material. However, if the value of y is 0 to 0.1 at a rare earth site represented by Nd (1-xy) R y Zr x , the characteristics of the magnetic compound of the present disclosure are as follows. And may be considered substantially equivalent.

yの値は0であることが理想であるが、Ndの原材料の純度を過剰に上昇させることは、製造コストの上昇を招くため、yの値は、0.01以上、0.02以上、0.03以上、0.04以上、又は0.05以上であってよい。一方、yの値は、Ndの原材料の純度が過剰に上昇しない限り低い方が好ましいため、yの値は、0.09以下、0.08以下、0.07以下、又は0.06以下であってよい。   The value of y is ideally 0, but excessively increasing the purity of the raw material of Nd leads to an increase in manufacturing cost, so the value of y is 0.01 or more, 0.02 or more, It may be 0.03 or more, 0.04 or more, or 0.05 or more. On the other hand, since the value of y is preferably low as long as the purity of the raw material of Nd does not increase excessively, the value of y is 0.09 or less, 0.08 or less, 0.07 or less, or 0.06 or less. It may be.

〈Zr〉
Nd及び/又はRの一部は、Zrで置換されて、ThMn12型の結晶構造の安定に寄与する。ThMn12型の結晶内のNd及び/又はRをZrで置換することによって、結晶格子の収縮が生じる。これにより、磁性化合物を高温(600℃以上)にしたり、窒素原子などを結晶格子内に侵入させた場合にも、ThMn12型の結晶構造が維持され易くなる。一方、磁気特性面では、Ndの一部がZrで置換されることによって、Ndに由来する強い磁気異方性は弱められる。したがって、ThMn12型の結晶構造の安定と磁気特性の両面からZrの含有量を決定する。
<Zr>
A part of Nd and / or R is substituted with Zr, and contributes to the stability of the ThMn 12 type crystal structure. Substitution of Nd and / or R in the ThMn type 12 crystal with Zr causes crystal lattice shrinkage. Thereby, even when the magnetic compound is heated to a high temperature (600 ° C. or higher) or nitrogen atoms are allowed to enter the crystal lattice, the ThMn 12 type crystal structure is easily maintained. On the other hand, in terms of magnetic characteristics, strong magnetic anisotropy derived from Nd is weakened by replacing a part of Nd with Zr. Therefore, the Zr content is determined from both the stability and magnetic properties of the ThMn 12 type crystal structure.

ThMn12型の結晶構造を安定させ、高温時に磁性化合物の分解を抑制するため、Zrは必須である。Zrは少量でも、その作用効果が認められるため、Nd(1−x−y)Zrで表される希土類サイトで、xの値は、0超であればよい。Zrの作用効果を明瞭に享受する観点からは、xの値は、0.02以上、0.04以上、0.06以上、又は0.08以上であってよい。一方、xの値が0.3以下であれば、異方性磁界が著しく低下することはない。また、FeZr相も生成し難い。磁性化合物を窒化したとき、FeZr相は、保磁力の発現を阻害する。FeZr相が生成し難ければ、保磁力の発現は阻害され難い。これらの観点からは、xの値は、0.28以下、0.26以下、0.24以下、又は0.22以下であってよい。 Zr is essential for stabilizing the ThMn 12 type crystal structure and suppressing decomposition of the magnetic compound at high temperatures. Even if Zr is a small amount, its effect is recognized. Therefore, the value of x should be greater than 0 at the rare earth site represented by Nd (1-xy) R y Zr x . From the viewpoint of clearly enjoying the effect of Zr, the value of x may be 0.02 or more, 0.04 or more, 0.06 or more, or 0.08 or more. On the other hand, if the value of x is 0.3 or less, the anisotropic magnetic field will not be significantly reduced. Moreover, it is difficult to produce an Fe 2 Zr phase. When the magnetic compound is nitrided, the Fe 2 Zr phase inhibits the expression of the coercive force. If the Fe 2 Zr phase is difficult to generate, the expression of the coercive force is difficult to be inhibited. From these viewpoints, the value of x may be 0.28 or less, 0.26 or less, 0.24 or less, or 0.22 or less.

これまで説明してきた、Nd、R、及びZrの合計含有量は、Nd(1−x−y)Zrで表される希土類サイトの含有量aで示される。希土類サイトの含有量aが7.7原子%を超えれば、磁性化合物を高温(600℃以上)にしたり、窒素原子などを結晶格子内に侵入させても、ThMn12型の結晶構造が分解され難くなる。ThMn12型の結晶構造が分解されると、α−Fe相の含有量が増加する。したがって、ThMn12型の結晶構造が分解され難くなれば、α−Fe相の含有量が増加し難くなる。この観点からは、希土類サイトの含有量aは、7.8原子%以上が好ましく、7.9原子%以上がより好ましく、8.0原子%がより一層好ましい。一方、希土類サイトの含有量aが9.4原子%以下であれば、磁性化合物の磁気異方性が低下し難い。多量のNdがZrで置換されると、磁性相以外の相が多量に生成され、Ndに由来する強い磁気異方性が著しく低下するためである。磁気異方性の低下を抑制する観点からは、希土類サイトの含有量aは、9.2原子%以下が好ましく、8.7原子%以下がより好ましく、8.5原子%以下がより一層好ましい。 The total content of Nd, R, and Zr that has been described so far is represented by the content a of rare earth sites represented by Nd (1-xy) R y Zr x . If the content a of the rare earth site exceeds 7.7 atomic%, the ThMn 12 type crystal structure will be decomposed even if the magnetic compound is heated to a high temperature (600 ° C. or higher) or nitrogen atoms enter the crystal lattice. It becomes difficult. When the ThMn 12 type crystal structure is decomposed, the content of the α-Fe phase increases. Therefore, if the ThMn 12 type crystal structure is difficult to be decomposed, the content of the α-Fe phase is difficult to increase. In this respect, the rare earth site content a is preferably 7.8 atomic% or more, more preferably 7.9 atomic% or more, and even more preferably 8.0 atomic%. On the other hand, if the content a of the rare earth site is 9.4 atomic% or less, the magnetic anisotropy of the magnetic compound is unlikely to decrease. This is because when a large amount of Nd is substituted with Zr, a large amount of phases other than the magnetic phase are generated, and the strong magnetic anisotropy derived from Nd is remarkably reduced. From the viewpoint of suppressing a decrease in magnetic anisotropy, the content a of rare earth sites is preferably 9.2 atomic% or less, more preferably 8.7 atomic% or less, and even more preferably 8.5 atomic% or less. .

さらに、上述したように、磁性化合物の全体組成において、希土類サイトでのZrの含有割合xと、希土類サイトの含有量aが、a≧1.6x+7.7の関係を満足すると、α−Fe相の含有量を、磁性化合物全体に対して、2体積%以下にすることができる。また、窒化後の磁性化合物の飽和磁化及び異方性磁界の両方を向上させることができる。   Furthermore, as described above, in the overall composition of the magnetic compound, when the Zr content ratio x at the rare earth site and the rare earth site content a satisfy the relationship of a ≧ 1.6x + 7.7, the α-Fe phase The content of can be 2% by volume or less with respect to the entire magnetic compound. In addition, both the saturation magnetization and the anisotropic magnetic field of the magnetic compound after nitriding can be improved.

本明細書において、α−Fe相の含有量は、次の要領で測定した体積%で表す。磁性化合物を樹脂埋め研磨し、それを、光学顕微鏡又はSEM−EDXを用いて、複数個所で観察し、画像解析により、観察面におけるα−Fe相の平均面積率を測定する。平均面積率とは、個々の観察箇所で測定した面積率の平均を意味する。   In the present specification, the content of the α-Fe phase is represented by volume% measured in the following manner. The magnetic compound is resin-filled and polished, and is observed at a plurality of locations using an optical microscope or SEM-EDX, and the average area ratio of the α-Fe phase on the observation surface is measured by image analysis. An average area ratio means the average of the area ratio measured in each observation location.

