JP3157302B2 - Nitride magnetic materials - Google Patents

Nitride magnetic materials

Info

Publication number
JP3157302B2
JP3157302B2 JP24501292A JP24501292A JP3157302B2 JP 3157302 B2 JP3157302 B2 JP 3157302B2 JP 24501292 A JP24501292 A JP 24501292A JP 24501292 A JP24501292 A JP 24501292A JP 3157302 B2 JP3157302 B2 JP 3157302B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic material
atomic
alloy
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24501292A
Other languages
Japanese (ja)
Other versions
JPH0696918A (en
Inventor
伸嘉 今岡
淑男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP24501292A priority Critical patent/JP3157302B2/en
Publication of JPH0696918A publication Critical patent/JPH0696918A/en
Application granted granted Critical
Publication of JP3157302B2 publication Critical patent/JP3157302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高磁気特性で耐酸化性
に優れた希土類−鉄−窒素系磁性材料で、特に小型モー
ター、アクチュエーターなどの用途に最適な磁性材料に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-iron-nitrogen based magnetic material having high magnetic properties and excellent oxidation resistance, and particularly to a magnetic material most suitable for use in small motors and actuators.

【0002】[0002]

【従来の技術】磁性材料は家庭電化製品、音響製品、自
動車部品やコンピューターの周辺端末機まで、幅広い分
野で使用されており、エレクトロニクス材料としての重
要性は年々増大しつつある。特に最近、各種電気・電子
機器の小型化、高効率化が要求されてきたため、より高
性能の磁性材料が求められている。
2. Description of the Related Art Magnetic materials are used in a wide range of fields from home appliances, audio products, automobile parts and peripheral devices of computers, and their importance as electronic materials is increasing year by year. In particular, recently, there has been a demand for miniaturization and high efficiency of various electric and electronic devices, so that a magnetic material with higher performance is required.

【0003】この時代の要請に応え、Sm−Co系、N
d−Fe−B系などの希土類磁性材料の需要が急激に増
大している。しかし、Sm−Co系は原料供給が不安定
で原料コストが高く、Nd−Fe−B系は耐熱性、耐食
性に劣る問題点がある。一方、新しい希土類系磁性材料
として、希土類−鉄−窒素系磁性材料が発明されてい
る。(例えば特開平2−57663)この材料は、磁
化、異方性磁界、キュリー点が高く、Sm−Co系、N
d−Fe−B系の欠点を補う磁性材料として期待されて
いる。しかしながら、この磁性体材料は耐酸化性が悪い
という欠点を有している。この希土類−鉄−M−窒素組
成を有する材料については、特開昭60−14490
6、特開昭60−144907、特開昭60−1449
09に開示されている。
[0003] In response to the demands of this era, Sm-Co based, N
The demand for rare earth magnetic materials such as d-Fe-B is rapidly increasing. However, the Sm-Co system has a problem that the supply of the material is unstable and the cost of the material is high, and the Nd-Fe-B system has a problem in that the heat resistance and the corrosion resistance are inferior. On the other hand, as a new rare earth magnetic material, a rare earth-iron-nitrogen magnetic material has been invented. This material has a high magnetization, an anisotropic magnetic field, and a high Curie point.
It is expected as a magnetic material that compensates for the drawbacks of the d-Fe-B system. However, this magnetic material has a disadvantage of poor oxidation resistance. The material having the rare earth-iron-M-nitrogen composition is disclosed in JP-A-60-14490.
6, JP-A-60-144907, JP-A-60-1449
09.

【0004】しかし、特開昭60−144906〜14
4909に開示されている材料は、その製造工程及び条
件から、窒化鉄、α−鉄、窒化希土類及びMの窒化物を
多く含む材料となり、保磁力を初めとする磁気特性は著
しく劣化して、これらの材料は高性能な磁石材料となら
ない。このようなことから、磁気特性が高い菱面体晶又
は六面体晶の結晶構造を有し、しかも耐酸化性に優れた
希土類−鉄−M−窒素系材料は現在知られておらず、そ
の出現が強く望まれている。
However, Japanese Patent Application Laid-Open No. Sho 60-144906-14
The material disclosed in No. 4909 becomes a material containing a large amount of iron nitride, α-iron, rare earth nitride and nitride of M from its manufacturing process and conditions, and magnetic properties such as coercive force are significantly deteriorated. These materials do not become high performance magnet materials. For this reason, rare earth-iron-M-nitrogen-based materials having a rhombohedral or hexahedral crystal structure with high magnetic properties and excellent oxidation resistance are not known at present, and their appearance has appeared. It is strongly desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、菱面体晶ま
たは六方晶の結晶構造を有した希土類−鉄−窒素系材料
に金属元素Mを共存させて、高い磁気特性と優れた耐酸
化性を合わせ持つ希土類−鉄−M−窒素組成の磁性材料
とその製造法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention relates to a rare-earth-iron-nitrogen-based material having a rhombohedral or hexagonal crystal structure in which a metal element M coexists to provide high magnetic properties and excellent oxidation resistance. The present invention provides a rare earth-iron-M-nitrogen composition magnetic material having the following characteristics:

【0006】[0006]

【課題を解決するための手段】高い磁気特性と耐酸化性
を有する希土類−鉄−窒素系磁性材料を得るために、母
合金に種々の元素(M)を添加した系について鋭意検討
した結果、磁気特性が高く耐酸化性の優れた組成及び結
晶構造を有する希土類(R)−鉄(Fe)−M−窒素
(N)系磁性材料を見いだし、本発明を成すに至った。
In order to obtain a rare earth-iron-nitrogen based magnetic material having high magnetic properties and oxidation resistance, the present inventors have conducted intensive studies on a system obtained by adding various elements (M) to a mother alloy. The present inventors have found a rare earth (R) -iron (Fe) -M-nitrogen (N) -based magnetic material having a composition and a crystal structure having high magnetic properties and excellent oxidation resistance, and have accomplished the present invention.

