JP6304120B2 - Magnetic compound and method for producing the same - Google Patents
Magnetic compound and method for producing the same Download PDFInfo
- Publication number
- JP6304120B2 JP6304120B2 JP2015097526A JP2015097526A JP6304120B2 JP 6304120 B2 JP6304120 B2 JP 6304120B2 JP 2015097526 A JP2015097526 A JP 2015097526A JP 2015097526 A JP2015097526 A JP 2015097526A JP 6304120 B2 JP6304120 B2 JP 6304120B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal structure
- thmn
- rare earth
- compound
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/059—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
- H01F1/0593—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本発明は、異方性磁界が高くかつ飽和磁化の高いThMn12型の結晶構造を有する磁性化合物及びその製造方法に関する。 The present invention relates to a magnetic compound having a ThMn 12 type crystal structure having a high anisotropic magnetic field and a high saturation magnetization, and a method for producing the same.
永久磁石の応用はエレクトロニクス、情報通信、医療、工作機械分野、産業用・自動車用モータなど広範な分野に及んでおり、二酸化炭素排出量の抑制の要求が高まっている中、ハイブリッドカーの普及、産業分野での省エネ、発電効率の向上などで近年さらに高特性の永久磁石開発への期待が高まっている。 The application of permanent magnets extends to a wide range of fields such as electronics, information communication, medical care, machine tool fields, industrial and automotive motors, and the demand for suppression of carbon dioxide emissions is increasing. In recent years, there are increasing expectations for the development of permanent magnets with even higher characteristics due to energy savings and improved power generation efficiency in the industrial field.
現在、高性能磁石として市場を席巻しているNd−Fe−B系磁石は、HV/EHV用の駆動モータ用磁石にも使用されている。そして、昨今、モータのさらなる小型化、高出力化(磁石の残留磁化の増加)が追求されていることに対応して、新しい永久磁石材料の開発が進められている。 At present, Nd—Fe—B magnets, which are dominating the market as high-performance magnets, are also used in drive motor magnets for HV / EHV. Recently, new permanent magnet materials are being developed in response to the demand for further miniaturization and higher output of motors (increase in residual magnetization of magnets).
Nd−Fe−B系磁石を超える性能を有する材料開発の一つとして、ThMn12型結晶構造を有する希土類−鉄系磁性化合物の研究が進められている。例えば特許文献1には、R(Fe100-y-wCowTiy)xSizAv(ただし、RはYを含む希土類元素の1種又は2種以上であるとともにその50モル%以上がNd、AはN及びCの1種又は2種、x=10〜12.5、y=(8.3−1.7×z)〜12、z=0.2〜2.3、v=0.1〜3、w=0〜30)からなり、ThMn12型の結晶構造を有する相の単層組織から構成される硬質磁性組成物が提案されている。 As one of the developments of materials having performance exceeding Nd—Fe—B type magnets, research on rare earth-iron type magnetic compounds having a ThMn 12 type crystal structure is underway. For example, Patent Document 1, R (Fe 100-yw Co w Ti y) x Si z A v ( wherein, R is more than the 50 mol% with at least one rare earth element including Y is Nd , A is one or two of N and C, x = 10 to 12.5, y = (8.3-1.7 × z ) to 12 , z = 0.2 to 2.3, v = 0 1 to 3 and w = 0 to 30), and a hard magnetic composition composed of a single-layer structure of a phase having a ThMn 12 type crystal structure has been proposed.
このような現在提案されている、ThMn12型の結晶構造を有するNdFe11TiNxの組成を有する化合物では、異方性磁界は高いものの、Nd−Fe−B系磁石と比較して飽和磁化が低く、磁石材料とするまでには至っていない。 Such a currently proposed compound having a composition of NdFe 11 TiN x having a ThMn 12 type crystal structure has a high anisotropic magnetic field, but has a saturation magnetization as compared with a Nd—Fe—B magnet. It is low and has not yet been made into a magnet material.
本発明は、上記の先行技術の問題点を解決し得る、高異方性磁界と高飽和磁化を兼ね備えた磁性化合物を提供することを目的とする。 An object of the present invention is to provide a magnetic compound having both a high anisotropy magnetic field and a high saturation magnetization that can solve the above-described problems of the prior art.
上記課題を解決するため本発明によれば、以下のものが提供される。
(1)式(R(1-x)Zrx)a(Fe(1-y)Coy)bTcMdAe
(上式中、Rは1種以上の希土類元素であり、
TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素であり、
Mは不可避不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素であり、
AはN、C、H及びPからなる群より選ばれる1種以上の元素であり、
0≦x≦0.5、
0≦y≦0.6、
4≦a≦20、
b=100−a−c−d、
0<c<7、
0≦d≦1、
1≦e≦18である)
により表される磁性化合物であって、ThMn12型の結晶構造を有し、α−(Fe,Co)相の体積分率が20%以下である磁性化合物。
In order to solve the above problems, the present invention provides the following.
(1) (R (1-x) Zr x) a (Fe (1-y) Co y) b T c M d A e
(In the above formula, R is one or more rare earth elements,
T is one or more elements selected from the group consisting of Ti, V, Mo and W,
M is an inevitable impurity element and one or more elements selected from the group consisting of Al, Cr, Cu, Ga, Ag and Au,
A is one or more elements selected from the group consisting of N, C, H and P,
0 ≦ x ≦ 0.5,
0 ≦ y ≦ 0.6,
4 ≦ a ≦ 20,
b = 100-acd,
0 <c <7,
0 ≦ d ≦ 1,
1 ≦ e ≦ 18)
A magnetic compound having a ThMn 12 type crystal structure and a volume fraction of α- (Fe, Co) phase of 20% or less.
(2)前記式中、0≦x≦0.3、及び7≦e≦14である、(1)の磁性化合物。 (2) The magnetic compound of (1), wherein 0 ≦ x ≦ 0.3 and 7 ≦ e ≦ 14.
(3)前記式中、xとcの関係が、c>−38x+3.8及びc>6.3x+0.65で囲まれた領域(0<c<7、x≧0)の範囲を満たす、(1)又は(2)の磁性化合物。 (3) In the above formula, the relationship between x and c satisfies the range of the region (0 <c <7, x ≧ 0) surrounded by c> −38x + 3.8 and c> 6.3x + 0.65. Magnetic compound of 1) or (2).
(4)式(R(1-x)Zrx)a(Fe(1-y)Coy)bTcMd
(上式中、Rは1種以上の希土類元素であり、
TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素であり、
Mは不可避不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素であり、
0≦x≦0.5、
0≦y≦0.6、
4≦a≦20、
b=100−a−c−d、
0<c<7、
0≦d≦1である)
で表される組成の合金の溶湯を準備する工程と、
前記溶湯を1×102〜1×107K/secの速度で急冷する工程と、
急冷によって得られた凝固した合金を粉砕後、A元素(AはN、C、H及びPからなる群より選ばれる1種以上の元素である)を侵入させる工程、
を含む、上記磁性化合物の製造方法。
(4) (R (1-x) Zr x) a (Fe (1-y) Co y) b T c M d
(In the above formula, R is one or more rare earth elements,
T is one or more elements selected from the group consisting of Ti, V, Mo and W,
M is an inevitable impurity element and one or more elements selected from the group consisting of Al, Cr, Cu, Ga, Ag and Au,
0 ≦ x ≦ 0.5,
0 ≦ y ≦ 0.6,
4 ≦ a ≦ 20,
b = 100-acd,
0 <c <7,
0 ≦ d ≦ 1)
Preparing a molten alloy having a composition represented by:
Quenching the molten metal at a rate of 1 × 10 2 to 1 × 10 7 K / sec;
A step of intruding element A (A is one or more elements selected from the group consisting of N, C, H and P) after pulverizing the solidified alloy obtained by quenching;
The manufacturing method of the said magnetic compound containing this.
(5)前記急冷工程後、800〜1300℃にて2〜120時間熱処理を行う工程をさらに含む、(4)の方法。 (5) The method according to (4), further comprising a step of performing a heat treatment at 800 to 1300 ° C. for 2 to 120 hours after the rapid cooling step.