磁性化合物中の組織が、特定の方向に配向していないと仮定すると、平均面積率Sと体積率Vとの間には、S≒Vの関係が成立する。このことから、α−Fe相の含有量については、上述した要領で測定した、α−Fe相の平均面積率(面積%)の値を、α−Fe相の含有量(体積%)とする。   Assuming that the structure in the magnetic compound is not oriented in a specific direction, a relationship of S≈V is established between the average area ratio S and the volume ratio V. From this, regarding the content of the α-Fe phase, the value of the average area ratio (area%) of the α-Fe phase measured in the manner described above is defined as the content (volume%) of the α-Fe phase. .

〈T〉
TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素である。Ti、V、Mo及びWは、それぞれ、同様の作用効果を奏すると考えてよい。図3は、R’Fe12−v化合物(R’は希土類元素である。)におけるTの安定化領域を示す図である(出典:K.H.J. Buschow, Rep. Prog. Phys. 54, 1123 (1991))。R’−Feの2元系に、第3の元素としてTi、V、Mo、Wを添加することにより、ThMn12型の結晶構造が安定になり、優れた磁気特性を示すことが、図3によって知られている。
<T>
T is one or more elements selected from the group consisting of Ti, V, Mo and W. Ti, V, Mo, and W may each be considered to have the same effect. 3, R'Fe 12-v T v compound (R 'is a rare earth element.) Is a diagram showing the stabilization region of T in (Source:... K.H.J Buschow, Rep Prog Phys 54, 1123 (1991)). By adding Ti, V, Mo, and W as the third element to the R′—Fe binary system, the ThMn 12 type crystal structure becomes stable and exhibits excellent magnetic properties. Known by.

従来、T成分の安定化効果を得るため、必要量以上に多量にTを添加することで、ThMn12型の結晶構造を形成させていた。そのため、磁性化合物を構成するFe成分の含有率が低くなり、かつ、最も磁化に影響するFe原子の占有サイトが、例えば、T原子に置き換わり、全体の磁化を低下させていた。また、Tの含有量が多くなると、FeTが生成され易くなる。 Conventionally, in order to obtain the stabilization effect of the T component, a ThMn 12 type crystal structure has been formed by adding T in a larger amount than necessary. Therefore, the content rate of the Fe component constituting the magnetic compound is lowered, and the occupied site of Fe atoms that most affects the magnetization is replaced with, for example, T atoms, and the entire magnetization is lowered. Moreover, when the content of T increases, Fe 2 T is easily generated.

Tの含有量cが、7.7原子%未満であれば、磁化が低下し難く、FeTiが生成され難い。これらの観点からは、Tの含有量cは、7.5原子%以下が好ましく、7.3原子%以下がより好ましく、7.0原子%以下がより一層好ましい。 When the content c of T is less than 7.7 atomic%, the magnetization is difficult to decrease and Fe 2 Ti is difficult to be generated. From these viewpoints, the content c of T is preferably 7.5 atomic percent or less, more preferably 7.3 atomic percent or less, and even more preferably 7.0 atomic percent or less.

一方、Tの含有量cが、3.1原子%以上であれば、ThMn12型の結晶構造が安定し易い。この観点からは、3.5原子%以上が好ましく、4.0原子%以上がより好ましく、5.0原子%以上がより一層好ましい。 On the other hand, when the content c of T is 3.1 atomic% or more, the ThMn 12 type crystal structure is easily stabilized. From this viewpoint, it is preferably 3.5 atomic percent or more, more preferably 4.0 atomic percent or more, and even more preferably 5.0 atomic percent or more.

さらに、上述したように、磁性化合物の全体組成において、希土類サイトでのZrの含有割合xと、Tの含有量cが、c≧−14x+7.3の関係を満足すると、α−Fe相の含有量を、磁性化合物全体に対して、2体積%以下にすることができる。また、窒化後の磁性化合物の飽和磁化及び異方性磁界の両方を向上させることができる。   Furthermore, as described above, when the Zr content ratio x at the rare earth site and the T content c satisfy the relationship of c ≧ −14x + 7.3 in the overall composition of the magnetic compound, the α-Fe phase is contained. The amount can be 2% by volume or less based on the entire magnetic compound. In addition, both the saturation magnetization and the anisotropic magnetic field of the magnetic compound after nitriding can be improved.

〈M〉
Mは、不可避的不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素である。不可避的不純物とは、磁性化合物の原材料に含まれる不純物、あるいは、製造工程で混入してしまう不純物等、その含有を回避することが避けられない、あるいは、回避するためには著しい製造コストの上昇を招くような不純物のことをいう。不可避的不純物元素としては、Si及びMn等が挙げられる。
<M>
M is an inevitable impurity element and at least one element selected from the group consisting of Al, Cr, Cu, Ga, Ag, and Au. Inevitable impurities mean that impurities contained in the raw materials of magnetic compounds or impurities mixed in during the manufacturing process cannot be avoided. Impurities that lead to Inevitable impurity elements include Si and Mn.

M(不可避的不純物元素を除く)は、ThMn12型の結晶の粒成長の抑制、あるいは、ThMn12型の結晶構造を有する相以外の相(例えば、粒界相)の粘性、融点に寄与するが、本開示の磁性化合物において必須ではない。 M (excluding incidental impurity elements), the viscosity of the suppression of grain growth of the 12-inch ThMn crystal, or a phase other than the phase with the crystal structure of 12-inch ThMn (e.g., the grain boundary phase), which contributes to the melting point However, it is not essential in the magnetic compound of the present disclosure.

Mの含有量dは、1.0原子%以下である。Mの含有量dが1.0原子%以下であれば、磁性化合物を構成するFe成分の含有率が低くなり、その結果、全体の磁化が低下してしまうことが起こり難い。この観点からは、Mの含有量dは、0.8原子%以下が好ましく、0.6原子%以下がより好ましく、0.4原子%以下がより一層好ましい。   The content d of M is 1.0 atomic% or less. When the M content d is 1.0 atomic% or less, the content of the Fe component constituting the magnetic compound is lowered, and as a result, the entire magnetization is unlikely to decrease. From this viewpoint, the M content d is preferably 0.8 atomic percent or less, more preferably 0.6 atomic percent or less, and even more preferably 0.4 atomic percent or less.

一方、M(不可避的不純物元素を除く)の作用効果を明瞭に享受する観点からは、Mの含有量は、0.1原子%以上が好ましく、0.2原子%以上がより好ましく、0.3原子%以上がより一層好ましい。また、Al、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素を含有しないとき、Mは含有量dは、不可避的不純物の含有量である。不可避的不純物の含有量は、少ないほど好ましいが、不可避的不純物の含有量を過度に低下させると、製造コストの上昇等を招くため、磁性化合物の磁気特性等に、実質的に影響を与えない範囲で、不可避的不純物を少量含有していてもよい。この観点からは、Mの含有量dの下限は、0.05原子%、0.1原子%、又は0.2原子%であってよい。   On the other hand, from the viewpoint of clearly enjoying the effect of M (excluding inevitable impurity elements), the content of M is preferably 0.1 atomic% or more, more preferably 0.2 atomic% or more, and 3 atomic% or more is even more preferable. Further, when not containing one or more elements selected from the group consisting of Al, Cr, Cu, Ga, Ag and Au, M is the content of unavoidable impurities. The content of unavoidable impurities is preferably as low as possible. However, excessively reducing the content of unavoidable impurities causes an increase in production cost and the like, so that the magnetic properties of the magnetic compound are not substantially affected. In the range, a small amount of inevitable impurities may be contained. From this viewpoint, the lower limit of the M content d may be 0.05 atomic%, 0.1 atomic%, or 0.2 atomic%.

〈Fe及びCo〉
本開示の磁性化合物は、上記の元素以外をFeとするが、Feの一部がCoで置換されていてもよい。Feの一部がCoで置換されている場合は、α−Fe相のFeの一部がCoで置換されている。本明細書で、α−Fe相と表記したとき、特に断りがない場合には、α−Fe相には、α−Fe相のFeの一部がCoで置換されている相を含むものとする。
<Fe and Co>
The magnetic compound of the present disclosure uses Fe other than the above elements, but a part of Fe may be substituted with Co. When a part of Fe is substituted with Co, a part of Fe in the α-Fe phase is substituted with Co. In this specification, when expressed as an α-Fe phase, unless otherwise specified, the α-Fe phase includes a phase in which a part of Fe in the α-Fe phase is substituted with Co.