【0007】即ち、本発明は (1)一般式Rα(Fe(1-γ)Mγ(100-α-β)Nβ で表され、かつ耐酸化性能が70%以上の磁性材料であ
り、RはSmまたはNdのうち少なくとも一種、Mは、Mn、C
r、Niの元素のうち少なくとも一種、α、βは原子百分
率で 3≦α≦20 3≦β≦30 γは原子比で0.01≦γ≦0.2 であって、かつそのR、Fe、M及びNを含んだ相が菱面体
晶または六方晶の結晶構造を含有することを特徴とする
磁性材料、及び (2)上記(1)に記載の磁性材料の成分であるFeの0.
01〜50原子%をCoで置換した組成を有することを特徴と
する磁性材料であり、 (3)一般式Rα(Fe(1-γ)Mγ(100-α-β)NβのMがN
iであることを特徴とする(1)または(2)記載の磁
性材料であり、 (4)一般式Rα/(100-β)(Fe(1-γ)Mγ
(100-α-β)/(100-β)で表される合金を、窒素ガス、ア
ンモニアガスのうち少なくとも一種を含む雰囲気下で、
200〜650℃の範囲で熱処理して得られることを特
徴とする上記(1)〜(3)に記載の磁性材料の製造法
である。
That is, the present invention relates to (1) a magnetic material represented by the general formula R α (Fe (1-γ) M γ ) (100-α-β) N β and having an oxidation resistance of 70% or more. Yes , R is at least one of Sm or Nd , M is Mn, C
At least one of the elements of r and Ni, α and β are atomic percentages 3 ≦ α ≦ 203 3 ≦ β ≦ 30 γ is 0.01 ≦ γ ≦ 0.2 in atomic ratio, and R, Fe , M and N are characterized in that the phase containing rhombohedral or hexagonal crystal structure is contained in the magnetic material, and (2) the content of Fe, which is a component of the magnetic material described in (1) above, is less than 0.1%.
A magnetic material characterized by having a composition in which 01 to 50 atomic% is substituted with Co; (3) a magnetic material represented by the general formula: R α (Fe (1-γ) M γ ) (100-α-β) N β M is N
(1) The magnetic material according to (1) or (2), wherein (4) a general formula R α / (100-β) (Fe (1-γ) M γ )
An alloy represented by (100-α-β) / (100-β) , under an atmosphere containing at least one of nitrogen gas and ammonia gas,
The method for producing a magnetic material according to any one of the above (1) to (3), which is obtained by performing a heat treatment at a temperature in the range of 200 to 650 ° C.

【0008】以下本発明について詳細に説明する。希土
類(R)としては、SmまたはNdのうち少なくとも一種か
ら選ばれる。
Hereinafter, the present invention will be described in detail. Is the rare earth (R) at least one of Sm and Nd
Selected from

【0009】また、このRは工業的生産により入手可能
な純度でよく、製造上不可避の不純物、例えばO、H、
C、Al、Si、F、Na、Mg、Ca、Liなどが存在していても差
し支えない。鉄(Fe)は、強磁性を担う本磁性材料の基
本組成であり、その最大50原子%まではCoと置換されて
もよい。本発明のポイントであるMn、Cr、Niの元素Mに
ついては、該Mn、Cr、Niの元素(M)のうち1種または
2種以上をFe+Mに対して、1〜20原子%で共存させ
る。
The R may have a purity that can be obtained by industrial production, and impurities unavoidable in production, such as O, H,
C, Al, Si, F, Na, Mg, Ca, Li and the like may be present. Iron (Fe) is the basic composition of the present magnetic material that is responsible for ferromagnetism, and up to 50 atomic% of it may be replaced by Co. Regarding the element M of Mn, Cr, and Ni, which is the point of the present invention, one or more of the elements (M) of Mn, Cr, and Ni coexist at 1 to 20 atomic% with respect to Fe + M. .

【0010】本発明におけるR−Fe−M−N系磁性材
料の組成は、希土類が3〜20原子%、鉄及びM成分が
併せて50〜94原子%、Nが3〜30原子%の範囲に
あることが必要である。R成分が3原子%未満のとき、
鉄成分を多く含む軟磁性相が分離し、窒化物の保磁力が
低下して実用的な永久磁石とならない。またR成分が2
0原子%を越えると、残留磁束密度が低下して好ましく
ない。又、希土類の組成として好ましくは5〜15原子
%、更に好ましくは7〜12原子%である。
The composition of the R-Fe-MN-based magnetic material in the present invention is such that the content of the rare earth is 3 to 20 atomic%, the total of iron and M components is 50 to 94 atomic%, and the content of N is 3 to 30 atomic%. It is necessary to be in. When the R component is less than 3 atomic%,
The soft magnetic phase containing a large amount of iron component is separated, and the coercive force of the nitride is reduced, so that a practical permanent magnet cannot be obtained. The R component is 2
If it exceeds 0 atomic%, the residual magnetic flux density is undesirably reduced. The composition of the rare earth element is preferably 5 to 15 atomic%, more preferably 7 to 12 atomic%.

【0011】鉄と共存するM成分は、鉄とM成分の合計に
対して原子比で0.01〜0.2の範囲とするのが好ましい。
0.2を越えると飽和磁化が低下して好ましくなく、0.01
未満の場合は耐酸化性に対するMの添加効果があまりみ
られない。さらに、鉄をCoで0.01〜50原子%置換した場
合キュリー点、磁化が高く、更に耐酸化性の高い材料と
なる。
The M component coexisting with iron is preferably in an atomic ratio of 0.01 to 0.2 with respect to the total of iron and M component.
If it exceeds 0.2, the saturation magnetization decreases, which is not preferable.
If less, the effect of M addition on oxidation resistance is not so good
I can't. Further, when iron is substituted with 0.01 to 50 atomic% of Co, the material has a high Curie point and magnetization, and has high oxidation resistance.

【0012】M成分としてのMn、Cr、Niに加え
て、Li、Na、K、Mg、Ca、Sr、Ba、Ti、
Zr、Hf、V、Nb、Ta、Mo、W、Pd、Cu、
Ag、Zn、B、Al、Ga、In、C、Si、Ge、
Sn、Pb、Biの元素のうち1種または2種以上
(M’成分)を添加しても良いが、これらの含有量はM
n、Cr、Niの合計量を越えないで、しかもMn、C
r、Niとの合計量がγ値の範囲にある様にしなければ
ならない。
In addition to Mn, Cr and Ni as M components, Li, Na, K, Mg, Ca, Sr, Ba, Ti,
Zr, Hf, V, Nb, Ta, Mo, W, Pd, Cu,
Ag, Zn, B, Al, Ga, In, C, Si, Ge,
One or more of Sn, Pb, and Bi elements (M ′ component) may be added.
The total amount of n, Cr and Ni should not exceed the total amount of Mn, C
The total amount of r and Ni must be in the range of the γ value.