(6)ThMn12型の結晶構造を有する希土類元素含有磁性化合物であって、この結晶構造の格子定数aの範囲が0.850nm〜0.875nmであり、格子定数cの範囲が0.480nm〜0.505nmであり、格子体積の範囲が0.351nm3〜0.387nm3であり、ここでヘキサゴンA、B、Cを
A:希土類原子を中心としたFe(8i)とFe(8j)サイトで構成される6員環、
B:Fe(8i)−Fe(8i)ダンベルを中心とした、Fe(8i)とFe(8j)サイトで構成される6員環、
C:Fe(8i)−希土類原子の線上を中心としたFe(8j)とFe(8f)サイトで構成される6員環
と定義したときに、ヘキサゴンAのa軸方向長さ:Hex(A)が0.611nmより小さく、またFe−Fe間の平均距離が、Fe(8i)においては0.254nm〜0.288nmであり、Fe(8j)においては0.242nm〜0.276nmであり、Fe(8f)においては0.234nm〜0.268nmである磁性化合物。
(6) A rare earth element-containing magnetic compound having a ThMn 12 type crystal structure, wherein the crystal structure has a lattice constant a in the range of 0.850 nm to 0.875 nm and a lattice constant c in the range of 0.480 nm to 0.505 nm, and the lattice volume range is 0.351 nm 3 to 0.387 nm 3 , where hexagons A, B, and C are A: Fe (8i) and Fe (8j) sites centered on rare earth atoms. 6-membered ring composed of
B: A six-membered ring composed of Fe (8i) and Fe (8j) sites centered on Fe (8i) -Fe (8i) dumbbells,
C: Fe (8i) —the length in the a-axis direction of hexagon A when defined as a six-membered ring composed of Fe (8j) and Fe (8f) sites centered on the rare earth atom line: Hex (A ) Is smaller than 0.611 nm, and the average distance between Fe and Fe is 0.254 nm to 0.288 nm in Fe (8i) and 0.242 nm to 0.276 nm in Fe (8j). Magnetic compound which is 0.234 nm to 0.268 nm in Fe (8f).
(7)式(R(1-x)Zrx)a(Fe(1-y)Coy)bTcMdAe
(上式中、Rは1種以上の希土類元素であり、
TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素であり、
Mは不可避不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素であり、
AはN、C、H及びPからなる群より選ばれる1種以上の元素であり、
0≦x≦0.5、
0≦y≦0.7、
4≦a≦20、
b=100−a−c−d、
0<c≦7、
0≦d≦1、
1≦e≦18である)
により表される化合物からなる磁性紛体であって、ThMn12型の結晶構造を有し、α−(Fe,Co)相の体積分率が20%以下である磁性紛体。
(7) (R (1-x) Zr x) a (Fe (1-y) Co y) b T c M d A e
(In the above formula, R is one or more rare earth elements,
T is one or more elements selected from the group consisting of Ti, V, Mo and W,
M is an inevitable impurity element and one or more elements selected from the group consisting of Al, Cr, Cu, Ga, Ag and Au,
A is one or more elements selected from the group consisting of N, C, H and P,
0 ≦ x ≦ 0.5,
0 ≦ y ≦ 0.7,
4 ≦ a ≦ 20,
b = 100-acd,
0 <c ≦ 7,
0 ≦ d ≦ 1,
1 ≦ e ≦ 18)
And a magnetic powder having a ThMn 12 type crystal structure and an α- (Fe, Co) phase volume fraction of 20% or less.
本発明によれば、ThMn12型の結晶構造を有する、式(R(1-x)Zrx)a(Fe(1-y)Coy)bTcMdAeにより表される化合物において、T量を減らすことによりFe、Coの磁性元素の比率が上昇し、磁化が向上する。また製造過程において溶湯の冷却速度を調整することにより、冷却の際に析出するα−(Fe,Co)相を減らし、ThMn12型の結晶を多く析出させることにより磁化を向上させることができる。さらに上記(6)に規定のサイズとすることにより、各ヘキサゴンのサイズバランスが向上し、安定してThMn12型の結晶構造を組むことができる。 According to the present invention, in a compound represented by the formula (R (1-x) Zr x ) a (Fe (1-y) Co y ) b T c M d A e having a ThMn 12 type crystal structure By reducing the amount of T, the ratio of the magnetic elements of Fe and Co increases, and the magnetization improves. In addition, by adjusting the cooling rate of the molten metal during the manufacturing process, the α- (Fe, Co) phase precipitated during cooling can be reduced, and a large amount of ThMn 12 type crystals can be precipitated to improve the magnetization. Further, by setting the size as defined in (6) above, the size balance of each hexagon can be improved, and a ThMn 12 type crystal structure can be assembled stably.
以下、本発明に係る磁性化合物について詳細に説明する。本発明の磁性化合物は下式
(R(1-x)Zrx)a(Fe(1-y)Coy)bTcMdAe
により表される化合物であり、各構成成分について以下に説明する。
Hereinafter, the magnetic compound according to the present invention will be described in detail. The magnetic compound of the present invention has the following formula
(R (1-x) Zr x ) a (Fe (1-y) Co y ) b T c M d A e
Each component will be described below.
(R)
Rは希土類元素であり、永久磁石特性を発現するために本発明の磁性化合物に必須の成分である。Rは具体的には、Y、La、Ce、Pr、Nd、Sm、Euより選ばれる1種以上の元素であり、Pr、Nd、Smを用いることが好ましい。Rの配合量aは4原子%以上、20原子%以下とする。4原子%未満ではFe相の析出が顕著になり、熱処理後にFe相の体積分率を下げることができず、20原子%超では粒界相が多すぎるため、磁化が向上しないからである。
(R)
R is a rare earth element and is an essential component of the magnetic compound of the present invention in order to exhibit permanent magnet characteristics. Specifically, R is one or more elements selected from Y, La, Ce, Pr, Nd, Sm, and Eu, and it is preferable to use Pr, Nd, and Sm. The blending amount a of R is 4 atomic% or more and 20 atomic% or less. If the content is less than 4 atomic%, the precipitation of the Fe phase becomes prominent, and the volume fraction of the Fe phase cannot be lowered after the heat treatment. If the content exceeds 20 atomic%, the grain boundary phase is too much and the magnetization is not improved.
(Zr)
Zrは、希土類元素の一部を置換して、ThMn12型の結晶相の安定化に有効である。すなわち、Zr元素はThMn12型結晶内のR元素と置換し、結晶格子の収縮を生じる。これにより、合金を高温度に上げたり、窒素原子などを結晶格子ないに侵入させた場合に、ThMn12型結晶相を安定に維持する作用がある。一方、磁気特性面ではR元素に由来する強い磁気異方性をZr置換によって薄めるため、結晶の安定性と磁気特性の面でZr量を決める必要がある。ただし、本発明においてはZrの添加は必須ではない。Zr量が0の場合には、合金の成分組成の調整と熱処理等によってThMn12型結晶相の安定化を図ることができ、異方性磁界が高まる。ただし、Zrの置換量が0.5を超えると異方性磁界は著しく低下してしまう。Zr量xは、好ましくは0≦x≦0.3である。
(Zr)
Zr is effective for stabilizing a ThMn 12 type crystal phase by substituting a part of the rare earth element. That is, the Zr element substitutes for the R element in the ThMn 12 type crystal, and the crystal lattice contracts. Thereby, when the alloy is raised to a high temperature or when nitrogen atoms or the like are penetrated into the crystal lattice, the ThMn 12 type crystal phase is stably maintained. On the other hand, in terms of magnetic characteristics, strong magnetic anisotropy derived from the R element is thinned by Zr substitution, so that it is necessary to determine the amount of Zr in terms of crystal stability and magnetic characteristics. However, addition of Zr is not essential in the present invention. When the amount of Zr is 0, the ThMn 12 -type crystal phase can be stabilized by adjusting the alloy composition and heat treatment, and the anisotropic magnetic field is increased. However, if the amount of Zr substitution exceeds 0.5, the anisotropic magnetic field is significantly reduced. The Zr amount x is preferably 0 ≦ x ≦ 0.3.
(T)
TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素である。図1に、RFe12-xTx化合物におけるT元素の安定化領域を示すが(出典:K.H.J. Buschow, Rep. Prog. Phys. 54, 1123 (1991))、R−Feの2元系合金に第3の元素としてTi、V、Mo、Wを添加することによりThMn12型の結晶構造が安定化され、優れた磁気特性を示すことが知られている。
(T)
T is one or more elements selected from the group consisting of Ti, V, Mo and W. Fig. 1 shows the stabilization region of T element in RFe 12-x T x compound (Source: KHJ Buschow, Rep. Prog. Phys. 54, 1123 (1991)). It is known that the addition of Ti, V, Mo, and W as the third element stabilizes the ThMn 12 type crystal structure and exhibits excellent magnetic properties.
従来、このT成分の安定化効果を得るため、必要量以上に多量に合金に添加することでThMn12型の結晶構造を形成させていたため、合金中の化合物を構成するFe成分の含有率が低くなり、かつ最も磁化に影響するFe原子の占有サイトが例えばTi原子に置き換わり、全体の磁化を低下させていた。磁化を向上させるためにはTiの配合量を低下させればよいが、その場合、ThMn12型の結晶構造の安定化が損なわれてしまう。従来のRFe12-xTix化合物としてRFe11Tiは報告されているが、xが1未満である、すなわちTiが7原子%未満である化合物は報告されていなかった。 Conventionally, in order to obtain the stabilization effect of the T component, a ThMn 12 type crystal structure has been formed by adding it to the alloy in a larger amount than necessary, so that the content of the Fe component constituting the compound in the alloy is The occupied sites of Fe atoms which are lowered and most affect the magnetization are replaced with, for example, Ti atoms, and the overall magnetization is lowered. In order to improve the magnetization, the amount of Ti should be reduced, but in this case, stabilization of the ThMn 12 type crystal structure is impaired. RFe 11 Ti has been reported as a conventional RFe 12-x Ti x compound, but no compound in which x is less than 1, that is, Ti is less than 7 atomic% has been reported.