Feの一部がCoで置換されていることにより、スレーターポーリング則により、自発磁化の増大を生じ、異方性磁界、飽和磁化の両特性を向上させる効果がある。また、Feの一部がCoで置換されていることによって、磁性化合物のキューリー点が上昇するため、高温での磁化の低下を抑制する効果がある。   By replacing a part of Fe with Co, spontaneous magnetization increases due to the Slater poling rule, and both the anisotropic magnetic field and saturation magnetization characteristics are improved. In addition, since a part of Fe is substituted with Co, the Curie point of the magnetic compound is increased, which has an effect of suppressing a decrease in magnetization at a high temperature.

これらの効果を明瞭に享受するためには、Fe(1−z)Coで表される鉄族サイト全体を1としたときのCoの含有割合(モル比)zは、0.05以上が好ましく、0.10以上が好ましく、0.15以上がより一層好ましい。 In order to enjoy these effects clearly, the Co content ratio (molar ratio) z when the entire iron group site represented by Fe (1-z) Co z is 1 is 0.05 or more. Preferably, 0.10 or higher is preferable, and 0.15 or higher is even more preferable.

一方、Coの含有量が過剰になっても、スレーターポーリング則による効果を得難くなる。Coの含有割合(モル比)zが0.30以下であれば、スレーターポーリング則の効果が弱まり難い。この観点からは、Coの含有割合(モル比)zは、0.26以下が好ましく、0.24以下がより好ましく、0.20以下がより一層好ましい。
(A)
AはN、C、H及びPからなる群より選ばれる1種以上の元素である。Aは、ThMn12相の結晶格子間に侵入することによりThMn12相の格子を拡大させ、異方性磁界、飽和磁化の両特性を向上させることができる。Mの含有量eは1原子%以上、18原子%以下である。Mの含有量eが1原子%以上であれば、ThMn12相の格子を拡大させることができる。ThMn12相の格子拡大の観点からは、Mの含有量eは、5原子%以上が好ましく、7原子%以上がより好ましく、8原子%以上がより一層好ましい。Mの含有量eが18原子%以下であれば、磁性化合物を構成するFe成分の含有率が過剰に低くなってしまうことはない。Fe成分の含有率の過剰低下がなければ、ThMn12相の安定性が損なわれて、磁性化合物の一部が分解し、磁化が低下することはない。磁化の低下の抑制の観点からは、Mの含有量eは、14原子%以下が好ましく、12原子%以下がより好ましく、10原子%以下がより一層好ましい。
On the other hand, even if the Co content is excessive, it is difficult to obtain the effect of the Slater poling law. If the Co content ratio (molar ratio) z is 0.30 or less, the effect of the slater poling rule is difficult to weaken. From this viewpoint, the Co content ratio (molar ratio) z is preferably 0.26 or less, more preferably 0.24 or less, and still more preferably 0.20 or less.
(A)
A is one or more elements selected from the group consisting of N, C, H and P. A can is enlarged grating ThMn 12 phase by entering between crystal lattice of ThMn 12 phase, the anisotropic magnetic field to improve the both characteristics of the saturation magnetization. The content e of M is 1 atomic% or more and 18 atomic% or less. When the content e of M is 1 atomic% or more, the lattice of the ThMn 12 phase can be expanded. From the viewpoint of expanding the lattice of the ThMn 12 phase, the M content e is preferably 5 atomic% or more, more preferably 7 atomic% or more, and even more preferably 8 atomic% or more. If the content e of M is 18 atomic% or less, the content of the Fe component constituting the magnetic compound will not be excessively lowered. If there is no excessive decrease in the content of the Fe component, the stability of the ThMn 12 phase is impaired, a part of the magnetic compound is decomposed, and the magnetization does not decrease. From the viewpoint of suppressing the decrease in magnetization, the M content e is preferably 14 atomic percent or less, more preferably 12 atomic percent or less, and even more preferably 10 atomic percent or less.

〈結晶構造〉
本開示の磁性化合物は、ThMn12型の結晶構造を有する。ThMn12型の結晶構造は正方晶である。ThMn12型の結晶構造においては、Cu線源のX線回折(XRD)によって、2θが42.36°((321)面)のとき、最も強いX線回折強度を示す。また、2θが33°((310)面)のとき、弱いX線回折強度を示す。
<Crystal structure>
The magnetic compound of the present disclosure has a ThMn 12 type crystal structure. The crystal structure of the ThMn 12 type is tetragonal. The ThMn 12 type crystal structure shows the strongest X-ray diffraction intensity when 2θ is 42.36 ° ((321) plane) by X-ray diffraction (XRD) of a Cu source. Further, when 2θ is 33 ° ((310) plane), weak X-ray diffraction intensity is exhibited.

ThMn12型の結晶構造において、2θが42.36°((321)面)でのX線回折強度をI(321)、2θが33°((310)面)でのX線回折強度をI(310)で表し、I(321)を100とすると、I(310)は13.2である。 In the ThMn 12 type crystal structure, the X-ray diffraction intensity at 2θ is 42.36 ° ((321) plane) and the X-ray diffraction intensity at I c (321) and 2θ is 33 ° ((310) plane). I c (310) is represented by I c (310), and I c (321) is 100, I c (310) is 13.2.

ThMn12型の結晶構造が崩れる(disorderする)と、ThMn29型の結晶構造に変化することが知られている。ThMn29型の結晶構造においては、Cu線源のX線回折(XRD)によって、2θが42.35°((−133)面)のとき、最も強いX線回折強度を示す。また、2θが33°((302)面)のとき、弱いX線回折強度を示す。 It is known that when the ThMn 12 type crystal structure collapses (disorders), it changes to a Th 3 Mn 29 type crystal structure. The Th 3 Mn 29 type crystal structure shows the strongest X-ray diffraction intensity when 2θ is 42.35 ° ((−133) plane) by X-ray diffraction (XRD) of a Cu source. Further, when 2θ is 33 ° ((302) plane), it shows weak X-ray diffraction intensity.

ThMn29型の結晶構造において、2θが42.35°((−133)面)でのX線回折強度をI(−133)、2θが33°((302)面)でのX線回折強度をI(302)で表し、I(−133)を100とすると、I(302)は5.9である。 In the Th 3 Mn 29 type crystal structure, the X-ray diffraction intensity at 2θ of 42.35 ° ((−133) plane) is expressed as I c (−133) and X at 2θ of 33 ° ((302) plane). When the line diffraction intensity is represented by I c (302) and I c (-133) is 100, I c (302) is 5.9.

このことから、磁性化合物中で、ThMn12型の結晶構造の占める割合を示す、ThMn12型結晶度は、{I(310)−I(302)}/{I(310)−I(302)}で定義することができる。ここで、I(310)は、磁性化合物についての(310)面でのX線回折強度実測値である。結晶構造が完全なThMn12型であれば、ThMn12型結晶度は100%になり、結晶構造が完全なThMn29型である場合には、ThMn12型結晶度は0%になる。 From this, the ThMn 12 type crystallinity indicating the proportion of the ThMn 12 type crystal structure in the magnetic compound is {I m (310) −I c (302)} / {I c (310) −I c (302)}. Here, I m (310) is a measured value of X-ray diffraction intensity on the (310) plane of the magnetic compound. If the crystal structure is a complete ThMn 12 type, the ThMn 12 type crystallinity is 100%, and if the crystal structure is a complete Th 3 Mn 29 type, the ThMn 12 type crystallinity is 0%.