【0013】R−Fe−M−N系磁性材料の主相の結晶
構造としては、六方晶および菱面体晶のうち少なくとも
一種を体積分率で全体の50%以上含むことが必要であ
る。主相とはR、Fe、M、Nを含み、かつ菱面体晶ま
たは六方晶の結晶構造を有する相のことであり、それ以
外の組成、結晶構造を有する相を副相と呼ぶ。例えば副
相として、RFe12-xx y 相といった正方晶を取る
磁性の高い窒化物相を含んでいても良いが、本発明の耐
酸化性の効果を充分発揮させるためには、その体積分率
は本発明の磁性材料の体積分率を越えてはならない。体
積分率が75体積%を越える場合、実用上極めて好まし
い材料となる。本発明で得られるR−Fe−M−N系材
料の主相は、結晶構造がその原料とするR−Fe−M合
金の主原料相とほぼ同じ対称性を有し、窒素が格子間に
侵入するかもしくはM成分などと置換して導入され、結
晶格子が多くの場合膨張する。主原料相とはR、Fe、
Mを含み、かつ菱面体晶または六方晶の結晶構造を有す
る相のことであり、それ以外の組成、結晶構造を有し、
かつNを含まない相を副原料相と呼ぶ。
[0013] The crystal structure of the main phase of the R-Fe-M-N-based magnetic material must contain at least one of hexagonal and rhombohedral in a volume fraction of 50% or more of the whole. The main phase is a phase containing R, Fe, M, and N and having a rhombohedral or hexagonal crystal structure, and a phase having another composition and crystal structure is called a sub phase. For example, as a subphase, a high magnetic nitride phase having a tetragonal structure such as an RFe 12-x M x N y phase may be included. The volume fraction must not exceed the volume fraction of the magnetic material of the present invention. When the volume fraction exceeds 75% by volume, it is a practically preferable material. The main phase of the R-Fe-M-N-based material obtained in the present invention has almost the same symmetry in crystal structure as the main raw material phase of the R-Fe-M alloy as the raw material, and nitrogen is generated between lattices. It penetrates or is introduced in place of the M component, and the crystal lattice expands in many cases. The main raw material phases are R, Fe,
M, and a phase having a rhombohedral or hexagonal crystal structure, having other composition and crystal structure,
A phase containing no N is called an auxiliary raw material phase.

【0014】結晶格子の膨張に伴い、耐酸化性及び磁気
特性の各項目のうち一項目以上が向上し、実用上好適な
磁性材料となる。ここにいう磁気特性とは、材料の飽和
磁化(4πIs)、残留磁束密度(Br)、磁気異方性
磁界(Ha)、磁気異方性エネルギー(Ea)、磁気異
方性比、キュリー点(Tc)、固有保磁力(iHc)、
角形比(Br/4πIs)、最大エネルギー積〔(B
H)max〕、熱減磁率(α)、保磁力の温度変化率
(β)のうち少なくとも一つを言う。但し、磁気異方性
比とは、外部磁場を15kOe印加した時の困難磁化方
向の磁化(a)と容易磁化方向の磁化(b)の比(a/
b)であり、磁気異方性比が小さいもの程、磁気異方性
エネルギーが高いと評価される。
With the expansion of the crystal lattice, at least one of the items of the oxidation resistance and the magnetic properties is improved, and the magnetic material is suitable for practical use. The magnetic properties referred to herein include the saturation magnetization (4πIs), residual magnetic flux density (Br), magnetic anisotropy magnetic field (Ha), magnetic anisotropy energy (Ea), magnetic anisotropy ratio, Curie point ( Tc), intrinsic coercive force (iHc),
Squareness ratio (Br / 4πIs), maximum energy product [(B
H) max], thermal demagnetization rate (α), and temperature change rate (β) of coercive force. Here, the magnetic anisotropy ratio refers to the ratio (a / magnetization) of the magnetization (a) in the difficult magnetization direction and the magnetization (b) in the easy magnetization direction when an external magnetic field is applied at 15 kOe.
b), the smaller the magnetic anisotropy ratio, the higher the magnetic anisotropy energy.

【0015】例えば、希土類−鉄−M母合金として、菱
面体構造を有するSm10.5(Fe0. 9Ni0.189.5を選
んだ場合、窒素を導入することによって、結晶磁気異方
性が面内異方性から硬磁性材料として好適な一軸異方性
に変化し、磁気異方性エネルギーを初めとする磁気特性
と耐酸化性が向上する。導入される窒素(N)量は、3
〜30原子%にしなければならない。30原子%を越え
ると磁化が低く、磁石材料用途としては実用性が小さ
い。3原子%未満では原料合金の性能をあまり向上させ
ることができず、好ましくない。窒素量としてさらに好
ましくは、5〜25原子%、特に好ましくは10〜17
原子%である。
[0015] For example, rare earth - as an iron -M master alloy, when choosing the Sm 10.5 (Fe 0. 9 Ni 0.1 ) 89.5 having a rhombohedral structure, by introducing nitrogen, crystal magnetic anisotropy in-plane It changes from anisotropic to uniaxial anisotropy suitable as a hard magnetic material, and the magnetic properties such as magnetic anisotropic energy and the oxidation resistance are improved. The amount of nitrogen (N) introduced is 3
It must be 3030 atomic%. If it exceeds 30 atomic%, the magnetization is low, and its practicality is small as a magnet material. If it is less than 3 atomic%, the performance of the raw material alloy cannot be improved much, which is not preferable. The nitrogen content is more preferably 5 to 25 atomic%, and particularly preferably 10 to 17 atomic%.
Atomic%.

【0016】また、目的とするR−Fe−M−N系磁性
材料のR−Fe−M組成比や副相の量比などによって、
最適な窒素量は異なる。このときの最適な窒素量とは、
目的に応じて異なるが材料の耐酸化性及び磁気特性のう
ち少なくとも一項目が最適となる窒素量であり、磁気特
性が最適とは磁気異方性比、減磁率および保磁力の温度
変化率の絶対値は極小、その他は極大となることであ
る。
Further, the R-Fe-M composition ratio of the desired R-Fe-M-N-based magnetic material, the amount ratio of the subphase, etc.
The optimal amount of nitrogen is different. The optimal amount of nitrogen at this time is
Depending on the purpose, at least one item of the oxidation resistance and the magnetic properties of the material is the optimum amount of nitrogen, and the magnetic properties are optimum when the magnetic anisotropy ratio, the demagnetization rate and the temperature change rate of the coercive force are changed. The absolute value is minimum and the others are maximum.

【0017】本発明により得られたR−Fe−M−N系磁性
材料には、水素(H)が0.01〜15原子%、さらに酸素
(O)が0.01〜15原子%含まれることが好ましい。更に
好ましい水素量及び酸素量は、0.1〜10原子%及び0.1〜
10原子%である。従って、特に好ましい本発明のR−Fe
−M−N系材料の組成は、一般式Rα(Fe(1-γ)Mγ
(100-α-β―δ―ε)NβHδ0εで表したとき、α、β、
δ、εは原子%で 2.4≦α≦20 2.4≦β≦30 0.1≦δ≦10 0.1≦ε≦10 γは原子比で0.01≦γ≦0.2 の範囲である。
The R-Fe-MN based magnetic material obtained by the present invention preferably contains 0.01 to 15 atomic% of hydrogen (H) and 0.01 to 15 atomic% of oxygen (O). More preferred amounts of hydrogen and oxygen are 0.1 to 10 atomic% and 0.1 to 10 atomic%.
10 atomic%. Therefore, particularly preferred R-Fe of the present invention
The composition of the −M−N based material is represented by the general formula R α (Fe (1-γ) M γ )
(100-α-β-δ-ε) N β H δ 0 ε , α, β,
δ and ε are atomic% and 2.4 ≦ α ≦ 20 2.4 ≦ β ≦ 30 0.1 ≦ δ ≦ 10 0.1 ≦ ε ≦ 10 γ is in the range of 0.01 ≦ γ ≦ 0.2 in atomic ratio.