ThMn12型の結晶構造を安定化させているTiを減らすと、ThMn12型の結晶構造の安定化が損なわれ、異方性磁界又は保磁力の障害となるα−(Fe,Co)が析出してしまう。本発明は、合金溶湯の冷却速度を制御することにより、α−(Fe,Co)の析出量を抑制し、化合物中のα−(Fe,Co)相の体積分率を一定以下とすることにより、T成分の配合量を低下させても高い磁気特性を持つThMn12相を安定生成させることを可能とした。 When Ti that stabilizes the ThMn 12 type crystal structure is reduced, the stabilization of the ThMn 12 type crystal structure is impaired, and α- (Fe, Co) which is an obstacle to the anisotropic magnetic field or coercive force is precipitated. Resulting in. In the present invention, by controlling the cooling rate of the molten alloy, the precipitation amount of α- (Fe, Co) is suppressed, and the volume fraction of the α- (Fe, Co) phase in the compound is kept below a certain level. This makes it possible to stably produce a ThMn 12 phase having high magnetic properties even when the blending amount of the T component is reduced.
T成分の配合量は、RFe12-xTix化合物においてxを1未満とする量、すなわち7原子%未満である。7原子%以上とすると、化合物を構成するFe成分の含有率が低くなり、全体の磁化を低下してしまう。 The compounding amount of the T component is an amount that makes x less than 1 in the RFe 12-x Ti x compound, that is, less than 7 atomic%. When the content is 7 atomic% or more, the content of the Fe component constituting the compound is lowered, and the entire magnetization is lowered.
本発明の式
(R(1-x)Zrx)a(Fe(1-y)Coy)bTcMdAe
により表される化合物において、Zr量xとT量cの関係は、c>−38x+3.8及びc>6.3x+0.65で囲まれた領域(0<c<7、x≧0)の範囲を満たすものであることが好ましい。
Formula of the present invention
(R (1-x) Zr x ) a (Fe (1-y) Co y ) b T c M d A e
In the compound represented by the following formula, the relationship between the Zr amount x and the T amount c is in the range (0 <c <7, x ≧ 0) surrounded by c> −38x + 3.8 and c> 6.3x + 0.65. It is preferable that
(M)
Mは不可避不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素である。この不可避不純物元素とは、原料に入ってしまう元素や、製造工程で混入してしまう元素を意味し、具体的にはSiやMnが挙げられる。MはThMn12型の結晶の粒成長の抑制や、ThMn12型の結晶以外の相(例えば粒界相)の粘性、融点に寄与するが、本発明においては必須ではない。Mの配合量dは、1原子%未満とする。1原子%超では、合金中の化合物を構成するFe成分の含有率が低くなり、全体の磁化を低下してしまう。
(M)
M is an inevitable impurity element and one or more elements selected from the group consisting of Al, Cr, Cu, Ga, Ag, and Au. This inevitable impurity element means an element that enters a raw material or an element that is mixed in a manufacturing process, and specifically includes Si and Mn. M is suppressed and the grain growth of the 12-inch ThMn crystals, the viscosity of the phase other than the crystal of 12 inch ThMn (e.g. grain boundary phase), contributes to the melting point, it is not essential in the present invention. The compounding amount d of M is less than 1 atomic%. If it exceeds 1 atomic%, the content of the Fe component constituting the compound in the alloy will be low, and the overall magnetization will be reduced.
(A)
AはN、C、H及びPからなる群より選ばれる1種以上の元素である。AはThMn12相の結晶格子内に侵入することによりThMn12相の格子を拡大させ、異方性磁界、飽和磁化の両特性を向上させることができる。Aの配合量eは1原子%以上、18原子%以下である。1原子%未満では効果を発揮することができず、18原子%超では合金中の化合物を構成するFe成分の含有率が低くなるとともに、ThMn12相の安定性が損なわれて一部が分解し、全体の磁化を低下してしまう。Aの量eは、好ましくは7≦e≦14である。
(A)
A is one or more elements selected from the group consisting of N, C, H and P. A can is enlarged grating ThMn 12 phase by entering the crystal lattice of ThMn 12 phase, the anisotropic magnetic field to improve the both characteristics of the saturation magnetization. The blending amount e of A is 1 atomic% or more and 18 atomic% or less. If it is less than 1 atomic%, the effect cannot be exhibited, and if it exceeds 18 atomic%, the content of the Fe component constituting the compound in the alloy becomes low, and the stability of the ThMn 12 phase is impaired and partly decomposed. As a result, the overall magnetization is lowered. The amount e of A is preferably 7 ≦ e ≦ 14.
(Fe及びCo)
本発明の化合物は、上記元素以外をFeとするが、Feの一部をCoで置換してもよい。CoはFeと置換することにより、スレーターポーリング則により、自発磁化の増大を生じ、異方性磁界、飽和磁化の両特性を向上させることができる。しかし、Coの置換量が0.6を超えると、効果を発揮することができない。また、FeをCoで置換することによって化合物のキューリー点が上昇するために、高温度での磁化の低下を抑制する効果がある。
(Fe and Co)
In the compound of the present invention, Fe other than the above elements is Fe, but a part of Fe may be substituted with Co. When Co is replaced with Fe, the spontaneous magnetization is increased by the Slater poling rule, and both the anisotropic magnetic field and the saturation magnetization can be improved. However, when the substitution amount of Co exceeds 0.6, the effect cannot be exhibited. Moreover, since the Curie point of the compound is increased by substituting Fe with Co, there is an effect of suppressing a decrease in magnetization at a high temperature.
本発明の磁性化合物は、上記の式により表され、ThMn12型の結晶構造を有することを特徴とする。このThMn12型の結晶構造は正方晶であり、XRD測定結果において2θの値はそれぞれ、29.801、36.554、42.082、42.368、43.219°(±0.5°)であるピークを示すものである。さらに、本発明の磁性化合物は、α−(Fe,Co)相の体積分率が20%以下であることを特徴とする。なお、この体積分率は、サンプルを樹脂埋め研磨し、OM又はSEM−EDXで観察し、画像解析により断面におけるα−(Fe,Co)相の面積率により算出した。ここで組織がランダムで配向していないと仮定すると、平均面積率Aと体積率Vの間には以下の関係式が成立する。
A≒V
そこで、本発明では、このように測定したα−(Fe,Co)相の面積率を体積分率とした。
The magnetic compound of the present invention is represented by the above formula and has a ThMn 12 type crystal structure. This ThMn 12 type crystal structure is a tetragonal crystal, and in the XRD measurement results, the values of 2θ show peaks of 29.801, 36.554, 42.082, 42.368 and 43.219 ° (± 0.5 °), respectively. Furthermore, the magnetic compound of the present invention is characterized in that the volume fraction of the α- (Fe, Co) phase is 20% or less. The volume fraction was calculated from the area ratio of the α- (Fe, Co) phase in the cross-section by image analysis after the sample was resin-filled and polished, observed with OM or SEM-EDX. Assuming that the structure is random and not oriented, the following relational expression is established between the average area ratio A and the volume ratio V.
A ≒ V
Therefore, in the present invention, the area ratio of the α- (Fe, Co) phase measured in this way is defined as the volume fraction.
以上のように、本発明の磁性化合物は、従来のRFe11Ti型化合物と比較してT成分を減少させることにより磁化を向上させることができ、またα−(Fe,Co)相の体積分率を少なくすることにより、異方性磁界、飽和磁化の両特性を著しく向上させることができる。 As described above, the magnetic compound of the present invention can improve the magnetization by reducing the T component as compared with the conventional RFe 11 Ti type compound, and the volume fraction of the α- (Fe, Co) phase. By reducing the rate, both the anisotropic magnetic field and saturation magnetization characteristics can be significantly improved.
(製造方法)
本発明の磁性化合物は、基本的には金型鋳造法やアーク溶解法などの従来の製造方法により製造することができるが、従来の方法では、ThMn12相以外の安定相(α−(Fe,Co)相)が多く析出してしまい、異方性磁界、飽和磁化を低下させてしまう。ここで
ThMn12型結晶が析出する温度<α−(Fe,Co)が析出する温度
であることに着目し、本発明では合金の溶湯を1×102〜1×107K/secの速度で急冷することにより、α−(Fe,Co)が析出する温度付近に長くとどまらないようにしてα−(Fe,Co)の析出を低減させ、ThMn12型結晶を多く生じさせるようにしている。
(Production method)
The magnetic compound of the present invention can basically be produced by a conventional production method such as a mold casting method or an arc melting method, but in the conventional method, a stable phase other than the ThMn 12 phase (α- (Fe , Co) phase) is precipitated in a large amount, and the anisotropic magnetic field and saturation magnetization are lowered. Here, attention is paid to the fact that the temperature at which the ThMn 12 type crystal is precipitated <the temperature at which α- (Fe, Co) is precipitated. In the present invention, the molten alloy is melted at a rate of 1 × 10 2 to 1 × 10 7 K / sec. By rapidly quenching, the precipitation of α- (Fe, Co) is reduced so as not to stay long near the temperature at which α- (Fe, Co) precipitates, and many ThMn 12 type crystals are generated. .