本開示の磁性化合物においては、ThMn12型の結晶構造が50%以上を占めていること、すなわち、ThMn12型結晶度が50%以上であることが好ましい。ThMn12型結晶度が50%以上であれば、磁性化合物中で、ThMn12型の結晶構造が安定して、α−Fe相が増加し難い。ThMn12型の結晶構造の安定の観点からは、ThMn12型結晶度は、高いほど好ましく、60%以上、70%以上、80%以上、又は90%以上が好ましい。一方、ThMn12型結晶度は、100%でなくてもよく、98%以下、96%以下、94%以下、又は92%以下であってよい。 In the magnetic compound of the present disclosure, the ThMn 12 type crystal structure preferably occupies 50% or more, that is, the ThMn 12 type crystallinity is preferably 50% or more. If the ThMn 12 crystallinity is 50% or more, the ThMn 12 crystal structure is stable in the magnetic compound, and the α-Fe phase hardly increases. From the viewpoint of stability of the ThMn 12 type crystal structure, the ThMn 12 type crystallinity is preferably as high as possible, and is preferably 60% or more, 70% or more, 80% or more, or 90% or more. On the other hand, the ThMn type 12 crystallinity need not be 100%, but may be 98% or less, 96% or less, 94% or less, or 92% or less.

これまで説明してきたように、本開示の磁性化合物によれば、磁性化合物中のα−Fe相の含有量を極少化して、窒化後には、飽和磁化と異方性磁界の両方を一層向上させることができる。   As described so far, according to the magnetic compound of the present disclosure, the content of the α-Fe phase in the magnetic compound is minimized, and after nitriding, both the saturation magnetization and the anisotropic magnetic field are further improved. be able to.

本発明の磁性化合物は、焼結磁石及びボンド磁石の原材料として使用してもよいし、磁性化合物そのままで、磁性紛体としても使用することができる。   The magnetic compound of the present invention may be used as a raw material for sintered magnets and bonded magnets, or may be used as a magnetic powder as it is.

《磁性紛体》
磁性紛体として使用する場合、その磁性紛体は、
式(Nd(1−x−y)Zr(Fe(1−z)Co
(前記式中、RはNd以外の1種以上の希土類元素であり、
TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素であり、
Mは不可避的不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素であり、
AはN、C、H及びPからなる群より選ばれる1種以上の元素であり、かつ、
0<x≦0.3、
0≦y≦0.1、
0≦z≦0.3、
7.7<a≦9.4、
b=100−a−c−d、
3.1≦c<7.7、
0≦d≦1.0、及び、
1≦e≦18である)
で表される組成を有し、
前記式中、a≧1.6x+7.7及びc≧−14x+7.3の関係を満足し、かつ、
ThMn12型の結晶構造を有する。
<Magnetic powder>
When used as a magnetic powder, the magnetic powder is
Formula (Nd (1-x-y ) R y Zr x) a (Fe (1-z) Co z) b T c M d A e
(In the above formula, R is one or more rare earth elements other than Nd,
T is one or more elements selected from the group consisting of Ti, V, Mo and W,
M is an inevitable impurity element and one or more elements selected from the group consisting of Al, Cr, Cu, Ga, Ag and Au,
A is one or more elements selected from the group consisting of N, C, H and P, and
0 <x ≦ 0.3,
0 ≦ y ≦ 0.1,
0 ≦ z ≦ 0.3,
7.7 <a ≦ 9.4,
b = 100-acd,
3.1 ≦ c <7.7,
0 ≦ d ≦ 1.0, and
1 ≦ e ≦ 18)
Having a composition represented by
In the above formula, the relationship of a ≧ 1.6x + 7.7 and c ≧ −14x + 7.3 is satisfied, and
It has a ThMn 12 type crystal structure.

《製造方法》
本開示の磁性化合物の製造方法は、溶湯準備工程、溶湯急冷工程、及びA元素侵入工程を含む。以下、これらの工程ごとに説明する。
"Production method"
The manufacturing method of the magnetic compound of this indication contains a molten metal preparation process, a molten metal quenching process, and A element penetration | invasion process. Hereinafter, each step will be described.

〈溶湯準備工程〉
本開示の磁性化合物においては、窒化前の磁性化合物の全体組成と、磁性化合物を製造するときに準備する溶湯の組成とが実質的に同一である。溶湯の組成については、溶湯保持及び/又は凝固途中で、蒸発等による溶湯成分が減耗することは考慮していない。製造条件等により、溶湯成分の減耗が生じる場合には、その減耗分を考慮して、原材料を配合してもよい。
<Melten preparation process>
In the magnetic compound of the present disclosure, the overall composition of the magnetic compound before nitriding and the composition of the melt prepared when the magnetic compound is manufactured are substantially the same. As for the composition of the molten metal, it is not considered that the molten metal component is depleted due to evaporation or the like during the molten metal holding and / or solidification. When the molten metal component is depleted due to manufacturing conditions, raw materials may be blended in consideration of the depleted amount.

溶湯減耗を考慮しなくてよい場合、式(Nd(1−x−y)Zr(Fe(1−z)Coで表される組成を有する溶湯を準備する。上記式で、Nd、R、Zr、Fe、Co、T,及びMは、磁性化合物で説明した内容と同様である。また、x、y、及びz、並びに、a、b、c、及びdは、磁性化合物で説明した内容と同様である。そして、上記式において、a≧1.6x+7.7及びc≧−14x+7.3の関係を満足する。 If the melt depletion does not need to be considered, the molten metal having a composition represented by the formula (Nd (1-x-y ) R y Zr x) a (Fe (1-z) Co z) b T c M d prepare. In the above formula, Nd, R, Zr, Fe, Co, T, and M are the same as those described for the magnetic compound. Moreover, x, y, and z, and a, b, c, and d are the same as the content demonstrated with the magnetic compound. In the above formula, the relations of a ≧ 1.6x + 7.7 and c ≧ −14x + 7.3 are satisfied.

〈溶湯急冷工程〉
上記の組成を有する溶湯を、1×10〜1×10K/secの速度で急冷する。急冷により、ThMn12型の結晶構造を安定させ、かつ、α−Fe相の含有量を極少化し易くなる。
<Melting quenching process>
The molten metal having the above composition is rapidly cooled at a rate of 1 × 10 2 to 1 × 10 7 K / sec. The rapid cooling stabilizes the ThMn 12 type crystal structure and makes it easy to minimize the content of the α-Fe phase.

急冷法としては、例えば、図4に示すような急冷装置10を用い、ストリップキャスト法によって所定の速度で冷却することができる。急冷装置10において、溶解炉11において原材料が溶解され、上記の組成を有する溶湯12が準備される。溶湯12はタンディッシュ13に一定の供給量で供給される。タンディッシュ13に供給された溶湯12は、タンディッシュ13の端部から自重によって冷却ロール14に供給される。   As the rapid cooling method, for example, a rapid cooling device 10 as shown in FIG. 4 can be used, and cooling can be performed at a predetermined speed by a strip casting method. In the rapid cooling apparatus 10, the raw material is melted in the melting furnace 11, and a molten metal 12 having the above composition is prepared. The molten metal 12 is supplied to the tundish 13 at a constant supply amount. The molten metal 12 supplied to the tundish 13 is supplied from the end of the tundish 13 to the cooling roll 14 by its own weight.

タンディッシュ13は、セラミックス等で構成され、溶解炉11から所定の流量で連続的に供給される溶湯12を一時的に貯湯し、冷却ロール14への溶湯12の流れを整流することができる。また、タンディッシュ13は、冷却ロール14に達する直前の溶湯12の温度を調整する機能をも有する。   The tundish 13 is made of ceramics or the like, can temporarily store the molten metal 12 continuously supplied from the melting furnace 11 at a predetermined flow rate, and can rectify the flow of the molten metal 12 to the cooling roll 14. The tundish 13 also has a function of adjusting the temperature of the molten metal 12 immediately before reaching the cooling roll 14.