【0018】R−Fe−N系磁性材料に対するM成分の
共存効果としては、主に耐酸化性の向上である。特に、
R−Fe−N系磁性材料の酸化による劣化では、磁化の
低下に比べ、保磁力の低下が問題となる。本発明の組成
物は酸化に対する保磁力の安定性に優れる特徴を有す
る。その効果の源は強磁性を担うR−Fe−N磁性材料
主相にM成分が共存することによるが、主相そのものが
酸化されづらくなって磁化の劣化を妨げるだけに限ら
ず、酸化により分離する鉄主体の軟磁性成分にM成分が
含有したり、析出状態に影響したりして、窒化物磁性材
料の保磁力低下を防ぐのにも寄与している。
The coexistence effect of the M component on the R—Fe—N magnetic material is mainly an improvement in oxidation resistance. In particular,
In the deterioration of the R-Fe-N-based magnetic material due to oxidation, a decrease in coercive force is more problematic than a decrease in magnetization. The composition of the present invention is characterized by having excellent stability of coercive force against oxidation. The source of this effect is due to the coexistence of the M component in the main phase of the R-Fe-N magnetic material, which is responsible for the ferromagnetism. The M component is contained in the soft magnetic component mainly composed of iron and affects the precipitation state, thereby contributing to preventing a decrease in the coercive force of the nitride magnetic material.

【0019】また、母合金の調整方法や条件によって
は、粒界近傍、或はRFe3相などのRリッチの窒化物
相並びにα−Fe相またはその窒化物相の様なR−Fe
−N組成の材料では軟磁性を示す副相にM成分が多く分
配されて、非磁性相化されることにより、窒化物の角形
比や保磁力を向上させたり、耐酸化性を向上させたりす
る効果もある。
Further, depending on the method and conditions for adjusting the master alloy, R-rich nitride phase such as near the grain boundary or RFe 3 phase and R-Fe phase such as α-Fe phase or its nitride phase may be used.
In the material of the -N composition, a large amount of the M component is distributed to the subphase exhibiting soft magnetism, and the nonmagnetic phase is formed, thereby improving the squareness ratio and coercive force of the nitride, and improving the oxidation resistance. There is also the effect of doing.

【0020】以下、本発明の製造法について例示する。 (1)母合金の調製 本発明の磁性材料において、窒化原料となるR−Fe−
M合金の主原料相は、R−Fe合金結晶構造中のFeサ
イトにM成分が置き替わる構造、及びまたは、副原料相
がMの添加によりR−Feの2成分系とは異なる組成、
構造を取り、本発明の効果を発揮する。従って、Mの添
加は母合金調整の段階で行うことが望ましい。
Hereinafter, the production method of the present invention will be exemplified. (1) Preparation of master alloy In the magnetic material of the present invention, R-Fe-
The main raw material phase of the M alloy has a structure in which the M component is substituted for the Fe site in the R-Fe alloy crystal structure, and / or a composition in which the auxiliary raw material phase is different from the R-Fe two-component system due to the addition of M.
It has a structure and exhibits the effects of the present invention. Therefore, it is desirable to add M at the stage of master alloy adjustment.

【0021】R−Fe−M合金の製造法としては、R、
Fe、M金属を高周波により溶解し、鋳型などに鋳込む
高周波溶解法、銅などのボートに金属成分を仕込み、ア
ーク放電により溶かし込むアーク溶解法、高周波溶解し
た溶湯を、回転させた銅ロール上に落しリボン状の合金
を得る超急冷法、高周波溶解した溶湯をガスで噴霧して
合金粉体を得るガスアトマイズ法、Fe及びまたはMの
粉体またはFe−M合金粉体、R及びまたはMの酸化物
粉体、及び還元剤を高温下で反応させ、RまたはR及び
Mを還元しながら、RまたはR及びMを、Fe及びまた
はFe−M合金粉末中に拡散させるR/D法、各金属成
分単体及びまたは合金をボールミルなどで微粉砕しなが
ら反応させるメカニカルアロイング法、上記何れかの方
法で得た合金を水素雰囲気下で加熱し、一旦R及びまた
はMの水素化物と、Fe及びまたはMまたはFe−M合
金に分解し、この後高温下で低圧として水素を追い出し
ながら再結合させ合金化するHDDR法のいずれを用い
てもよい。
As a method for producing an R—Fe—M alloy, R,
High frequency melting method in which Fe and M metals are melted by high frequency and cast into molds, etc., arc melting method in which metal components are charged into a boat such as copper and melted by arc discharge, on a copper roll which rotates molten metal with high frequency melting A super-quenching method for obtaining a ribbon-shaped alloy, a gas atomizing method for spraying a high-frequency molten metal with a gas to obtain an alloy powder, Fe and / or M powder or Fe-M alloy powder, R and / or M An R / D method in which the oxide powder and the reducing agent are reacted at a high temperature to reduce R or R and M while diffusing R or R and M into Fe and / or Fe-M alloy powder. A mechanical alloying method in which a metal component alone and / or an alloy is reacted while being finely pulverized by a ball mill or the like, an alloy obtained by any of the above methods is heated in a hydrogen atmosphere, and once reacted with R and / or M hydride. Decomposed into Fe and or M or Fe-M alloy, both the may be used in the HDDR method alloying are recombined while removing hydrogen as low at a high temperature after this.

【0022】高周波溶解法、アーク溶解法を用いた場
合、溶融状態から、合金が凝固する際にFe主体の軟磁
性成分が析出しやすく、特に窒化工程を経た後も保磁力
の低下をひきおこす。そこで、この軟磁性成分を消失さ
せたり、結晶性を向上させる目的として、アルゴン、ヘ
リウムなどの不活性ガス中もしくは真空中、800℃〜
1300℃の温度範囲で焼鈍を行うことが有効である。
この方法で作製した合金は、超急冷法などを用いた場合
に比べ、結晶粒径が大きく結晶性が良好であり、高い残
留磁束密度を有している。
When the high frequency melting method or the arc melting method is used, a soft magnetic component mainly composed of Fe tends to precipitate from the molten state when the alloy is solidified, which causes a decrease in coercive force even after the nitriding step. Therefore, in order to eliminate the soft magnetic component or to improve the crystallinity, the temperature is set to 800 ° C. or less in an inert gas such as argon or helium or in a vacuum.
It is effective to perform annealing in a temperature range of 1300 ° C.
The alloy produced by this method has a large crystal grain size and good crystallinity, and has a high residual magnetic flux density, as compared with the case where a super-quenching method or the like is used.