冷却法としては、例えば図2に示すような装置10を用い、ストリップキャスト法によって所定の速度で冷却することができる。この装置10において、溶解炉11において合金原料が溶解され、式(R(1-x)Zrx)a(Fe(1-y)Coy)bTcMdで表される組成の合金の溶湯12が準備される。なお、上記式中、TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素であり、Mは不可避不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素であり、0≦x≦0.5、0≦y≦0.6、4≦a≦20、b=100−a−c−d、0<c<7、0≦d≦1である。この溶湯12はタンディッシュ13に一定の供給量で供給される。タンディッシュ13に供給された溶湯12は、タンディッシュ13の端部から自重によって冷却ロール14に供給される。 As a cooling method, for example, an apparatus 10 as shown in FIG. 2 can be used, and cooling can be performed at a predetermined speed by a strip casting method. In this apparatus 10, the melting furnace 11 alloy materials are dissolved in the formula (R (1-x) Zr x) a (Fe (1-y) Co y) of b T c M d an alloy of composition expressed A molten metal 12 is prepared. In the above formula, T is one or more elements selected from the group consisting of Ti, V, Mo and W, and M is an inevitable impurity element and a group consisting of Al, Cr, Cu, Ga, Ag and Au. One or more selected elements, 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.6, 4 ≦ a ≦ 20, b = 100−ac−d, 0 <c <7, 0 ≦ d ≦ 1. The molten metal 12 is supplied to the tundish 13 at a constant supply amount. The molten metal 12 supplied to the tundish 13 is supplied from the end of the tundish 13 to the cooling roll 14 by its own weight.
ここでタンディッシュ13は、セラミックス等で構成され、溶解炉11から所定の流量で連続的に供給される溶湯12を一時的に貯湯し、冷却ロール14への溶湯12の流れを整流することができる。また、タンディッシュ13は、冷却ロール14に達する直前の溶湯12の温度を調整する機能をも有する。 Here, the tundish 13 is made of ceramics or the like, temporarily stores the molten metal 12 continuously supplied from the melting furnace 11 at a predetermined flow rate, and rectifies the flow of the molten metal 12 to the cooling roll 14. it can. The tundish 13 also has a function of adjusting the temperature of the molten metal 12 immediately before reaching the cooling roll 14.
冷却ロール14は、銅やクロムなどの熱伝導性の高い材料から形成されており、ロール表面は高温の溶湯との浸食を防止するためにクロムメッキ等が施される。このロールは、図示していない駆動装置により所定の回転速度で矢印方向に回転することができる。この回転速度を制御することにより、溶湯の冷却速度を1×102〜1×107K/secの速度に制御することができる。 The cooling roll 14 is made of a material having high thermal conductivity such as copper or chromium, and the roll surface is subjected to chromium plating or the like in order to prevent erosion with a high-temperature molten metal. This roll can be rotated in the direction of the arrow at a predetermined rotational speed by a driving device (not shown). By controlling this rotational speed, the cooling rate of the molten metal can be controlled to a speed of 1 × 10 2 to 1 × 10 7 K / sec.
冷却ロール14の外周上で冷却され、凝固された合金溶湯12は、薄片状の凝固合金15となって冷却ロール14から剥離し、粉砕されて回収装置において回収される。 The molten alloy 12 cooled and solidified on the outer periphery of the cooling roll 14 becomes a flake-like solidified alloy 15 which is peeled off from the cooling roll 14 and pulverized and collected in a collecting device.
さらに本発明においては、上記工程で得られた粒子を、800〜1300℃にて2〜120時間熱処理を行う工程を含んでもよい。この熱処理によりThMn12相が均質化され、異方性磁界、飽和磁化の両特性がさらに向上する。 Furthermore, in this invention, you may include the process of heat-processing the particle | grains obtained at the said process at 800-1300 degreeC for 2-120 hours. By this heat treatment, the ThMn 12 phase is homogenized, and both the anisotropic magnetic field and saturation magnetization characteristics are further improved.
回収された合金に、粉砕後、A元素(AはN、C、H及びPからなる群より選ばれる1種以上の元素である)を侵入させる。具体的には、A元素として窒素を用いる場合、窒素ガスやアンモニアガス等を窒素源として用い、温度を200〜600℃で1〜24時間熱処理を行い、窒化させる。A元素として炭素を用いる場合、C2H2(CH4、C3H8、CO)ガス、もしくはメタノールの加熱分解ガスを炭素源として用い、300〜600℃で1〜24時間熱処理を行い、炭化させる。その他、カーボン粉末を用いた固体浸炭や、KCN、NaCNを用いる溶融塩浸炭を行うこともできる。H及びPについても、通常の水素化及びリン化を行うことができる。 After the pulverization, the recovered alloy is intruded with an element A (A is one or more elements selected from the group consisting of N, C, H and P). Specifically, when nitrogen is used as the element A, nitrogen gas, ammonia gas, or the like is used as a nitrogen source, and heat treatment is performed at a temperature of 200 to 600 ° C. for 1 to 24 hours for nitriding. When carbon is used as the A element, C 2 H 2 (CH 4 , C 3 H 8 , CO) gas or methanol thermal decomposition gas is used as a carbon source, and heat treatment is performed at 300 to 600 ° C. for 1 to 24 hours. Carbonize. In addition, solid carburization using carbon powder and molten salt carburization using KCN or NaCN can also be performed. H and P can also be subjected to normal hydrogenation and phosphation.
(結晶構造)
本発明の磁性化合物は、図3に示すようなThMn12型の正方晶系の結晶構造を有する希土類元素含有磁性化合物である。そして、この結晶構造の格子定数aの範囲が0.850nm〜0.875nmであり、格子定数cの範囲が0.480nm〜0.505nmであり、格子体積の範囲が0.351nm3〜0.387nm3である。さらに、図4及び図5に示すようにここでヘキサゴンA、B、Cを
A:希土類原子を中心としたFe(8i)とFe(8j)サイトで構成される6員環(図4(a)及び図5(a))、
B:Fe(8i)−Fe(8i)ダンベルを中心とした、Fe(8i)とFe(8j)サイトで構成される6員環(図4(b)及び図5(a))、
C:Fe(8i)−希土類原子の線上を中心としたFe(8j)とFe(8f)サイトで構成される6員環(図4(c)及び図5(b))
と定義したときに、ヘキサゴンAのa軸方向長さ:Hex(A)が0.611nmより小さく、またFe−Fe間の平均距離が、Fe(8i)においては0.254nm〜0.288nmであり、Fe(8j)においては0.242nm〜0.276nmであり、Fe(8f)においては0.234nm〜0.268nmである磁性化合物である。
(Crystal structure)
The magnetic compound of the present invention is a rare earth element-containing magnetic compound having a ThMn 12 type tetragonal crystal structure as shown in FIG. The range of the lattice constant a of this crystal structure is 0.850 nm to 0.875 nm, the range of the lattice constant c is 0.480 nm to 0.505 nm, and the range of the lattice volume is 0.351 nm 3 to 0. 387 nm 3 . Further, as shown in FIGS. 4 and 5, hexagons A, B, and C are represented by A: a six-membered ring composed of Fe (8i) and Fe (8j) sites centered on rare earth atoms (FIG. 4 (a ) And FIG. 5 (a)),
B: 6-membered ring composed of Fe (8i) and Fe (8j) sites centered on Fe (8i) -Fe (8i) dumbbells (FIGS. 4B and 5A),
C: Fe (8i) —6-membered ring composed of Fe (8j) and Fe (8f) sites centered on the rare earth atom line (FIGS. 4C and 5B)
The length in the a-axis direction of Hexagon A: Hex (A) is smaller than 0.611 nm, and the average distance between Fe and Fe is 0.254 nm to 0.288 nm in Fe (8i). The magnetic compound is 0.242 nm to 0.276 nm in Fe (8j) and 0.234 nm to 0.268 nm in Fe (8f).
図6に示すように、従来の磁性化合物に対して、本発明の磁性化合物は安定化元素であるT(例えばTi)が少なく、原子半径の大きなTiからFeに置換することにより、ヘキサゴンAの形状や寸法バランスが悪くなるが、これをNdよりも原子半径の小さなZrで補うことにより調整している。 As shown in FIG. 6, compared with the conventional magnetic compound, the magnetic compound of the present invention has less stabilizing element T (for example, Ti), and by replacing Ti with a large atomic radius with Fe, the hexagon A Although the shape and dimensional balance are deteriorated, this is adjusted by supplementing this with Zr having an atomic radius smaller than that of Nd.