冷却ロール14は、銅やクロムなどの熱伝導性の高い材料から形成されており、冷却ロール14の表面は、高温の溶湯との浸食を防止するため、クロムメッキ等が施される。冷却ロール14は、図示していない駆動装置により、所定の回転速度で矢印方向に回転することができる。この回転速度を制御することにより、溶湯の冷却速度を1×10〜1×10K/secの速度に制御することができる。 The cooling roll 14 is made of a material having high thermal conductivity such as copper or chromium, and the surface of the cooling roll 14 is subjected to chromium plating or the like in order to prevent erosion with a high-temperature molten metal. The cooling roll 14 can be rotated in the direction of the arrow at a predetermined rotation speed by a driving device (not shown). By controlling this rotational speed, the cooling rate of the molten metal can be controlled to a speed of 1 × 10 2 to 1 × 10 7 K / sec.

溶湯の冷却速度が1×10K/sec以上であれば、ThMn12型の結晶構造を安定させ、かつ、α−Fe相の含有量を極少化し易くすることができる。この観点からは、溶湯の冷却速度が1×10K/sec以上がより好ましい。一方、溶湯の冷却速度が1×10K/sec以下であれば、急冷によって得られる効果が飽和しているにもかかわらず、必要以上に速い速度で溶湯を冷却するおそれは少ない。溶湯の冷却速度は、1×10K/sec以下又は1×10K/sec以下であってもよい。 If the cooling rate of the molten metal is 1 × 10 2 K / sec or more, the ThMn 12 type crystal structure can be stabilized and the content of the α-Fe phase can be easily minimized. In this respect, the cooling rate of the molten metal is more preferably 1 × 10 3 K / sec or more. On the other hand, if the cooling rate of the molten metal is 1 × 10 7 K / sec or less, there is little possibility that the molten metal is cooled at a faster rate than necessary even though the effect obtained by rapid cooling is saturated. The cooling rate of the molten metal may be 1 × 10 6 K / sec or less or 1 × 10 5 K / sec or less.

冷却ロール14の外周上で冷却され、凝固された溶湯12は、薄片15となって冷却ロール14から剥離し、回収装置で回収される。必要に応じて、カッターミル等を用いて、薄片15を粉砕し、粉末を得てもよい。   The molten metal 12 cooled and solidified on the outer periphery of the cooling roll 14 becomes a thin piece 15 which is peeled off from the cooling roll 14 and recovered by a recovery device. If necessary, the flakes 15 may be pulverized using a cutter mill or the like to obtain a powder.

〈A元素侵入工程〉
薄片15に、A元素を侵入させる。A元素は、N、C、H及びPからなる群より選ばれる1種以上である。A元素の侵入のし易さから、A元素の侵入は、薄片15の粉砕後に行うことが好ましい。
<A element penetration process>
The element A is invaded into the thin piece 15. The element A is at least one selected from the group consisting of N, C, H and P. In view of the ease of penetration of the A element, the penetration of the A element is preferably performed after the flakes 15 are crushed.

A元素の侵入は、A元素が窒素である場合、例えば、窒素ガス、あるいは、窒素ガスと水素ガスとの混合ガス、アンモニアガス、あるいは、アンモニアガスと水素ガスとの混合ガス等を窒素源として用い、1〜24時間にわたり、200〜600℃で薄片15を加熱して、窒化する。   When the A element is nitrogen, for example, nitrogen gas or a mixed gas of nitrogen gas and hydrogen gas, ammonia gas, or a mixed gas of ammonia gas and hydrogen gas is used as the nitrogen source. In use, the flakes 15 are heated and nitrided at 200-600 ° C. for 1-24 hours.

A元素が炭素である場合、例えば、C(CH、C、CO)ガス、もしくはメタノールの加熱分解ガス等を炭素源として用い、1〜24時間にわたり、300〜600℃で薄片15を加熱して、炭化する。その他、カーボン粉末を用いる固体炭化、あるいは、KCN、NaCNを用いる溶融塩浸炭を行うことができる。H及びPについても、通常の水素化、リン化を行うことができる。 When the element A is carbon, for example, C 2 H 2 (CH 4 , C 3 H 8 , CO) gas, or pyrolysis gas of methanol is used as the carbon source, and the temperature is 300 to 600 ° C. over 1 to 24 hours. The flakes 15 are heated and carbonized. In addition, solid carbonization using carbon powder or molten salt carburization using KCN or NaCN can be performed. H and P can also be subjected to normal hydrogenation and phosphation.

〈熱処理工程〉
さらに、本開示の製造方法においては、上記工程で得られた薄片15を、800〜1300℃で2〜120時間にわたり熱処理してもよい。この熱処理により、ThMn12型の結晶構造を有する相(以下、「ThMn12相」ということがある。)が均質化され、異方性磁界及び飽和磁化の両特性がさらに向上する。薄片15の粉砕については、熱処理前に行ってもよいし、熱処理後に行ってもよい。
<Heat treatment process>
Furthermore, in the manufacturing method of this indication, you may heat-process the flake 15 obtained at the said process at 800-1300 degreeC for 2 to 120 hours. By this heat treatment, a phase having a ThMn 12 type crystal structure (hereinafter sometimes referred to as “ThMn 12 phase”) is homogenized, and both the anisotropic magnetic field and saturation magnetization characteristics are further improved. The pulverization of the flakes 15 may be performed before the heat treatment or after the heat treatment.

熱処理温度が、800℃以上であれば、ThMn12相を均質化することができる。ThMn12相の均質化の観点からは、900℃以上が好ましく、1000℃以上がより好ましく、1100℃以上がより一層好ましい。一方、熱処理温度が1300℃以下であれば、磁性化合物の組織が分解して、α−Fe相が生成するおそれは少ない。この観点からは、1250℃以下が好ましく、1200℃以下がより好ましく、1150℃以下がより一層好ましい。 If the heat treatment temperature is 800 ° C. or higher, the ThMn 12 phase can be homogenized. From the viewpoint of homogenizing the ThMn 12 phase, 900 ° C or higher is preferable, 1000 ° C or higher is more preferable, and 1100 ° C or higher is even more preferable. On the other hand, when the heat treatment temperature is 1300 ° C. or lower, there is little possibility that the structure of the magnetic compound is decomposed and an α-Fe phase is generated. From this viewpoint, 1250 ° C. or lower is preferable, 1200 ° C. or lower is more preferable, and 1150 ° C. or lower is even more preferable.

以下、本開示の磁性化合物及びその製造方法並びに磁性紛体を実施例及び比較例により、さらに具体的に説明する。なお、本開示の磁性化合物及びその製造方法並びに磁性紛体は、以下の実施例で用いた条件に限定されるものではない。   Hereinafter, the magnetic compound of the present disclosure, the production method thereof, and the magnetic powder will be described more specifically with reference to Examples and Comparative Examples. In addition, the magnetic compound of this indication, its manufacturing method, and a magnetic powder body are not limited to the conditions used in the following Examples.

《試料の準備》
磁性化合物の試料を、次の要領で準備した。
《Sample preparation》
A sample of the magnetic compound was prepared as follows.

表1に示す組成の溶湯を準備し、ストリップキャスト法により、10K/secの速度で急冷し、急冷薄片を準備し、Ar雰囲気において1200℃で4時間にわたり熱処理を実施した。次いで、Ar雰囲気において、カッターミルを用いて薄片を粉砕し、粒径20μm以下の粒子を回収した。これらの粒子を、純度99.99%の窒素ガス中に配置して、450℃で4時間にわたり、窒化を行った。 A melt having the composition shown in Table 1 was prepared, quenched at a rate of 10 4 K / sec by a strip casting method, a quenched flake was prepared, and heat treatment was performed at 1200 ° C. for 4 hours in an Ar atmosphere. Next, the flakes were pulverized using a cutter mill in an Ar atmosphere, and particles having a particle size of 20 μm or less were collected. These particles were placed in nitrogen gas having a purity of 99.99% and subjected to nitriding at 450 ° C. for 4 hours.