【0023】また超急冷法を用いた場合は、微細な結晶
粒が得られ、条件によってはサブミクロンの粒子も調製
できる。但し、冷却速度が大きい場合には、合金の非晶
質化が起こり、窒化後においても磁化などの磁気特性が
低下する。この場合も合金調製後の焼鈍は有効である。
ガスアトマイズ法で得た合金は、球状の形態を取ること
が多く、微粉体から粗粉体まで調製することが可能であ
る。この場合も条件によっては焼鈍を行い、結晶性を良
好にすることが必要となる。この方法に加えてR/D
法、メカニカルアロイング法、HDDR法により調製し
た合金は、微細な結晶粒を調整したり、M成分の組成に
分布を持たしたり、あるいはピニング型の磁石材料とす
ることが可能であるため、本発明の効果をより顕著にす
ることが可能である。
When the ultra-quenching method is used, fine crystal grains are obtained, and submicron particles can be prepared depending on conditions. However, when the cooling rate is high, the alloy becomes amorphous, and magnetic properties such as magnetization are reduced even after nitriding. Also in this case, annealing after alloy preparation is effective.
The alloy obtained by the gas atomization method often takes a spherical form, and can be prepared from a fine powder to a coarse powder. Also in this case, depending on the conditions, it is necessary to perform annealing to improve the crystallinity. In addition to this method, R / D
Alloy prepared by the method, mechanical alloying method, or HDDR method can adjust fine crystal grains, have a distribution in the composition of the M component, or be a pinning type magnet material. It is possible to make the effect of the present invention more remarkable.

【0024】ところで、焼鈍条件によっては、合金の結
晶相が異なる場合がある。例えば、R成分によっては、
焼鈍した場合と急冷した場合で、菱面体晶系をとる場合
と六方晶系をとる場合がある。従って、焼鈍の条件は充
分注意を要するし、また焼鈍条件を制御することで目的
とする結晶相を選ぶことができる。 (2)粗粉砕及び分級 上記方法で作製した合金インゴットを直接窒化すること
も可能であるが、結晶粒径が500μmより大きいと窒
化処理時間が長くなり、粗粉砕を行ってから窒化する方
が効率的である。
Incidentally, the crystal phase of the alloy may be different depending on the annealing conditions. For example, depending on the R component,
A rhombohedral system and a hexagonal system may be used depending on the case of annealing and rapid cooling. Therefore, the conditions for annealing require careful attention, and the desired crystal phase can be selected by controlling the annealing conditions. (2) Coarse pulverization and classification It is possible to directly nitride the alloy ingot produced by the above method. However, if the crystal grain size is larger than 500 μm, the nitriding treatment time becomes longer. It is efficient.

【0025】粗粉砕はジョ−クラッシャー、ハンマー、
スタンプミル、ローターミル、ピンミル、コーヒーミル
などを用いて行う。また、ボールミルやジェットミルな
どのような粉砕機を用いても、条件次第では窒化に適当
な、合金粉末の調製が可能である。また、粗粉砕の後、
ふるい、振動式あるいは音波式分級機、サイクロンなど
を用いて粒度調整を行うことも、より均質な窒化を行う
ために有効である。
The coarse crushing is performed by using a jaw crusher, a hammer,
This is performed using a stamp mill, a rotor mill, a pin mill, a coffee mill, or the like. Further, even if a pulverizer such as a ball mill or a jet mill is used, an alloy powder suitable for nitriding can be prepared depending on conditions. Also, after coarse grinding,
Adjusting the particle size using a sieve, a vibratory or sonic classifier, a cyclone, or the like is also effective for performing more uniform nitriding.

【0026】粗粉砕、分級の後、不活性ガスや水素中で
焼鈍を行うと構造の欠陥を除去することができ、場合に
よっては効果がある。以上で、本発明の製造法における
希土類−鉄合金の粉体原料またはインゴット原料の調製
法を例示したが、これらの原料の結晶粒径、粉砕粒径、
微構造、表面状態などにより、以下に示す窒化の最適条
件に違いが見られる。 (3)窒化・焼鈍 窒化はアンモニアガス、窒素ガスのうち少なくとも一種
を含むガスを、上記(1)または、(1)及び(2)で
得たR−Fe−M合金粉体またはインゴットに接触させ
て、結晶構造内に窒素を導入する工程である。
Annealing in an inert gas or hydrogen after coarse pulverization and classification can remove structural defects, which is effective in some cases. Above, the method of preparing a powder material or an ingot material of a rare earth-iron alloy in the production method of the present invention has been exemplified.
There are differences in the following optimum conditions of nitriding depending on the microstructure, surface condition, and the like. (3) Nitriding and annealing Nitriding involves contacting a gas containing at least one of ammonia gas and nitrogen gas with the R-Fe-M alloy powder or ingot obtained in the above (1) or (1) and (2). Then, nitrogen is introduced into the crystal structure.

【0027】このとき、窒化雰囲気ガス中に水素ガスを
共存させると、窒化効率が高いうえに、結晶構造が安定
なまま窒化できる点で好ましい。また反応を制御するた
めに、アルゴン、ヘリウム、ネオンなどの不活性ガスな
どを共存させる場合もある。窒化反応は、ガス組成、加
熱温度、加熱処理時間、加圧力で制御し得る。このうち
加熱温度は、母合金組成、窒化雰囲気によって異なる
が、200〜650℃の範囲で選ばれる。200℃以下
では窒素の侵入速度が遅く、反応に時間がかかりすぎ好
ましくなく、650℃以上では主相が分解して磁気特性
が劣化する。
At this time, it is preferable to coexist a hydrogen gas in the nitriding atmosphere gas since nitriding efficiency is high and nitriding can be performed with a stable crystal structure. In addition, in order to control the reaction, an inert gas such as argon, helium, or neon may be used in some cases. The nitriding reaction can be controlled by gas composition, heating temperature, heat treatment time, and pressure. The heating temperature varies depending on the mother alloy composition and the nitriding atmosphere, but is selected in the range of 200 to 650 ° C. If the temperature is lower than 200 ° C., the rate of nitrogen penetration is low, and the reaction takes too much time, which is not preferable.

【0028】また窒化を行った後、不活性ガス及び又は
水素ガス中で焼鈍することは磁気特性を向上させる点で
好ましい。窒化・焼鈍装置としては、横型、縦型の管状
炉、回転式反応炉、密閉式反応炉などが挙げられる。何
れの装置においても、本発明の磁性材料を調整すること
が可能であるが、特に窒素組成分布の揃った粉体を得る
ためには回転式反応炉を用いるのが好ましい。
After nitriding, annealing in an inert gas and / or hydrogen gas is preferable from the viewpoint of improving magnetic properties. Examples of the nitriding / annealing apparatus include horizontal and vertical tubular furnaces, rotary reactors, and closed reactors. In any of the apparatuses, the magnetic material of the present invention can be adjusted. However, in order to obtain a powder having a uniform nitrogen composition distribution, it is preferable to use a rotary reactor.

【0029】反応に用いるガスは、ガス組成を一定に保
ちながら1気圧以上の気流を反応炉の送り込む気流方
式、ガスを容器に加圧力0.01〜70気圧の領域で封
入する封入方式、或いはそれらの組合せなどで供給す
る。本磁性材料の製造方法としては、(1)、(2)で
例示した方法でR−Fe−M組成の母合金を調製してか
ら、(3)に示した方法で窒化する工程を用いるのが最
も好ましく、この方法によれば融点の高いM成分を母合
金の所望の部分に含有させることが可能となり、耐酸化
性向上に特に効果的である。
The gas used for the reaction may be a gas flow system in which a gas stream of 1 atm or more is fed into the reaction furnace while keeping the gas composition constant, a gas sealing system in which the gas is sealed in a container at a pressure of 0.01 to 70 atm, or Supplied in combination. As a method for producing the magnetic material, a step of preparing a master alloy having an R-Fe-M composition by the method exemplified in (1) and (2) and then nitriding by the method shown in (3) is used. According to this method, the M component having a high melting point can be contained in a desired portion of the mother alloy, which is particularly effective for improving oxidation resistance.

【0030】以上が本発明のR−Fe−M−N系磁性材
料の製造法に関する説明であるが、実用的な硬磁性材料
として本発明の磁性材料を応用する際には、上記の工程
に続いて、(4)微粉砕、(5)磁場成形、(6)着磁
を行う場合がある。以下、その例を簡単に示す。 (4)微粉砕 例えば、単磁区粒子型のR−Fe−M−N系磁性材料の
うち、特に、窒化処理後も大きな結晶粒径を保っていて
かつ大きな保磁力を発現させたい場合、窒化処理後も多
結晶粒体を保っていてかつ異方性の硬磁性材料としたい
場合などに微粉砕を行う。
The above is the description of the method for producing the R—Fe—MN based magnetic material of the present invention. When the magnetic material of the present invention is applied as a practical hard magnetic material, Subsequently, (4) pulverization, (5) magnetic field shaping, and (6) magnetization may be performed. Hereinafter, the example is shown simply. (4) Pulverization For example, among R-Fe-MN-based magnetic materials of a single magnetic domain type, particularly when a large crystal grain size is to be maintained and a large coercive force is desired to be developed after nitriding, Fine grinding is performed, for example, when the polycrystalline grains are kept after the treatment and anisotropic hard magnetic material is desired.

【0031】微粉砕の方法としては、回転ボールミル、
振動ボールミル、遊星ボールミル、ウエットミル、ジェ
ットミル、カッターミル、ピンミル、自動乳鉢及びそれ
らの組合せなどが用いられる。水素や酸素の量の調整及
び目標とする粉砕粒径に応じて、微粉砕方法が選ばれ
る。
As a method of pulverization, a rotary ball mill,
A vibration ball mill, a planetary ball mill, a wet mill, a jet mill, a cutter mill, a pin mill, an automatic mortar and a combination thereof are used. The pulverization method is selected according to the adjustment of the amount of hydrogen or oxygen and the target pulverized particle size.

【0032】水素や酸素の量を本発明の特に好ましい範
囲に制御する方法としては、例えばジェットミルを用い
る場合、粉砕ガス中の酸素及び水蒸気濃度を所定の濃度
に保ったり、またアトライターなどの湿式粉砕を用いる
場合は、溶媒中の溶存酸素や水分量を調整するなどの方
法が挙げられる。 (5)磁場成形 例えば、(3)又は(4)で得た磁性粉体を異方性ボン
ド磁石に応用する場合、熱硬化性樹脂や金属バインダー
と混合したのち磁場中で圧縮成形したり、熱可塑性樹脂
と共に混練したのち磁場中で射出成形を行ったりして、
磁場成形する。
As a method for controlling the amounts of hydrogen and oxygen within the particularly preferred ranges of the present invention, for example, when a jet mill is used, the oxygen and water vapor concentrations in the pulverized gas are maintained at a predetermined concentration, and an attritor or the like is used. When wet pulverization is used, a method of adjusting the amount of dissolved oxygen or water in the solvent may be used. (5) Magnetic field molding For example, when the magnetic powder obtained in (3) or (4) is applied to an anisotropic bonded magnet, compression molding is performed in a magnetic field after mixing with a thermosetting resin or a metal binder, After kneading with thermoplastic resin, injection molding is performed in a magnetic field,
Form a magnetic field.

【0033】磁場成形は、R−Fe−M−N系磁性材料
を充分に磁場配向せしめるため、好ましくは10kOe
以上、さらに好ましくは15kOe以上の磁場中で行
う。 (6)着磁 (5)で得た異方性ボンド磁石材料や、焼結磁石材料に
ついては、磁石性能を高めるために、通常着磁が行われ
る。
The magnetic field shaping is preferably performed at 10 kOe in order to sufficiently orient the R-Fe-MN-based magnetic material in a magnetic field.
Above, more preferably in a magnetic field of 15 kOe or more. (6) Magnetization The anisotropic bonded magnet material and sintered magnet material obtained in (5) are usually magnetized to enhance magnet performance.

【0034】着磁は、例えば静磁場を発生する電磁石、
パルス磁場を発生するコンデンサー着磁器などによって
行う。充分着磁を行わしめるための、磁場強度は、好ま
しくは15kOe以上、さらに好ましくは30kOe以
上である。
Magnetization is performed, for example, by an electromagnet that generates a static magnetic field,
This is performed by a condenser magnetizer that generates a pulse magnetic field. The magnetic field strength for sufficiently magnetizing is preferably 15 kOe or more, more preferably 30 kOe or more.

【0035】[0035]

【実施例】以下、実施例により本発明を具体的に説明す
る。評価方法は以下のとおりである。 (1)磁気特性 平均粒径約3μmのR−Fe−M−N系磁性材料を、外
部磁場15kOe中、12ton/cm2で5mm×1
0mm×2mm程度に成形し、室温で60kOeの磁場
でパルス着磁した後、振動試料型磁力計(VSM)を用
いて、固有保磁力(iHc/kOe)を測定した。 (2)窒素量、酸素量及び水素量 Si34(SiO2を定量含む)を標準試料として、不
活性ガス融解法により窒素量及び酸素量を定量した。水
素量は、高純度水素ガス(99.999%)を標準ガス
として、不活性ガス融解法により定量した。 (3)平均粒径 リー・ナース比表面積計を用いて、評価した。 (4)耐酸化性能 (1)で評価した平均粒径3μmの粉体の成形品を、1
10℃の恒温槽に入れ、200時間後の固有保磁力を
(1)と同様にして測定し、(1)の結果と比較して固
有保磁力の保持率(%)を求めた。保持率の高いものほ
ど、耐酸化性能が高い。 (5)酸化試験 平均粒径15μmに調整した粗粉体試料10mgを熱天
秤に入れ、50ml/minの空気気流中、昇温速度1
0℃/minの条件で50℃から250℃までの重量変
化率(重量%)を測定した。重量変化率の小さいものほ
ど酸化されにくい。
The present invention will be described below in detail with reference to examples. The evaluation method is as follows. (1) Magnetic properties An R-Fe-MN-based magnetic material having an average particle size of about 3 μm was prepared by subjecting an external magnetic field of 15 kOe to 12 ton / cm 2 at 5 mm × 1.
After shaping to about 0 mm × 2 mm and pulse magnetizing at room temperature with a magnetic field of 60 kOe, the intrinsic coercive force (iHc / kOe) was measured using a vibrating sample magnetometer (VSM). (2) Nitrogen content, oxygen content and hydrogen content Using Si 3 N 4 (including quantitatively SiO 2 ) as a standard sample, the nitrogen content and the oxygen content were determined by an inert gas melting method. The amount of hydrogen was determined by an inert gas melting method using high-purity hydrogen gas (99.999%) as a standard gas. (3) Average particle size It was evaluated using a Lee Nurse specific surface area meter. (4) Oxidation resistance The powder molded product having an average particle size of 3 μm evaluated in (1) was
The sample was placed in a thermostat at 10 ° C., and the intrinsic coercive force after 200 hours was measured in the same manner as in (1). The retention rate (%) of the intrinsic coercive force was determined by comparing with the result of (1). The higher the retention, the higher the oxidation resistance. (5) Oxidation test 10 mg of a coarse powder sample adjusted to an average particle size of 15 μm was placed in a thermobalance, and heated in a 50 ml / min air stream at a heating rate of 1
The rate of weight change (% by weight) from 50 ° C. to 250 ° C. was measured at 0 ° C./min. The smaller the rate of weight change, the more difficult it is to oxidize.

【0036】[0036]

【実施例1】純度99.9%のSm、純度99.9%の
Fe及び純度99.9%のNiを用いてアルゴンガス雰
囲気下高周波溶解炉で溶解混合し、次いで溶湯を純鉄の
鋳型中に流し込んで冷却し、さらにアルゴン雰囲気中
で、1050℃、35時間焼鈍することにより、Sm
11.0(Fe0.9Ni0.189.0組成の合金を調製した。
Embodiment 1 Sm of 99.9% purity, Fe of 99.9% purity and Ni of 99.9% purity were melt-mixed in a high-frequency melting furnace under an argon gas atmosphere, and then the molten metal was cast into a pure iron mold. The mixture was cooled by pouring into the atmosphere, and further annealed in an argon atmosphere at 1050 ° C. for 35 hours to obtain Sm.
An alloy having a composition of 11.0 (Fe 0.9 Ni 0.1 ) 89.0 was prepared.

【0037】この合金をジョークラッシャーにより粉砕
し、次いで窒素雰囲気中ローターミルでさらに粉砕した
後、ふるいで粒度を調整して、平均粒径約50μmの粉
体を得た。このSm−Fe−Ni合金粉体を横型管状炉
に仕込み、450℃において、アンモニア分圧0.32
atm、水素ガス0.68atmの混合気流中で加熱処
理し、続いてアルゴン気流中で焼鈍したのち、平均粒径
約15μmに調整した。次いでジェットミルにより、該
粉体を平均粒径約3μmに粉砕した。このとき、粉砕ガ
スとして、窒素を主体とし一部酸素及び水蒸気を混入さ
せたガスを用いた。
This alloy was pulverized by a jaw crusher and then further pulverized by a rotor mill in a nitrogen atmosphere, and the particle size was adjusted by a sieve to obtain a powder having an average particle diameter of about 50 μm. This Sm-Fe-Ni alloy powder was charged into a horizontal tubular furnace, and at 450 ° C, an ammonia partial pressure of 0.32.
Heat treatment was performed in a mixed gas flow of atm and hydrogen gas of 0.68 atm, and then annealing was performed in an argon gas flow, and then adjusted to an average particle size of about 15 μm. Next, the powder was pulverized by a jet mill to an average particle size of about 3 μm. At this time, a gas containing mainly nitrogen and partially mixed with oxygen and water vapor was used as the pulverizing gas.

【0038】得られたSm−Fe−Ni−N系粉体の組
成、耐酸化性能、酸化試験結果を表1に示した。また約
3μmに粉砕したSm−Fe−Ni−N系粉体の成形体
の固有保磁力は5.1kOe、残留磁束密度は8.7k
Gであった。なお、X線回折法により解析した結果、こ
の材料の結晶構造は主として菱面体晶であり、Ni単体
に対応する回折線は見られなかった。
The composition, oxidation resistance and oxidation test results of the obtained Sm-Fe-Ni-N powder are shown in Table 1. Further, the intrinsic coercive force of the compact of the Sm—Fe—Ni—N powder crushed to about 3 μm is 5.1 kOe, and the residual magnetic flux density is 8.7 k.
G. As a result of analysis by the X-ray diffraction method, the crystal structure of this material was mainly rhombohedral, and no diffraction line corresponding to Ni alone was found.

【0039】[0039]

【実施例2〜5】母合金の組成を、表1に示す組成比に
変更する以外は実施例1と同様な操作によって、R−F
e−M−N系粉体を得た。その結果を表1に示す。な
お、X線回折の結果から、実施例2、3及び5の材料は
菱面体晶を有した物質が大部分を占め、実施例4の材料
には菱面体晶を有した物質に正方晶を有する物質が混じ
っていることがわかった。
Examples 2 to 5 R-F by the same operation as in Example 1 except that the composition of the mother alloy was changed to the composition ratio shown in Table 1.
An eMN-based powder was obtained. Table 1 shows the results. From the results of X-ray diffraction, the materials of Examples 2, 3 and 5 were mostly composed of substances having rhombohedral crystals, and the material of Example 4 was tetragonal with the substances having rhombohedral crystals. It was found that the substances contained were mixed.

【0040】[0040]

【比較例1】Niを加えないで、その分量(原子%)だ
けFeを加える以外は実施例1と同様にして、Sm−F
e−N系粉体を得た。その結果を表1に示す。
Comparative Example 1 Sm-F was prepared in the same manner as in Example 1 except that Fe was added by the amount (atomic%) without adding Ni.
An eN powder was obtained. Table 1 shows the results.

【0041】[0041]

【比較例2】Mnを加えないで、その分量(原子%)だ
けFeを加える以外は実施例2と同様にして、Nd−F
e−N粉体を得た。その結果を表1に示す。
Comparative Example 2 Nd-F was obtained in the same manner as in Example 2, except that Mn was not added, and Fe was added by the amount (atomic%).
eN powder was obtained. Table 1 shows the results.

【0042】[0042]

【比較例3】実施例3で得た粒径約3μmのSm
9.2(Fe0.9Cr0.174.813.80.5 1.7組成の粉
体を、2ton/cm2、15kOeの条件で磁場成形
したあと、アルゴン雰囲気下、800℃、1時間の条件
で熱処理を行った。これを急冷したときの成形体の固有
保磁力は0.06kOeであった。この成形体を再び約
3μmに粉砕した粉体の固有保磁力は0.07kOeで
あった。なおこの材料の結晶構造をX線回折により解析
した結果、α−鉄、窒化鉄に対応する回折線が主に検出
された。
Comparative Example 3 Sm having a particle size of about 3 μm obtained in Example 3
9.2(Fe0.9Cr0.1)74.8N13.8H0.5O 1.7Composition of powder
The body is 2ton / cmTwo, 15kOe magnetic field molding
After that, under argon atmosphere, at 800 ° C for 1 hour
The heat treatment was performed. The characteristic of the compact when it is quenched
The coercive force was 0.06 kOe. This compact is again
The inherent coercive force of the powder ground to 3 μm is 0.07 kOe
there were. The crystal structure of this material was analyzed by X-ray diffraction
As a result, diffraction lines corresponding to α-iron and iron nitride are mainly detected
Was done.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【発明の効果】以上説明した様に、本発明によれば、優
れた耐酸化性を有し、磁気特性の高い希土類−鉄−窒素
系磁性材料を提供することができる。
As described above, according to the present invention, a rare earth-iron-nitrogen based magnetic material having excellent oxidation resistance and high magnetic properties can be provided.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式Rα(Fe(1-γ)Mγ(100-α-β)N
β で表され、かつ耐酸化性能が70%以上の磁性材料であ
り、RはSmまたはNdのうち少なくとも一種 、 Mは、Mn、Cr、Niの元素のうち少なくとも一種、 α、βは原子百分率で 3≦α≦20 3≦β≦30 γは原子比で0.01≦γ≦0.2 であって、かつそのR、Fe、M及びNを含んだ相が菱面体
晶または六方晶の結晶構造を含有することを特徴とする
磁性材料。
1. The general formula R α (Fe (1-γ) M γ ) (100-α-β) N
expressed in beta, and a magnetic material of oxidation resistance is 70% or more, at least one of R is Sm or Nd, M is at least one kind of Mn, Cr, Ni elements, alpha, beta atomic percent 3 ≦ α ≦ 20 3 ≦ β ≦ 30 γ is 0.01 ≦ γ ≦ 0.2 in atomic ratio, and the phase containing R, Fe, M and N is rhombohedral or hexagonal. A magnetic material having a crystal structure.
【請求項2】 上記請求項1に記載の磁性材料の成分で
あるFeの0.01〜50原子%をCoで置換した組成
を有することを特徴とする磁性材料。
2. A magnetic material having a composition in which 0.01 to 50 atomic% of Fe, which is a component of the magnetic material according to claim 1, is substituted with Co.
【請求項3】 一般式R3. The general formula R αα (Fe(Fe (1-γ)(1-γ) M γγ )
(100-α-β)(100-α-β) N ββ のMがNiであることを特徴とする請Wherein M is Ni.
求項1または2記載の磁性材料。3. The magnetic material according to claim 1 or 2.
【請求項4】 一般式Rα/(100-β)(Fe
(1-γ)γ(100-α-β)/(100-β)で表される合金を、
窒素ガス、アンモニアガスのうち少なくとも一種を含む
雰囲気下で、200〜650℃の範囲で熱処理すること
を特徴とする上記請求項1〜3に記載の磁性材料の製造
法。
4. The general formula R α / (100-β) (Fe
(1-γ) M γ ) An alloy represented by (100-α-β) / (100-β)
The method for producing a magnetic material according to any one of claims 1 to 3 , wherein the heat treatment is performed in an atmosphere containing at least one of nitrogen gas and ammonia gas at a temperature of 200 to 650 ° C.
JP24501292A 1992-09-14 1992-09-14 Nitride magnetic materials Expired - Lifetime JP3157302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24501292A JP3157302B2 (en) 1992-09-14 1992-09-14 Nitride magnetic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24501292A JP3157302B2 (en) 1992-09-14 1992-09-14 Nitride magnetic materials

Publications (2)

Publication Number Publication Date
JPH0696918A JPH0696918A (en) 1994-04-08
JP3157302B2 true JP3157302B2 (en) 2001-04-16

Family

ID=17127266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24501292A Expired - Lifetime JP3157302B2 (en) 1992-09-14 1992-09-14 Nitride magnetic materials

Country Status (1)

Country Link
JP (1) JP3157302B2 (en)

Also Published As

Publication number Publication date
JPH0696918A (en) 1994-04-08

Similar Documents

Publication Publication Date Title
US5164104A (en) Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen and bonded magnet containing the same
JP2005527989A (en) Nanocrystalline rare earth permanent magnet materials, nanocomposite rare earth permanent magnet materials, and methods for producing these magnet materials
JP3724513B2 (en) Method for manufacturing permanent magnet
JPH11186016A (en) Rare-earth element-iron-boron permanent magnet and its manufacture
JP2705985B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP2003193208A (en) Magnet material and production method therefor
JP3560387B2 (en) Magnetic material and its manufacturing method
JPH09190909A (en) Manufacture of r-t-n permanent magnet powder and of anisotropic bond magnet
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JPH0685369B2 (en) Permanent magnet manufacturing method
Cao et al. Highly coercive Sm2Fe15Ga2C2 magnets made by intense ball milling
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP2000003808A (en) Hard magnetic material
JP2857476B2 (en) Permanent magnet consisting of single domain particles
JP3294645B2 (en) Nitride magnetic powder and its production method
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JP3157302B2 (en) Nitride magnetic materials
JPH0620813A (en) Rare earth anisotropic permanent magnet powder and manufacture thereof
JPH06112019A (en) Nitride magnetic material
JP3209291B2 (en) Magnetic material and its manufacturing method
JP3784085B2 (en) Magnetic material having stable coercive force and method for producing the same
JPH05258928A (en) Permanent magnet and powder thereof and manufacturing method thereof
JP3200201B2 (en) Nitride magnetic powder and method for producing the same
JP3209292B2 (en) Magnetic material and its manufacturing method
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 12