さらに本発明の磁性紛体は、下式
(R(1-x)Zrx)a(Fe(1-y)Coy)bTcMdAe
により表され、上式中、Rは1種以上の希土類元素であり、
TはTi、V、Mo及びWからなる群より選ばれる1種以上の元素であり、
Mは不可避不純物元素並びにAl、Cr、Cu、Ga、Ag及びAuからなる群より選ばれる1種以上の元素であり、
AはN、C、H及びPからなる群より選ばれる1種以上の元素であり、
0≦x≦0.5、
0≦y≦0.7、
4≦a≦20、
b=100−a−c−d、
0<c≦7、
0≦d≦1、
1≦e≦18であり、
ThMn12型の結晶構造を有し、α−(Fe,Co)相の体積分率が20%以下であることを特徴とする。
Furthermore, the magnetic powder of the present invention has the following formula:
(R (1-x) Zr x ) a (Fe (1-y) Co y ) b T c M d A e
Wherein R is one or more rare earth elements,
T is one or more elements selected from the group consisting of Ti, V, Mo and W,
M is an inevitable impurity element and one or more elements selected from the group consisting of Al, Cr, Cu, Ga, Ag and Au,
A is one or more elements selected from the group consisting of N, C, H and P,
0 ≦ x ≦ 0.5,
0 ≦ y ≦ 0.7,
4 ≦ a ≦ 20,
b = 100-acd,
0 <c ≦ 7,
0 ≦ d ≦ 1,
1 ≦ e ≦ 18,
It has a ThMn 12 type crystal structure, and the volume fraction of the α- (Fe, Co) phase is 20% or less.
実施例1〜5及び比較例2〜5
以下の表1に示す組成の化合物の作製を目的とした合金の溶湯を準備し、ストリップキャスト法により、104K/secの速度で急冷し、急冷薄片を作製し、Ar雰囲気において1200℃、4時間熱処理を実施した。次いでAr雰囲気においてカッターミルを用いて薄片を粉砕し、粒径30〜75μmの粒子を回収した。得られた粒子のSEM像(反射電子像)から、α−(Fe,Co)相の大きさ及び面積率を測定し、また、面積率=体積率として体積率を算出した。次いで得られた粒子を、純度99.99%の窒素ガス中において、450℃にて4時間窒化を行った。得られた粒子の磁気特性評価(VSM)及び結晶構造解析(XRD)を実施し、さらに、図13のグラフに基づいて、SEM像から測定した、窒化前のサンプル中のα−(Fe,Co)相の大きさと窒化後のサンプル中のα−(Fe,Co)相の体積分率の関係を示すグラフから、窒化後のα−(Fe,Co)相の体積分率を算出した。結果を表1並びに図7及び図8に示す。
Examples 1-5 and Comparative Examples 2-5
A molten alloy was prepared for the purpose of producing a compound having the composition shown in Table 1 below, and quenched by a strip casting method at a rate of 10 4 K / sec to produce a quenched flake. Heat treatment was performed for 4 hours. Next, the flakes were pulverized using a cutter mill in an Ar atmosphere, and particles having a particle size of 30 to 75 μm were collected. From the SEM image (reflection electron image) of the obtained particles, the size and area ratio of the α- (Fe, Co) phase were measured, and the volume ratio was calculated as area ratio = volume ratio. Next, the obtained particles were nitrided at 450 ° C. for 4 hours in nitrogen gas having a purity of 99.99%. The magnetic characteristics evaluation (VSM) and crystal structure analysis (XRD) of the obtained particles were carried out, and α- (Fe, Co in the sample before nitriding measured from the SEM image based on the graph of FIG. ) The volume fraction of the α- (Fe, Co) phase after nitriding was calculated from a graph showing the relationship between the phase size and the volume fraction of the α- (Fe, Co) phase in the sample after nitriding. The results are shown in Table 1 and FIGS.
比較例1
以下の表1に示す組成の化合物の作製を目的とした合金の溶湯を準備し、ストリップキャスト法により、104K/secの速度で急冷し、急冷薄片を作製し、水素化脆化した合金をAr雰囲気においてカッターミルを用いて粉砕し、粒径30μm以下の粒子を回収した。得られた粒子を磁場中において成型し、1050℃にて3時間焼結し、次いで900℃で1時間、さらに600℃で1時間熱処理を施した。得られた磁石の磁気特性評価(VSM)及び結晶構造解析(XRD)を実施し、結果を表1並びに図7及び図8に示す。
Comparative Example 1
An alloy melt prepared for the purpose of producing a compound having the composition shown in Table 1 below, quenched by a strip casting method at a rate of 10 4 K / sec, produced a quenched flake, and hydrogenated embrittled alloy Was pulverized using a cutter mill in an Ar atmosphere, and particles having a particle size of 30 μm or less were recovered. The obtained particles were molded in a magnetic field, sintered at 1050 ° C. for 3 hours, and then heat treated at 900 ° C. for 1 hour and further at 600 ° C. for 1 hour. Magnetic property evaluation (VSM) and crystal structure analysis (XRD) of the obtained magnet were carried out, and the results are shown in Table 1 and FIGS.
表1並びに図7及び図8に示す結果から明らかなように、Ti量を7at%未満とすることにより、飽和磁化が向上し(特に高温における)、NdFeB磁石を上回る異方性磁界と飽和磁化が発現した(実施例1〜5)。また、Coを添加することによって飽和磁化の上昇が、特に高温においても観察された(実施例1と2の比較)。 As is apparent from the results shown in Table 1 and FIGS. 7 and 8, the saturation magnetization is improved (particularly at high temperatures) by making the Ti amount less than 7 at%, and the anisotropic magnetic field and saturation magnetization exceed those of the NdFeB magnet. Was expressed (Examples 1 to 5). In addition, an increase in saturation magnetization was observed even when Co was added (particularly, comparison between Examples 1 and 2).
実施例6及び7
以下の表2に示す組成の化合物の作製を目的とした合金の溶湯を準備し、ストリップキャスト法により、104K/secの速度で急冷し、急冷薄片を作製した。実施例7においてはその後、Ar雰囲気において1200℃、4時間熱処理を実施した。次いでAr雰囲気においてカッターミルを用いて薄片を粉砕し、粒径30〜75μmの粒子を回収した。得られた粒子について、実施例1と同様にして、α−(Fe,Co)相の大きさ及び面積率を測定し、体積率を算出した。次いで、得られた粒子を、純度99.99%の窒素ガス中において、450℃にて4時間窒化を行った。得られた粒子の磁気特性評価(VSM)及び結晶構造解析(XRD)を実施し、さらに、実施例1と同様にして窒化後のα−(Fe,Co)相の体積分率を算出した。結果を表2並びに図9及び図10に示す。
Examples 6 and 7
A melt of an alloy intended to produce a compound having the composition shown in Table 2 below was prepared and quenched at a rate of 10 4 K / sec by a strip casting method to produce a quenched flake. In Example 7, heat treatment was then performed in an Ar atmosphere at 1200 ° C. for 4 hours. Next, the flakes were pulverized using a cutter mill in an Ar atmosphere, and particles having a particle size of 30 to 75 μm were collected. About the obtained particle | grains, it carried out similarly to Example 1, the magnitude | size and area ratio of the alpha- (Fe, Co) phase were measured, and the volume ratio was computed. Next, the obtained particles were nitrided at 450 ° C. for 4 hours in nitrogen gas having a purity of 99.99%. Magnetic property evaluation (VSM) and crystal structure analysis (XRD) of the obtained particles were performed, and the volume fraction of the α- (Fe, Co) phase after nitriding was calculated in the same manner as in Example 1. The results are shown in Table 2 and FIGS.
比較例6〜10
以下の表2に示す組成の化合物の作製を目的とした合金をアーク溶解し、50K/secの速度で冷却し、薄片を作製した。比較例7、8及び10においてはその後、Ar雰囲気において1100℃、4時間熱処理を実施した。次いでAr雰囲気においてカッターミルを用いて薄片を粉砕し、粒径30〜75μmの粒子を回収した。得られた粒子を、純度99.99%の窒素ガス中において、450℃にて4時間窒化を行った。得られた粒子の磁気特性評価(VSM)及び結晶構造解析(XRD)を実施し、実施例1と同様にして測定したα−(Fe,Co)相の大きさ及び体積分率の測定結果とともに、結果を表2並びに図9及び図10に示す。
Comparative Examples 6-10
An alloy intended to produce a compound having the composition shown in Table 2 below was arc-melted and cooled at a rate of 50 K / sec to produce a flake. In Comparative Examples 7, 8, and 10, heat treatment was then performed at 1100 ° C. for 4 hours in an Ar atmosphere. Next, the flakes were pulverized using a cutter mill in an Ar atmosphere, and particles having a particle size of 30 to 75 μm were collected. The obtained particles were nitrided at 450 ° C. for 4 hours in nitrogen gas having a purity of 99.99%. The magnetic property evaluation (VSM) and crystal structure analysis (XRD) of the obtained particles were carried out, together with the measurement results of the α- (Fe, Co) phase size and volume fraction measured in the same manner as in Example 1. The results are shown in Table 2 and FIGS.