《試料の評価》
得られた粒子(窒化前)のSEM像(反射電子像)から、α−Fe相の大きさ及び面積率を測定し、面積率=体積率として、α−Fe相の含有量(体積%)を算出した。また、得られた粒子(窒化前)のX線回折(XRD)を行い、上述した方法で、ThMn12型結晶度を算出した。さらに、得られた粒子(窒化後)の窒素量と、磁気特性を測定した。窒素量は、窒素化前後の重量変化から算出した。
<< Evaluation of Sample >>
From the SEM image (reflected electron image) of the obtained particles (before nitriding), the size and area ratio of the α-Fe phase were measured, and the content ratio (volume%) of the α-Fe phase as area ratio = volume ratio. Was calculated. Further, X-ray diffraction (XRD) of the obtained particles (before nitriding) was performed, and ThMn 12 crystallinity was calculated by the method described above. Further, the nitrogen amount and magnetic properties of the obtained particles (after nitriding) were measured. The amount of nitrogen was calculated from the change in weight before and after nitrogenation.

得られた粒子(窒化後)の飽和磁化と異方性磁界を、振動試料型磁力計(VSM)を用いて、飽和漸近則に基づいて測定した。振動試料型磁力計(VSM)については、9T(7.2MA/m)までの磁場を印加できる磁力計を用いた。測定サンプルについては、窒化後の粒子を、アクリル樹脂製の容器(内寸法:直径が5mm、高さが5mm)に充填し、それをパラフィン樹脂で固めて作製した。   The saturation magnetization and anisotropic magnetic field of the obtained particles (after nitriding) were measured based on the saturation asymptotic rule using a vibrating sample magnetometer (VSM). For the vibrating sample magnetometer (VSM), a magnetometer capable of applying a magnetic field up to 9T (7.2 MA / m) was used. About the measurement sample, the particles after nitriding were filled in an acrylic resin container (inner dimensions: diameter 5 mm, height 5 mm), and solidified with paraffin resin.

結果(窒化前)を表1に示す。表1において、磁性化合物の全体組成については、磁性化合物からサンプルを採取し、それを、ICP発光分光分析法で分析した。Mとしては、微量の不可避的不純物が検出されたため、Mの含有量の内訳を表2に示した。なお、表2中のppmは質量ppmである。表1の分析結果は、溶湯の仕込み組成と、ほぼ同等であった。表1の分析結果から、実施例1〜7及び比較例1〜8の磁性化合物の全体組成について、Zrの含有割合xと、希土類サイトの含有量a及びTi含有量cとの関係を纏めたグラフが、図1である。   The results (before nitriding) are shown in Table 1. In Table 1, with respect to the overall composition of the magnetic compound, a sample was taken from the magnetic compound and analyzed by ICP emission spectroscopy. Since a small amount of inevitable impurities were detected as M, the breakdown of the content of M is shown in Table 2. In addition, ppm in Table 2 is ppm by mass. The analysis results in Table 1 were almost the same as the charged composition of the molten metal. From the analysis results in Table 1, the relationship between the Zr content ratio x, the rare earth site content a, and the Ti content c was summarized for the overall compositions of Examples 1-7 and Comparative Examples 1-8. The graph is shown in FIG.

表1及び図1から分かるように、実施例1〜7の試料においては、磁性化合物の全体組成が適正範囲になっているため、α−Fe相の含有量が2体積%以下になっていることを確認できた。また、実施例1〜7においては、ThMn12型結晶度が50体積%以上になっていることを確認できた。 As can be seen from Table 1 and FIG. 1, in the samples of Examples 1 to 7, the entire composition of the magnetic compound is in an appropriate range, so the content of the α-Fe phase is 2% by volume or less. I was able to confirm that. In Example 1-7, it was confirmed that ThMn 12 type crystallinity is equal to or greater than 50% by volume.

一方、比較例2〜4及び6〜8の試料においては、磁性化合物の全体組成が適正範囲になっていないため、α−Fe相の含有量が2体積%を超えていることを確認できた。   On the other hand, in the samples of Comparative Examples 2 to 4 and 6 to 8, it was confirmed that the content of the α-Fe phase exceeded 2% by volume because the overall composition of the magnetic compound was not in the proper range. .

比較例1の試料においては、α−Fe相の含有量は2体積%以下であるものの、磁性化合物中にZrを含まず(z=0)、磁性化合物を高温(600℃)に暴露したとき、分解して、α−Fe相を生成する可能性がある。   In the sample of Comparative Example 1, although the content of the α-Fe phase is 2% by volume or less, the magnetic compound does not contain Zr (z = 0), and the magnetic compound is exposed to a high temperature (600 ° C.). , And may decompose to produce an α-Fe phase.

比較例2の試料においては、Nd(1−x−y)Zrで表される希土類サイトで、Zrの含有割合xが、本発明の上限を超えており、FeZr相が生成されていた。図5は、比較例5(窒化前)の試料のSEM像を示す図である。図5において、矢印で示した位置に、FeZr相の生成が認められる。 In the sample of Comparative Example 2, the content ratio x of Zr exceeds the upper limit of the present invention at the rare earth site represented by Nd (1-xy) R y Zr x , and an Fe 2 Zr phase is generated. It had been. FIG. 5 is a view showing an SEM image of the sample of Comparative Example 5 (before nitriding). In FIG. 5, the formation of the Fe 2 Zr phase is observed at the position indicated by the arrow.

磁性化合物の全体組成については、希土類サイト、鉄族サイト、Ti、及びMの含有量それぞれを、原子%で表示する方法と、モル比で表示する方法がある。表3は、参考までに、磁性化合物の全体組成(窒化前)を、両者の方法で示したものである。なお、Mの含有量が非常に少量であるため、モル比表示では、Mの含有量の表示を省略した。   Regarding the entire composition of the magnetic compound, there are a method of displaying the contents of rare earth sites, iron group sites, Ti, and M in atomic% and a method of displaying them in molar ratio. Table 3 shows the overall composition of the magnetic compound (before nitriding) by both methods for reference. In addition, since the content of M is very small, the display of the content of M is omitted in the molar ratio display.

磁性化合物は、磁性相と粒界相を有している。EPMA ZAF法を用いると、磁性相の組成を、粒界相の組成と分離して、測定することができる。表4は、窒化前の磁性化合物について、磁性相の組成の測定結果を纏めたものである。表4には、表1で示した、磁性化合物の全体組成を併記してある。また、表4においては、磁性相の組成について、希土類サイト、鉄族サイト、及びTiの含有量を、原子%で表示する方法と、モル比で表示する方法の両方で表示した。なお、Mの含有量が非常に少量であるため、磁性相の組成は、Mの含有量を省略して表示した。   The magnetic compound has a magnetic phase and a grain boundary phase. When the EPMA ZAF method is used, the composition of the magnetic phase can be measured separately from the composition of the grain boundary phase. Table 4 summarizes the measurement results of the composition of the magnetic phase for the magnetic compound before nitriding. Table 4 shows the overall composition of the magnetic compound shown in Table 1. In Table 4, the composition of the magnetic phase is indicated by both the method of displaying the rare earth site, the iron group site, and the Ti content by atomic% and the method of displaying by molar ratio. Since the content of M is very small, the composition of the magnetic phase is indicated by omitting the content of M.

また、表4から、実施例1〜7及び比較例1〜8の磁性相の組成について、Zrの含有割合x’と、希土類サイトの含有量pを纏めたグラフが、図6である。   From Table 4, FIG. 6 is a graph summarizing the content ratio x ′ of Zr and the content p of rare earth sites for the compositions of the magnetic phases of Examples 1 to 7 and Comparative Examples 1 to 8.

図6から分かるように、実施例1〜7及び比較例1〜8の磁性相の組成は、直線関係(比例関係)にあり、その傾きは正であることを確認できた。   As can be seen from FIG. 6, the compositions of the magnetic phases of Examples 1 to 7 and Comparative Examples 1 to 8 were in a linear relationship (proportional relationship), and it was confirmed that the inclination was positive.

窒化後の磁気化合物の磁気特性を表5に示す。   Table 5 shows the magnetic properties of the magnetic compound after nitriding.