比較例11及び12
以下の表2に示す組成の化合物の作製を目的とした合金の溶湯を準備し、ストリップキャスト法により、104K/secの速度で急冷し、急冷薄片を作製した。比較例12においてはその後、Ar雰囲気において1100℃、4時間熱処理を実施した。次いでAr雰囲気においてカッターミルを用いて薄片を粉砕し、粒径30〜75μmの粒子を回収した。得られた粒子を、純度99.99%の窒素ガス中において、450℃にて4時間窒化を行った。得られた粒子の磁気特性評価(VSM)及び結晶構造解析(XRD)を実施し、実施例1と同様にして測定したα−(Fe,Co)相の大きさ及び体積分率の測定結果とともに、結果を表2並びに図9及び図10に示す。
Comparative Examples 11 and 12
A melt of an alloy intended to produce a compound having the composition shown in Table 2 below was prepared and quenched at a rate of 10 4 K / sec by a strip casting method to produce a quenched flake. In Comparative Example 12, heat treatment was then performed at 1100 ° C. for 4 hours in an Ar atmosphere. Next, the flakes were pulverized using a cutter mill in an Ar atmosphere, and particles having a particle size of 30 to 75 μm were collected. The obtained particles were nitrided at 450 ° C. for 4 hours in nitrogen gas having a purity of 99.99%. The magnetic property evaluation (VSM) and crystal structure analysis (XRD) of the obtained particles were carried out, together with the measurement results of the α- (Fe, Co) phase size and volume fraction measured in the same manner as in Example 1. The results are shown in Table 2 and FIGS.
図11には、実施例6及び7並びに比較例8で得られた粒子の反射電子像を示すが、アーク溶解を行った比較例8では、Feが大きく析出し、組織が不均質であるのに対し、急冷した実施例では、EPMAでは組織の偏析は確認されなかった。また、図12には、実施例6及び7並びに比較例8で得られた粒子のXRD結果を示すが、比較例8(アーク溶解)→実施例6(急冷)→実施例7(急冷+均質化熱処理)の順でα−Feのピーク強度が低下していくことがわかる。 FIG. 11 shows reflected electron images of the particles obtained in Examples 6 and 7 and Comparative Example 8. In Comparative Example 8 in which arc melting was performed, Fe was largely precipitated and the structure was inhomogeneous. On the other hand, in the rapidly cooled example, no segregation of the structure was confirmed by EPMA. FIG. 12 shows XRD results of the particles obtained in Examples 6 and 7 and Comparative Example 8. Comparative Example 8 (arc melting) → Example 6 (quenching) → Example 7 (quenching + homogeneous) It can be seen that the peak intensity of α-Fe decreases in the order of (chemical heat treatment).
以上の結果より、急冷によってα−(Fe,Co)相が微細化し、析出量も減り、さらに組織全体も微細化、均質に分散することにより特性が向上していると考えられる。また、冷却後にさらに熱処理を行うことにより、微細組織の均質化が進み、α−(Fe,Co)相も低減することで特性がさらに向上したと考えられる。このように、Ti量を7at%から4at%に減少させても、急冷処理と均質化熱処理によってα−(Fe,Co)相の析出を抑制し、従来どおりの異方性磁界を発現させることで、異方性磁界と飽和磁化の特性を高く両立するTnMn12型の結晶構造を有する磁性化合物を作製することが可能となった。 From the above results, it is considered that the characteristics are improved by the α- (Fe, Co) phase being refined by rapid cooling, the amount of precipitation is reduced, and the entire structure is also refined and uniformly dispersed. Further, it is considered that by further heat treatment after cooling, the homogenization of the microstructure progressed and the characteristics were further improved by reducing the α- (Fe, Co) phase. Thus, even if the Ti content is reduced from 7 at% to 4 at%, the precipitation of α- (Fe, Co) phase is suppressed by rapid cooling treatment and homogenization heat treatment, and the conventional anisotropic magnetic field is expressed. Thus, it has become possible to produce a magnetic compound having a TnMn 12 type crystal structure that has both high anisotropy magnetic field and saturation magnetization characteristics.
実施例8〜15及び比較例13
以下の表3に示す組成の化合物の作製を目的とした合金の溶湯を準備し、ストリップキャスト法により、104K/secの速度で急冷し、急冷薄片を作製し、Ar雰囲気において1200℃、4時間熱処理を実施した(Nd7.7(Fe(1-y)Coy)86.1Ti6.2N7.7においてコバルト量yを変化させた)。次いでAr雰囲気においてカッターミルを用いて薄片を粉砕し、粒径30μm以下の粒子を回収した。得られた粒子を、純度99.99%の窒素ガス中において、450℃にて4〜24時間窒化を行った。得られた粒子の磁気特性評価(VSM)及び結晶構造解析(XRD)を実施した。結果を表3並びに図14〜図16に示す。
Examples 8 to 15 and Comparative Example 13
A melt of an alloy for the purpose of producing a compound having the composition shown in Table 3 below was prepared and quenched at a rate of 10 4 K / sec by a strip casting method to produce a quenched flake. Heat treatment was performed for 4 hours (the cobalt amount y was changed in Nd 7.7 (Fe (1-y) Co y ) 86.1 Ti 6.2 N 7.7 ). Next, the flakes were pulverized using a cutter mill in an Ar atmosphere, and particles having a particle size of 30 μm or less were collected. The obtained particles were nitrided in nitrogen gas with a purity of 99.99% at 450 ° C. for 4 to 24 hours. Magnetic property evaluation (VSM) and crystal structure analysis (XRD) of the obtained particles were performed. The results are shown in Table 3 and FIGS.
実験結果から明らかなように、異方性磁界は、Co置換率にほとんど影響を受けることなく高い値を示した。一方、飽和磁化は、Co置換率=0.3程度で最大の飽和磁化を示し、y=0.7以上では低下する傾向を示した。さらに、キュリー点に関しては、Co量の増加に伴い増加した(y=0.5以上に関しては、装置上の制限のため測定できなかった)。従って、0≦y≦0.7の範囲がCoに関しては好ましいことがわかる。 As is clear from the experimental results, the anisotropic magnetic field showed a high value with almost no influence on the Co substitution rate. On the other hand, the saturation magnetization shows the maximum saturation magnetization when the Co substitution rate is about 0.3, and tends to decrease when y = 0.7 or more. Furthermore, the Curie point increased with an increase in the Co content (y = 0.5 or more could not be measured due to limitations on the apparatus). Therefore, it can be seen that the range of 0 ≦ y ≦ 0.7 is preferable for Co.
図17〜図19にCo置換率と、結晶構造の格子定数a、格子定数c及び格子体積Vの関係を示す。この結果より、格子定数aの範囲が0.850nm〜0.875nm、格子定数cの範囲が0.480nm〜0.505nm、そして格子体積Vの範囲が0.351nm3〜0.387nm3であることがわかる。 17 to 19 show the relationship between the Co substitution rate, the lattice constant a, the lattice constant c, and the lattice volume V of the crystal structure. From this result, the range of the lattice constant a is 0.850 nm to 0.875 nm, the range of the lattice constant c is 0.480 nm to 0.505 nm, and the range of the lattice volume V is 0.351 nm 3 to 0.387 nm 3 . I understand that.
図20及び図21に、異方性磁界と飽和磁化の関係を示す。本発明による実施例試料において十分に高い磁気特性が得られている。 20 and 21 show the relationship between the anisotropic magnetic field and the saturation magnetization. In the example sample according to the present invention, sufficiently high magnetic properties are obtained.
ここで結晶構造中において、ヘキサゴンA、B、Cを
A:希土類原子Rを中心としたFe(8i)とFe(8j)サイトで構成される6員環、
B:Fe(8i)−Fe(8i)ダンベルを中心とした、Fe(8i)とFe(8j)サイトで構成される6員環、
C:Fe(8i)−希土類原子の線上を中心としたFe(8j)とFe(8f)サイトで構成される6員環
と定義したときに、ヘキサゴンAのa軸方向の長さHex(A)は、表1よりNdFe11TiN(Nd7.7Fe92.3Ti7.7N7.7)組成の0.611nmより小さいことがわかる。
Here, in the crystal structure, hexagons A, B, and C are A: a six-membered ring composed of Fe (8i) and Fe (8j) sites centered on the rare earth atom R,
B: A six-membered ring composed of Fe (8i) and Fe (8j) sites centered on Fe (8i) -Fe (8i) dumbbells,
C: Fe (8i) —the length Hex (A in the a-axis direction of hexagon A when defined as a six-membered ring composed of Fe (8j) and Fe (8f) sites centered on the line of rare earth atoms ) Is smaller than 0.611 nm of the composition of NdFe 11 TiN (Nd 7.7 Fe 92.3 Ti 7.7 N 7.7 ) from Table 1.
実施例16及び比較例14〜17
以下の表4に示す組成の化合物の作製を目的とした合金の溶湯を準備し、ストリップキャスト法により、104K/secの速度で急冷し、急冷薄片を作製し、Ar雰囲気において1200℃、4時間熱処理を実施した(Nd7.7(Fe0.75Co0.25)92.30-cTicN7.7においてチタン量cを変化させた)。次いでAr雰囲気においてカッターミルを用いて薄片を粉砕し、粒径30μm以下の粒子を回収した。得られた粒子を、純度99.99%の窒素ガス中において、450℃にて4時間窒化を行った。得られた粒子の磁気特性評価(VSM)及び結晶構造解析(XRD)を実施した。結果を表4並びに図22に示す。
Example 16 and Comparative Examples 14-17
A melt of an alloy intended to produce a compound having the composition shown in Table 4 below was prepared and quenched by a strip casting method at a rate of 10 4 K / sec to produce a quenched flake. Heat treatment was performed for 4 hours (the amount of titanium c was changed in Nd 7.7 (Fe 0.75 Co 0.25 ) 92.30-c Ti c N 7.7 ). Next, the flakes were pulverized using a cutter mill in an Ar atmosphere, and particles having a particle size of 30 μm or less were collected. The obtained particles were nitrided at 450 ° C. for 4 hours in nitrogen gas having a purity of 99.99%. Magnetic property evaluation (VSM) and crystal structure analysis (XRD) of the obtained particles were performed. The results are shown in Table 4 and FIG.
図22に示すXRDによる結晶構造解析結果から、Ti量が5.8at%以上において1−12相が形成されることがわかった。一方で、Ti量=3.8at%のときには3−29相が、Ti量1.9at%以下においては2−17相がそれぞれ生成した。また、以下の表5にTi量変化と結晶構造変化の関係を示す。 From the result of XRD crystal structure analysis shown in FIG. 22, it was found that a 1-12 phase was formed when the Ti content was 5.8 at% or more. On the other hand, when the Ti content was 3.8 at%, the 3-29 phase was generated, and when the Ti content was 1.9 at% or less, the 2-17 phase was generated. Table 5 below shows the relationship between the Ti amount change and the crystal structure change.
実施例17〜27及び比較例18〜31
以下の表6及び7に示す組成の化合物の作製を目的とした合金の溶湯を準備し、ストリップキャスト法により、104K/secの速度で急冷し、急冷薄片を作製し、Ar雰囲気において1200℃、4時間熱処理を実施した(Nd(7.7-x)Zrx)Fe0.75Co0.25)92.30-cTicN7.7においてZr置換割合xとチタン量cを変化させた)。次いでAr雰囲気においてカッターミルを用いて薄片を粉砕し、粒径30μm以下の粒子を回収した。得られた粒子を、純度99.99%の窒素ガス中において、450℃にて4〜16時間窒化を行った。得られた粒子の磁気特性評価(VSM)及び結晶構造解析(XRD)を実施した。結果を表6及び7並びに図23に示す。
Examples 17-27 and Comparative Examples 18-31
An alloy melt for the purpose of producing compounds having the compositions shown in Tables 6 and 7 below was prepared, quenched at a rate of 10 4 K / sec by a strip casting method to produce quenched flakes, and 1200 in an Ar atmosphere. A heat treatment was performed at 4 ° C. for 4 hours (Nd (7.7-x) Zr x ) Fe 0.75 Co 0.25 ) 92.30-c Ti c N 7.7 , with the Zr substitution ratio x and the titanium content c varied. Next, the flakes were pulverized using a cutter mill in an Ar atmosphere, and particles having a particle size of 30 μm or less were collected. The obtained particles were nitrided in nitrogen gas with a purity of 99.99% at 450 ° C. for 4 to 16 hours. Magnetic property evaluation (VSM) and crystal structure analysis (XRD) of the obtained particles were performed. The results are shown in Tables 6 and 7 and FIG.
表6及び表7に示す結果より、1−12相の形成能は、Ti量減少とともに低下するが、Zr添加量の増加に従って向上する傾向があることがわかった。図23に示す結果より、1−12相を形成しうる領域は、Zr置換割合xとTi量cの間において、c>−38x+3.8及びc>6.3x+0.65で囲まれた領域(0<c<7、x≧0)の範囲であることが明らかとなった。これは、図6に示すように、Ti量を低下させた際にヘキサゴンAの8iサイトがTi原子から原子半径の小さいFe原子に置き換わることで、ヘキサゴンAのサイズバランスが低下するため、1−12相が安定に形成しないが、Nd原子よりも原子半径の小さなZrを置換させることでサイズバランスを補ったことにより、1−12相がTi量低下にも関わらず生成させることができたと考えられる。 From the results shown in Tables 6 and 7, it was found that the 1-12 phase formation ability decreases with decreasing Ti amount, but tends to improve as the Zr addition amount increases. From the results shown in FIG. 23, the region where the 1-12 phase can be formed is a region surrounded by c> −38x + 3.8 and c> 6.3x + 0.65 between the Zr substitution ratio x and the Ti amount c ( It was revealed that the range was 0 <c <7, x ≧ 0). This is because, as shown in FIG. 6, when the amount of Ti is decreased, the 8i site of hexagon A is replaced by Fe atoms having a small atomic radius from the Ti atoms, thereby reducing the size balance of hexagon A. Although the 12 phase does not form stably, it is thought that the 1-12 phase could be generated despite the decrease in the Ti amount by substituting Zr having a smaller atomic radius than the Nd atom to compensate for the size balance. It is done.
実施例28〜33及び比較例32〜33
以下の表8に示す組成の化合物の作製を目的とした合金の溶湯を準備し、ストリップキャスト法により、104K/secの速度で急冷し、急冷薄片を作製し、Ar雰囲気において1200℃、4時間熱処理を実施した。次いでAr雰囲気においてカッターミルを用いて薄片を粉砕し、粒径30μm以下の粒子を回収した。得られた粒子を、純度99.99%の窒素ガス中において、450℃にて4時間窒化を行った(Nd7.7(Fe0.75Co0.25)86.5Ti5.8Neに及びNd 7.7 Fe 86.5Ti5.8Neにおいて窒素量eを変化させた)。得られた粒子の磁気特性評価(VSM)及び結晶構造解析(XRD)を実施した。結果を表8並びに図24〜26に示す。
Examples 28-33 and Comparative Examples 32-33
A melt of an alloy for the purpose of producing a compound having the composition shown in Table 8 below was prepared and quenched at a rate of 10 4 K / sec by a strip casting method to produce a quenched flake. Heat treatment was performed for 4 hours. Next, the flakes were pulverized using a cutter mill in an Ar atmosphere, and particles having a particle size of 30 μm or less were collected. The resulting particles, in 99.99% of nitrogen gas purity, for 4 hours nitride at 450 ℃ (Nd 7.7 (Fe 0.75 Co 0.25) 86.5 Ti 5.8 N e in and Nd 7.7 Fe 86.5 Ti 5.8 N The nitrogen amount e was changed in e). Magnetic property evaluation (VSM) and crystal structure analysis (XRD) of the obtained particles were performed. The results are shown in Table 8 and FIGS.
N量の増加に伴い、a軸及びc軸方向にともに格子定数が増加することが確認された。また結晶構造を壊すことなく、15.4at%程度まで窒素が入ることがわかった。また、N量の増加に伴い、飽和磁化、異方性磁界の増加も上記と同様に確認された。 It was confirmed that the lattice constant increased in both the a-axis and c-axis directions as the N content increased. Moreover, it turned out that nitrogen enters to about 15.4 at%, without destroying a crystal structure. Further, as the N content increased, saturation magnetization and anisotropy magnetic field were also increased in the same manner as described above.
Claims (6)
(上式中、Rは1種以上の希土類元素であり、
TはTiであり、
Mは不可避不純物元素であり、
AはNであり、
0≦x≦0.5、
0≦y≦0.6、
4≦a≦20、
b=100−a−c−d、
0<c<7、
0≦d≦1、
1≦e≦18である)
により表される磁性化合物であって、ThMn12型の結晶構造を有し、α−(Fe,Co)相の体積分率が20%以下であり、
前記式中、xとcの関係が、c>−38x+3.8及びc>6.3x+0.65で囲まれた領域の範囲を満たす、
磁性化合物。 Formula (R (1-x) Zr x) a (Fe (1-y) Co y) b T c M d A e
(In the above formula, R is one or more rare earth elements,
T is Ti ,
M is the inevitable impurities elemental,
A is N ,
0 ≦ x ≦ 0.5,
0 ≦ y ≦ 0.6,
4 ≦ a ≦ 20,
b = 100-acd,
0 <c <7,
0 ≦ d ≦ 1,
1 ≦ e ≦ 18)
A magnetic compound represented by having a crystal structure of 12-inch ThMn, α- (Fe, Co) phase volume fraction is 20% or less,
In the above formula, the relationship between x and c satisfies the range of the region surrounded by c> −38x + 3.8 and c> 6.3x + 0.65.
Magnetic compound.
(上式中、Rは1種以上の希土類元素であり、
TはTiであり、
Mは不可避不純物元素であり、
0≦x≦0.5、
0≦y≦0.6、
4≦a≦20、
b=100−a−c−d、
0<c<7、
0≦d≦1である)
で表される組成の合金の溶湯を準備する工程と、
前記溶湯を1×102〜1×107K/secの速度で急冷する工程と、
急冷によって得られた凝固した合金を粉砕後、A元素(AはNである)を侵入させる工程、
を含む、請求項1記載の磁性化合物の製造方法。 Formula (R (1-x) Zr x) a (Fe (1-y) Co y) b T c M d
(In the above formula, R is one or more rare earth elements,
T is Ti ,
M is the inevitable impurities elemental,
0 ≦ x ≦ 0.5,
0 ≦ y ≦ 0.6,
4 ≦ a ≦ 20,
b = 100-acd,
0 <c <7,
0 ≦ d ≦ 1)
Preparing a molten alloy having a composition represented by:
Quenching the molten metal at a rate of 1 × 10 2 to 1 × 10 7 K / sec;
A step of intruding element A (A is N ) after pulverizing the solidified alloy obtained by quenching;
The manufacturing method of the magnetic compound of Claim 1 containing this.