表5から分かるように、実施例1〜7の試料については、1.55〜1.61Tの高飽和磁化を維持しつつ、6.32〜6.99(MA/m)の高異方性磁界を達成することが確認できた。これは、磁性化合物中のα−Fe相の含有量が2体積%以下によるものと考えられる。なお、窒化の前後で、磁性化合物のα−Fe相の含有量は同等であると考えられる。   As can be seen from Table 5, the samples of Examples 1 to 7 have a high anisotropy of 6.32 to 6.99 (MA / m) while maintaining a high saturation magnetization of 1.55 to 1.61 T. It was confirmed that a magnetic field was achieved. This is presumably because the content of the α-Fe phase in the magnetic compound is 2% by volume or less. In addition, it is thought that the content of the α-Fe phase of the magnetic compound is the same before and after nitriding.

また、表5から分かるように、すべての試料につき、異方性磁界が7.2MA/m以下であり、この値は、使用した振動試料型磁力計(VSM)の最大印加磁場9T(7.2MA/m)以下であることから、すべての試料で、飽和磁化及び異方性磁界は正しく測定できたと考えられる。   Further, as can be seen from Table 5, the anisotropic magnetic field is 7.2 MA / m or less for all the samples, and this value is the maximum applied magnetic field 9T (7. 2 MA / m) or less, it is considered that saturation magnetization and anisotropic magnetic field were correctly measured in all samples.

参考までに、最大印加磁場が5T(4MA/m)の振動試料型磁力計を用いて測定した値について、飽和磁化及び異方性磁界が既知の試料の結果から外挿して、比較例7及び8の飽和磁化及び異方性磁化を求めると、次のような結果となった。
比較例7:飽和磁化 1.56T、異方性磁界 7.6MA/m
比較例8:飽和磁化 1.57T、異方性磁界 7.8MA/m
いずれも、最大印加磁場9T(7.2MA/m)の振動試料型磁力計(VSM)を用いて計測した場合よりも、高い値を示した。
For reference, the values measured using a vibrating sample magnetometer with a maximum applied magnetic field of 5 T (4 MA / m) are extrapolated from the results of samples with known saturation magnetization and anisotropic magnetic field, and Comparative Example 7 and When the saturation magnetization and anisotropic magnetization of 8 were obtained, the following results were obtained.
Comparative Example 7: Saturation magnetization 1.56T, anisotropic magnetic field 7.6 MA / m
Comparative Example 8: Saturation magnetization 1.57 T, anisotropic magnetic field 7.8 MA / m
In either case, the values were higher than those measured using a vibrating sample magnetometer (VSM) having a maximum applied magnetic field of 9 T (7.2 MA / m).

これまで説明してきた内容から、本開示の磁性化合物及びその製造方法並びに磁性紛体の効果を確認できた。   From the contents described so far, the effects of the magnetic compound of the present disclosure, the production method thereof, and the magnetic powder have been confirmed.

10 急冷装置
11 溶解炉
12 溶湯
13 タンディッシュ
14 冷却ロール
15 薄片
DESCRIPTION OF SYMBOLS 10 Quench apparatus 11 Melting furnace 12 Molten metal 13 Tundish 14 Cooling roll 15 Thin piece

Claims (10)

式(Nd(1−x−y)Zr(Fe(1−z)Co
(前記式中、RはNd以外の1種以上の希土類元素であり、
TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素であり、
Mは不可避的不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素であり、
AはN、C、H及びPからなる群より選ばれる1種以上の元素であり、かつ、
0<x≦0.3、
0≦y≦0.1、
0≦z≦0.3、
7.7<a≦9.4、
b=100−a−c−d、
3.1≦c<7.7、
0≦d≦1.0、及び、
1≦e≦18である)
で表される組成を有し、
前記式中、a≧1.6x+7.7及びc≧−14x+7.3の関係を満足し、かつ、
ThMn12型の結晶構造を有する、
磁性化合物。
Formula (Nd (1-x-y ) R y Zr x) a (Fe (1-z) Co z) b T c M d A e
(In the above formula, R is one or more rare earth elements other than Nd,
T is one or more elements selected from the group consisting of Ti, V, Mo and W,
M is an inevitable impurity element and one or more elements selected from the group consisting of Al, Cr, Cu, Ga, Ag and Au,
A is one or more elements selected from the group consisting of N, C, H and P, and
0 <x ≦ 0.3,
0 ≦ y ≦ 0.1,
0 ≦ z ≦ 0.3,
7.7 <a ≦ 9.4,
b = 100-acd,
3.1 ≦ c <7.7,
0 ≦ d ≦ 1.0, and
1 ≦ e ≦ 18)
Having a composition represented by
In the above formula, the relationship of a ≧ 1.6x + 7.7 and c ≧ −14x + 7.3 is satisfied, and
It has a ThMn 12 type crystal structure,
Magnetic compound.
前記式中、3.1≦c≦7.3である、請求項1に記載の磁性化合物。   The magnetic compound according to claim 1, wherein 3.1 ≦ c ≦ 7.3. 前記式中、7.7<a≦8.7である、請求項1又は2に記載の磁性化合物。   The magnetic compound according to claim 1, wherein 7.7 <a ≦ 8.7 in the formula. 式(Nd(1−x−y)Zr(Fe(1−z)Co
(前記式中、RはNd以外の1種以上の希土類元素であり、
TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素であり、
Mは不可避的不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素であり、かつ、
0<x≦0.3、
0≦y≦0.1、
0≦z≦0.3、
7.7<a≦9.4、
b=100−a−c−d、
3.1≦<c<7.7、及び、
0≦d≦1.0である)
で表される組成を有し、かつ、
前記式中、a≧1.6x+7.7及びc≧−14x+7.3の関係を満足する溶湯を準備すること、
前記溶湯を、1×10〜1×10K/secの速度で急冷して、薄片を得ること、及び、
前記薄片に、A(N、C、H及びBからなる群より選ばれる1種以上の元素)を侵入させること、
を含む、請求項1に記載の磁性化合物の製造方法。
Formula (Nd (1-x-y ) R y Zr x) a (Fe (1-z) Co z) b T c M d
(In the above formula, R is one or more rare earth elements other than Nd,
T is one or more elements selected from the group consisting of Ti, V, Mo and W,
M is an inevitable impurity element and one or more elements selected from the group consisting of Al, Cr, Cu, Ga, Ag and Au, and
0 <x ≦ 0.3,
0 ≦ y ≦ 0.1,
0 ≦ z ≦ 0.3,
7.7 <a ≦ 9.4,
b = 100-acd,
3.1 ≦ <c <7.7, and
(0 ≦ d ≦ 1.0)
And having a composition represented by:
Preparing a molten metal satisfying the relationship of a ≧ 1.6x + 7.7 and c ≧ −14x + 7.3 in the formula,
Quenching the molten metal at a rate of 1 × 10 2 to 1 × 10 7 K / sec to obtain flakes; and
Intruding A (one or more elements selected from the group consisting of N, C, H and B) into the flakes;
The manufacturing method of the magnetic compound of Claim 1 containing this.
前記薄片を、前記侵入の前に粉砕して、粉末を得ること、をさらに含む、請求項4に記載の方法。   The method of claim 4, further comprising grinding the flakes prior to the intrusion to obtain a powder. 前記薄片を、800〜1300℃で2〜120時間にわたり熱処理することをさらに含む、請求項5に記載の方法。   The method of claim 5, further comprising heat treating the flakes at 800-1300 ° C. for 2-120 hours. 前記粉末を、さらに、800〜1300℃で2〜120時間にわたり熱処理することをさらに含む、請求項5又は6に記載の方法。   The method according to claim 5 or 6, further comprising heat-treating the powder at 800 to 1300 ° C for 2 to 120 hours. 前記式中、3.1≦c≦7.3である、請求項4〜7のいずれか一項に記載の方法。   The method according to any one of claims 4 to 7, wherein 3.1≤c≤7.3 in the formula. 前記式中、7.7<a≦8.7である、請求項4〜8のいずれか一項に記載の方法。   The method according to any one of claims 4 to 8, wherein 7.7 <a ≦ 8.7 in the formula. 式(Nd(1−x−y)Zr(Fe(1−z)Co
(前記式中、RはNd以外の1種以上の希土類元素であり、
TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素であり、
Mは不可避的不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素であり、
AはN、C、H及びPからなる群より選ばれる1種以上の元素であり、かつ、
0<x≦0.3、
0≦y≦0.1、
0≦z≦0.3、
7.7<a≦9.4、
b=100−a−c−d、
3.1≦c<7.7、
0≦d≦1.0、及び、
1≦e≦18である)
で表される組成を有し、
前記式中、a≧1.6x+7.7及びc≧−14x+7.3の関係を満足し、かつ、
ThMn12型の結晶構造を有する、
磁性紛体。
Formula (Nd (1-x-y ) R y Zr x) a (Fe (1-z) Co z) b T c M d A e
(In the above formula, R is one or more rare earth elements other than Nd,
T is one or more elements selected from the group consisting of Ti, V, Mo and W,
M is an inevitable impurity element and one or more elements selected from the group consisting of Al, Cr, Cu, Ga, Ag and Au,
A is one or more elements selected from the group consisting of N, C, H and P, and
0 <x ≦ 0.3,
0 ≦ y ≦ 0.1,
0 ≦ z ≦ 0.3,
7.7 <a ≦ 9.4,
b = 100-acd,
3.1 ≦ c <7.7,
0 ≦ d ≦ 1.0, and
1 ≦ e ≦ 18)
Having a composition represented by
In the above formula, the relationship of a ≧ 1.6x + 7.7 and c ≧ −14x + 7.3 is satisfied, and
It has a ThMn 12 type crystal structure,
Magnetic powder.
JP2017159767A 2017-08-22 2017-08-22 Magnetic compound, method for producing the same, and magnetic powder Active JP6541132B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017159767A JP6541132B2 (en) 2017-08-22 2017-08-22 Magnetic compound, method for producing the same, and magnetic powder
CN201810722298.5A CN109427455B (en) 2017-08-22 2018-06-29 Magnetic compound, method for producing same, and magnetic powder
DE102018120212.1A DE102018120212B4 (en) 2017-08-22 2018-08-20 Magnetic compound, manufacturing process thereof and magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017159767A JP6541132B2 (en) 2017-08-22 2017-08-22 Magnetic compound, method for producing the same, and magnetic powder

Publications (2)

Publication Number Publication Date
JP2019040927A true JP2019040927A (en) 2019-03-14
JP6541132B2 JP6541132B2 (en) 2019-07-10

Family

ID=65321296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017159767A Active JP6541132B2 (en) 2017-08-22 2017-08-22 Magnetic compound, method for producing the same, and magnetic powder

Country Status (3)

Country Link
JP (1) JP6541132B2 (en)
CN (1) CN109427455B (en)
DE (1) DE102018120212B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200075203A1 (en) * 2018-08-30 2020-03-05 Kabushiki Kaisha Toshiba Magnet material, permanent magnet, rotary electric machine, and vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669010A (en) * 1992-08-19 1994-03-11 Sumitomo Special Metals Co Ltd Manufacture method of r-t-m-n based bonded magnet
JPH06235051A (en) * 1993-02-10 1994-08-23 Toshiba Corp Magnetic material
JPH06283316A (en) * 1992-10-29 1994-10-07 Hitachi Metals Ltd Iron-rare earth permanent magnet material and its manufacture
JPH0757911A (en) * 1993-08-17 1995-03-03 Sumitomo Special Metals Co Ltd Production of permanent magnet powder
JPH0881741A (en) * 1994-09-16 1996-03-26 Toshiba Corp Magnetic material and permanent magnet using the same
JP2001093713A (en) * 1999-09-14 2001-04-06 Peking Univ Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
JP2001189206A (en) * 1999-12-28 2001-07-10 Toshiba Corp Permanent magnet
JP2016058707A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 Magnetic compound and method for manufacturing the same
JP2019040926A (en) * 2017-08-22 2019-03-14 トヨタ自動車株式会社 Magnetic compound and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265907A (en) * 2003-01-28 2004-09-24 Tdk Corp Hard magnetic composition
JP2005264279A (en) * 2004-03-22 2005-09-29 Tdk Corp Hard magnetic composition
US9548150B2 (en) * 2013-03-06 2017-01-17 GM Global Technology Operations LLC Cerium-iron-based magnetic compounds
US10351935B2 (en) * 2014-09-09 2019-07-16 Toyota Jidosha Kabushiki Kaisha Magnetic compound and method of producing the same
DE102014223991B4 (en) * 2014-11-25 2022-06-23 Robert Bosch Gmbh Magnetic material, method for its production and electric motor or starter or generator with the magnetic material
JP6319808B2 (en) * 2015-09-17 2018-05-09 トヨタ自動車株式会社 Magnetic compound and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669010A (en) * 1992-08-19 1994-03-11 Sumitomo Special Metals Co Ltd Manufacture method of r-t-m-n based bonded magnet
JPH06283316A (en) * 1992-10-29 1994-10-07 Hitachi Metals Ltd Iron-rare earth permanent magnet material and its manufacture
JPH06235051A (en) * 1993-02-10 1994-08-23 Toshiba Corp Magnetic material
JPH0757911A (en) * 1993-08-17 1995-03-03 Sumitomo Special Metals Co Ltd Production of permanent magnet powder
JPH0881741A (en) * 1994-09-16 1996-03-26 Toshiba Corp Magnetic material and permanent magnet using the same
JP2001093713A (en) * 1999-09-14 2001-04-06 Peking Univ Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
JP2001189206A (en) * 1999-12-28 2001-07-10 Toshiba Corp Permanent magnet
JP2016058707A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 Magnetic compound and method for manufacturing the same
JP2019040926A (en) * 2017-08-22 2019-03-14 トヨタ自動車株式会社 Magnetic compound and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200075203A1 (en) * 2018-08-30 2020-03-05 Kabushiki Kaisha Toshiba Magnet material, permanent magnet, rotary electric machine, and vehicle

Also Published As

Publication number Publication date
JP6541132B2 (en) 2019-07-10
CN109427455B (en) 2020-11-13
DE102018120212A1 (en) 2019-02-28
CN109427455A (en) 2019-03-05
DE102018120212B4 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
JP6319808B2 (en) Magnetic compound and method for producing the same
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
JP6304120B2 (en) Magnetic compound and method for producing the same
EP3018663B1 (en) Magnetic compound and method of producing the same
CN109427456B (en) Magnetic compound and method for producing same
JP5163630B2 (en) Rare earth magnet and manufacturing method thereof
JP2018125512A (en) Magnet material, permanent magnet, rotary electric machine, and vehicle
WO2000026926A9 (en) Sm(Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME
JP2019160946A (en) Rare earth permanent magnet
JP6541132B2 (en) Magnetic compound, method for producing the same, and magnetic powder
JP2019040926A (en) Magnetic compound and method for manufacturing the same
JP6927906B2 (en) Rare earth magnet
JP7187791B2 (en) Alloys for rare earth magnets
JP2017166018A (en) Neodymium-iron-boron-based alloy
JP3773484B2 (en) Nano composite magnet
CN109585107B (en) Rare earth magnet
JP2022037850A (en) Magnetic material and its manufacturing method
JP2013098319A (en) METHOD FOR MANUFACTURING Nd-Fe-B MAGNET
JPH0521219A (en) Production of rare-earth permanent magnet
JP2018031047A (en) Method for producing magnetic compound
JP2016032004A (en) Magnetic material, magnetic material manufacturing method and rare-earth magnet
JP2023053819A (en) Rare earth magnet material and magnet
Hsieh et al. The effect of V and C contents on the magnetic properties and phase evolution of melt-spun SmCo7− xVxCy (x= 0–0.6; y= 0–0.1) ribbons
JP2020155437A (en) Bulk body for rare earth magnet
JP2020132927A (en) Method for producing magnetic powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190604

R151 Written notification of patent or utility model registration

Ref document number: 6541132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250