A:希土類原子を中心としたFe(8i)とFe(8j)サイトで構成される6員環、
B:Fe(8i)−Fe(8i)ダンベルを中心とした、Fe(8i)とFe(8j)サイトで構成される6員環、
C:Fe(8i)−希土類原子の線上を中心としたFe(8j)とFe(8f)サイトで構成される6員環
と定義したときに、ヘキサゴンAのa軸方向長さ:Hex(A)が0.611nmより小さく、またFe−Fe間の平均距離が、Fe(8i)においては0.254nm〜0.288nmであり、Fe(8j)においては0.242nm〜0.276nmであり、Fe(8f)においては0.234nm〜0.268nmである磁性化合物。 A rare earth element-containing magnetic compound having a ThMn 12 type crystal structure, wherein the range of the lattice constant a of the crystal structure is 0.850 nm to 0.875 nm, and the range of the lattice constant c is 0.480 nm to 0.505 nm. The lattice volume range is 0.351 nm 3 to 0.387 nm 3 , where hexagons A, B, and C are composed of A: Fe (8i) and Fe (8j) sites centered on rare earth atoms. 6-membered ring,
B: A six-membered ring composed of Fe (8i) and Fe (8j) sites centered on Fe (8i) -Fe (8i) dumbbells,
C: Fe (8i) —the length in the a-axis direction of hexagon A when defined as a six-membered ring composed of Fe (8j) and Fe (8f) sites centered on the rare earth atom line: Hex (A ) Is smaller than 0.611 nm, and the average distance between Fe and Fe is 0.254 nm to 0.288 nm in Fe (8i) and 0.242 nm to 0.276 nm in Fe (8j). Magnetic compound which is 0.234 nm to 0.268 nm in Fe (8f).
(上式中、Rは1種以上の希土類元素であり、
TはTiであり、
Mは不可避不純物元素であり、
AはNであり、
0≦x≦0.5、
0≦y≦0.7、
4≦a≦20、
b=100−a−c−d、
0<c≦7、
0≦d≦1、
1≦e≦18である)
により表される化合物からなる磁性紛体であって、ThMn12型の結晶構造を有し、α−(Fe,Co)相の体積分率が20%以下であり、
前記式中、xとcの関係が、c>−38x+3.8及びc>6.3x+0.65で囲まれた領域の範囲を満たす、
磁性紛体。 Formula (R (1-x) Zr x) a (Fe (1-y) Co y) b T c M d A e
(In the above formula, R is one or more rare earth elements,
T is Ti ,
M is the inevitable impurities elemental,
A is N ,
0 ≦ x ≦ 0.5,
0 ≦ y ≦ 0.7,
4 ≦ a ≦ 20,
b = 100-acd,
0 <c ≦ 7,
0 ≦ d ≦ 1,
1 ≦ e ≦ 18)
A magnetic powder comprising a compound represented by the formula: ThMn 12 type crystal structure, and a volume fraction of α- (Fe, Co) phase is 20% or less,
In the above formula, the relationship between x and c satisfies the range of the region surrounded by c> −38x + 3.8 and c> 6.3x + 0.65.
Magnetic powder.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/844,478 US10351935B2 (en) | 2014-09-09 | 2015-09-03 | Magnetic compound and method of producing the same |
KR1020150125243A KR101733296B1 (en) | 2014-09-09 | 2015-09-04 | Magnetic compound and method of producing the same |
CN201510567689.0A CN105405553B (en) | 2014-09-09 | 2015-09-09 | Magnetic compound and its manufacture method |
BR102015022165-7A BR102015022165B1 (en) | 2014-09-09 | 2015-09-09 | MAGNETIC COMPOUND AND METHOD OF PRODUCING IT |
EP15184536.9A EP3018663B1 (en) | 2014-09-09 | 2015-09-09 | Magnetic compound and method of producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014183705 | 2014-09-09 | ||
JP2014183705 | 2014-09-09 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2016058707A JP2016058707A (en) | 2016-04-21 |
JP2016058707A5 JP2016058707A5 (en) | 2017-09-07 |
JP6304120B2 true JP6304120B2 (en) | 2018-04-04 |
Family
ID=55759109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015097526A Active JP6304120B2 (en) | 2014-09-09 | 2015-05-12 | Magnetic compound and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6304120B2 (en) |
KR (1) | KR101733296B1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107785139A (en) | 2016-08-24 | 2018-03-09 | 株式会社东芝 | Ferromagnetic material, permanent magnet, electric rotating machine and vehicle |
EP3291250B1 (en) | 2016-08-24 | 2021-05-26 | Kabushiki Kaisha Toshiba | Magnetic material, permanent magnet, rotary electrical machine, and vehicle |
US10490325B2 (en) | 2016-08-24 | 2019-11-26 | Kabushiki Kaisha Toshiba | Magnetic material, permanent magnet, rotary electrical machine, and vehicle |
JP6541132B2 (en) * | 2017-08-22 | 2019-07-10 | トヨタ自動車株式会社 | Magnetic compound, method for producing the same, and magnetic powder |
JP6995542B2 (en) * | 2017-09-19 | 2022-02-04 | 株式会社東芝 | Magnet materials, permanent magnets, rotary machines, and vehicles |
WO2020032547A1 (en) * | 2018-08-10 | 2020-02-13 | 주식회사 엘지화학 | Magnetic powder and method for producing magnetic powder |
KR102357085B1 (en) * | 2018-08-10 | 2022-01-28 | 주식회사 엘지화학 | Magnetic powder and manufacturing method of magnetic powder |
JP7495376B2 (en) * | 2021-05-17 | 2024-06-04 | 信越化学工業株式会社 | Anisotropic rare earth sintered magnet and its manufacturing method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06283316A (en) * | 1992-10-29 | 1994-10-07 | Hitachi Metals Ltd | Iron-rare earth permanent magnet material and its manufacture |
JP3455557B2 (en) * | 1993-02-10 | 2003-10-14 | 株式会社東芝 | Magnetic material |
JP2001189206A (en) * | 1999-12-28 | 2001-07-10 | Toshiba Corp | Permanent magnet |
JP4314244B2 (en) * | 2006-01-12 | 2009-08-12 | 株式会社東芝 | Magnetic material powder manufacturing method and bonded magnet manufacturing method |
JP2013157487A (en) * | 2012-01-31 | 2013-08-15 | Hitachi Ltd | Magnetic material and magnet |
JP2014047366A (en) | 2012-08-29 | 2014-03-17 | Hitachi Metals Ltd | Ferromagnetic alloy and production method thereof |
-
2015
- 2015-05-12 JP JP2015097526A patent/JP6304120B2/en active Active
- 2015-09-04 KR KR1020150125243A patent/KR101733296B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR101733296B1 (en) | 2017-05-08 |
KR20160030366A (en) | 2016-03-17 |
JP2016058707A (en) | 2016-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6304120B2 (en) | Magnetic compound and method for producing the same | |
JP6319808B2 (en) | Magnetic compound and method for producing the same | |
JP6402707B2 (en) | Rare earth magnets | |
US10351935B2 (en) | Magnetic compound and method of producing the same | |
JP5197669B2 (en) | Permanent magnet and motor and generator using the same | |
CN105957680B (en) | Rare earth cobalt permanent magnet | |
JP5163630B2 (en) | Rare earth magnet and manufacturing method thereof | |
JP6076705B2 (en) | Permanent magnet and motor and generator using the same | |
JP5071409B2 (en) | Iron-based rare earth nanocomposite magnet and manufacturing method thereof | |
CN109427456B (en) | Magnetic compound and method for producing same | |
JP4863377B2 (en) | Samarium-iron permanent magnet material | |
JP2016058707A5 (en) | ||
WO2021182591A1 (en) | Iron base rare earth boron-based isotropic magnet alloy | |
JP6865857B2 (en) | A hot-worked magnet and a method for manufacturing the hot-worked magnet. | |
JP2019160946A (en) | Rare earth permanent magnet | |
JP2016134498A (en) | Method of manufacturing magnetic material | |
JP2017073544A (en) | Method for manufacturing rare earth magnet | |
JP6541132B2 (en) | Magnetic compound, method for producing the same, and magnetic powder | |
JP2019040926A (en) | Magnetic compound and method for manufacturing the same | |
JP2013098319A (en) | METHOD FOR MANUFACTURING Nd-Fe-B MAGNET | |
JP2019068027A (en) | Rare earth magnet | |
JP7495376B2 (en) | Anisotropic rare earth sintered magnet and its manufacturing method | |
JP7268432B2 (en) | Method for producing RTB based sintered magnet | |
JP2022037850A (en) | Magnetic material and its manufacturing method | |
JP2016032004A (en) | Magnetic material, magnetic material manufacturing method and rare-earth magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170726 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20170726 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20170801 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171031 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180219 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6304120 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |