JP2003193208A - Magnet material and production method therefor - Google Patents

Magnet material and production method therefor

Info

Publication number
JP2003193208A
JP2003193208A JP2001400599A JP2001400599A JP2003193208A JP 2003193208 A JP2003193208 A JP 2003193208A JP 2001400599 A JP2001400599 A JP 2001400599A JP 2001400599 A JP2001400599 A JP 2001400599A JP 2003193208 A JP2003193208 A JP 2003193208A
Authority
JP
Japan
Prior art keywords
phase
element selected
alloy
magnetic
main phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001400599A
Other languages
Japanese (ja)
Other versions
JP3715573B2 (en
Inventor
Takeshi Ume
武 梅
Shinya Sakurada
新哉 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001400599A priority Critical patent/JP3715573B2/en
Publication of JP2003193208A publication Critical patent/JP2003193208A/en
Application granted granted Critical
Publication of JP3715573B2 publication Critical patent/JP3715573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a magnet which contains hyperfine crystal grains, and has a high residual magnetic flux density, and a sufficient maximum magnetic energy product. <P>SOLUTION: The magnet material is substantially expressed by the general formula of R<SB>x</SB>(T<SB>1-u-v-w</SB>Cu<SB>u</SB>M1<SB>v</SB>M2<SB>w</SB>)<SB>1-x-y</SB>A<SB>y</SB>(wherein, R is at least one kind of element selected from rare earth elements inclusive of Y; T is Fe or Co; M1 is at least one kind of element selected from Zr, Ti, Nb, Mo, Ta, W, and Hf; M2 is at least one kind of element selected from Cr, V, Mn, and Ni; A is at least one kind of element selected from N and B; and x, y, u, v, and w are atomic ratios, respectively, and satisfy 0.04≤x≤0.2, 0.001≤y≤0.2, 002≤u≤0.2, 0≤v≤0.2, and 0≤w≤0.2), and contains a 0.2 to 10 vol.% non- magnetic phase containing ≥20 atomic % Cu, and a hard magnetic main phase, and in which the mean crystal grain size of the hard magnetic main phase is ≤100 nm. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は磁石材料及びその製
造方法に関する。
TECHNICAL FIELD The present invention relates to a magnet material and a method for manufacturing the same.

【0002】[0002]

【従来の技術】高性能希土類磁石としてはSm−Co磁
石、Nd−Fe−B磁石などが知られており、現在量産
されている。このような高性能磁石は主としてモータ、
スピーカ、計測器等の電気機器に使用されている。近
年、各種電気機器の小型軽量化、低消費電力化の要求が
高まり、これに対応するために永久磁石の最大磁気エネ
ルギー積(BHmax)を向上させた、より高性能の永
久磁石が求められている。新しい高性能磁石材料の候補
としては1990年にSm−Fe−N系材料がCoey
らによって発表され注目を集めている。Sm−Fe−N
はNd−Fe−Bに匹敵する高い飽和磁化とNd−Fe
−Bを凌駕する大きな磁気異方性を有するため、高性能
磁石としての応用が期待されている。
2. Description of the Related Art Sm-Co magnets, Nd-Fe-B magnets and the like are known as high-performance rare earth magnets, and they are currently mass-produced. Such high-performance magnets are mainly motors,
It is used in electrical equipment such as speakers and measuring instruments. In recent years, there has been an increasing demand for reduction in size and weight of various electric devices and reduction in power consumption, and in order to meet these demands, higher performance permanent magnets having improved maximum magnetic energy products (BHmax) of permanent magnets have been demanded. There is. As a candidate for new high-performance magnet material, Sm-Fe-N-based material was Coey in 1990.
It has been announced and is attracting attention. Sm-Fe-N
Has a high saturation magnetization and Nd-Fe comparable to Nd-Fe-B.
Since it has a large magnetic anisotropy exceeding -B, it is expected to be applied as a high-performance magnet.

【0003】R−T−N系永久磁石材料(Rは希土類元
素の1種または2種以上、TはFeまたはFeとCo)
において、高い磁気特性を実現するには、窒化処理条件
を最適化する必要がある他、結晶粒を微細化することが
重要である。結晶の微細化により保磁力(iHc)を高
められる他、微粒子の間に交換結合が働き、残留磁束密
度(Br)、最大磁気エネルギー積(BH)maxが向
上する。微細化手段としては、溶湯急冷法や、水素化・
分解反応・脱水素・再結合反応処理(HDDR法)によ
り結晶を微細化する方法、などがある。溶湯急冷法は微
細、かつ均一な合金組織を得るため、速い溶湯急冷速度
と高精度の急冷制御技術を要し、設備コスト増大など、
生産上の課題を残している。これに対して、HDDR法
は汎用性に富んだ低コストの製造方法である。
R-TN system permanent magnet material (R is one or more rare earth elements, T is Fe or Fe and Co)
In order to realize high magnetic properties, it is necessary to optimize the nitriding treatment conditions, and it is important to refine the crystal grains. Coercive force (iHc) can be increased by refining the crystal, and exchange coupling works between fine particles to improve residual magnetic flux density (Br) and maximum magnetic energy product (BH) max. As the refining means, the molten metal quenching method, hydrogenation
There is a method of refining crystals by a decomposition reaction / dehydrogenation / recombination reaction treatment (HDDR method). In order to obtain a fine and uniform alloy structure, the melt quenching method requires a fast melt quenching rate and a highly accurate quenching control technique, which increases equipment costs.
It leaves production challenges. On the other hand, the HDDR method is a versatile, low-cost manufacturing method.

【0004】HDDR法によって高性能SmFeNを開
発しようとする試みはCoeyらの発表後いくつかの研
究グループによってなされており、例えばX.Chen
とZ.AltounianはSmFe17におけるF
eの一部を各種元素(Ti,V,Cr,Zr,Nb,M
o,Hf,Ta,W)で置換してHDDR反応挙動を詳
しく調べ、TiまたはNbで置換した場合には高い磁気
特性が得られることを見出した(Journal of
Applied Physics,75(10)(1
991)p6012)。また、飛世らはSmFe17
にTi,Bを添加し、結晶粒の平均粒径が200nmま
で微細化できることを報告した(Proceeding
s of 16th International W
orkshop on RE Magnets and
Their Applications(2000)
p793)。しかしながら、この方法によっても結晶粒
の微細化が十分とは言えず、溶湯急冷法により得られた
ものと比較すると、残留磁束密度(Br)が小さいこと
や保磁力(iHc)、最大磁気エネルギー積(BH)m
axが足りないといった課題を有する。また、HDDR
法によって高性能NdFeBの開発も進められており、
合金組成の調整または処理プロセスの適切化によって異
方性の合金粉末が得られることを見出したが(Jour
nal of Magnetic Society o
f Japan,23(1999)p300)、結晶粒
の平均粒径が300nmであり、更なる微細な組織と高
特性化が求められている。
Attempts to develop high performance SmFeN by the HDDR method have been made by several research groups after the presentation of Coey et al. Chen
And Z. Altounian is F in Sm 2 Fe 17
Part of e is various elements (Ti, V, Cr, Zr, Nb, M
o, Hf, Ta, W) and the HDDR reaction behavior was investigated in detail, and it was found that high magnetic properties were obtained when substituted with Ti or Nb (Journal of
Applied Physics, 75 (10) (1
991) p6012). In addition, Toyoyo et al. Sm 2 Fe 17
It has been reported that Ti and B can be added to Si to reduce the average grain size to 200 nm (Proceeding
s of 16 th International W
orkshop on RE Magnets and
Their Applications (2000)
p793). However, this method cannot be said to be sufficient in refining the crystal grains, and the residual magnetic flux density (Br) is small, the coercive force (iHc), and the maximum magnetic energy product are smaller than those obtained by the melt quenching method. (BH) m
There is a problem that ax is insufficient. In addition, HDDR
Development of high-performance NdFeB by the method
It has been found that anisotropic alloy powder can be obtained by adjusting the alloy composition or optimizing the treatment process (Jour.
nal of Magnetic Society o
f Japan, 23 (1999) p300), the average grain size of the crystal grains is 300 nm, and further finer structure and higher characteristics are required.

【0005】[0005]

【発明が解決しようとする課題】上述したように、従来
の磁石においては、結晶粒の微細化がまだ不十分である
ことに起因して、残留磁束密度(Br)が不十分で、充
分な最大磁気エネルギー積(BH)maxが得られてい
ないという課題があった。本発明はこのような課題に対
処するためになされたもので、高い磁気特性を実現でき
る100nm以下の超微細結晶体を有する磁石材料及び
製造方法を提供することを目的としている。
As described above, in the conventional magnet, the residual magnetic flux density (Br) is insufficient due to insufficient refinement of the crystal grains, resulting in insufficient magnetism. There was a problem that the maximum magnetic energy product (BH) max was not obtained. The present invention has been made to address such a problem, and an object thereof is to provide a magnet material and a manufacturing method having an ultrafine crystal body of 100 nm or less that can realize high magnetic characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は上記した目的を
達成するために、磁石材料の結晶粒を超微細化すること
について鋭意研究を重ねた結果成されたものである。す
なわち、第1の本発明は、一般式R(T
1−u−v−wCuM1M2 1−x−y
(式中、RはYを含む希土類元素から選ばれる少なくと
も1種の元素、TはFeまたはCoから選ばれる少なく
とも1種の元素、M1はZr,Ti,Nb,Mo,T
a,W,Hfから選ばれる少なくとも1種の元素、M2
はCr,V,Mn,Niから選ばれる少なくとも1種の
元素、AはNまたはBから選ばれる少なくとも1種の元
素、x,y,u,vはそれぞれ原子比で0.04≦x≦
0.2、0.001≦y≦0.2、0.002≦u≦
0.2、0≦v≦0.2、0≦w≦0.2)で実質的に
表され、20原子%以上のCuを含む非磁性相0.2〜
10体積%と硬磁性主相を含み、かつ前記硬磁性主相の
平均結晶粒径が100nm以下であることを特徴とする
磁石材料である。
The present invention has the above-mentioned objects.
To achieve ultrafine grain of magnet material to achieve
It was made as a result of repeated studies. You
That is, the first invention is represented by the general formula Rx(T
1-uv-wCuuM1vM2 w)1-xyAy
(In the formula, R is at least selected from rare earth elements including Y.
Also, one element, T is less than Fe or Co
Both are one element, M1 is Zr, Ti, Nb, Mo, T
at least one element selected from a, W, and Hf, M2
Is at least one selected from Cr, V, Mn, and Ni.
Element, A is at least one element selected from N or B
Element, x, y, u, v are each in atomic ratio 0.04 ≦ x ≦
0.2, 0.001 ≦ y ≦ 0.2, 0.002 ≦ u ≦
0.2, 0 ≦ v ≦ 0.2, 0 ≦ w ≦ 0.2)
And a non-magnetic phase containing Cu of 20 atomic% or more 0.2 to
10% by volume and a hard magnetic main phase, and
Characterized in that the average crystal grain size is 100 nm or less
It is a magnetic material.

【0007】上記第1の本発明において、前記硬磁性主
相の結晶構造は、TbCu型、ThNi17型、T
Zn17型、NdFe14B型であることが望ま
しい。また、これらの相にThMn12型,RE
29型の相が混在していても差し支えない。また、前記
M1は、Ti,Zr,Nb,HfまたはMoから選ばれ
る少なくとも1種の元素を必ず含むことが望ましく、さ
らに、前記M2は、CrまたはVから選ばれる少なくと
も1種の元素を必ず含むことが望ましい。
In the first aspect of the present invention, the crystal structure of the hard magnetic main phase is TbCu 7 type, Th 2 Ni 17 type, T
The h 2 Zn 17 type and the Nd 2 Fe 14 B type are desirable. In addition, ThMn 12 type, RE 3 T
It does not matter if the 29- type phases are mixed. Further, it is desirable that M1 always contains at least one element selected from Ti, Zr, Nb, Hf or Mo, and further, M2 always contains at least one element selected from Cr or V. Is desirable.

【0008】さらに、第2の本発明は、原料粉末を、平
均粉末粒径3〜500μmに粉砕し、続いて0.1〜1
0atmの水素ガス中または水素ガス分圧を有した窒素
ガス以外の不活性ガス中で450〜850℃で1〜8時
間保持して水素化及び分解反応処理を行ない、次に1
3.3Pa以下の真空中に600℃〜950℃で0.1
〜3時間保持して脱水素及び再結合反応処理を行なう工
程を含むことを特徴とする磁石材料の製造方法である。
Further, in the second aspect of the present invention, the raw material powder is pulverized to an average powder particle size of 3 to 500 μm, and then 0.1 to 1
The hydrogenation and decomposition reaction treatment is carried out by holding at 450 to 850 ° C. for 1 to 8 hours in 0 atm of hydrogen gas or an inert gas having a hydrogen gas partial pressure other than nitrogen gas, and then 1
0.1 at 600 ° C to 950 ° C in a vacuum of 3.3 Pa or less
The method for producing a magnet material is characterized by including a step of carrying out dehydrogenation and recombination reaction treatment by holding for ~ 3 hours.

【0009】(作用)本発明者らは、R−T−M−Cu
合金系を研究した結果、R−T―M―Cu系に高T濃度
のR−T相と非磁性Cuリッチ相との共存関係を見出
し、すでに特許出願を行っているが(特開2001−1
98206参照)、本発明は、これらの研究過程から発
明をするに至ったもので、非磁性相Cuリッチ相の導入
によって、HDDR法を用いて超微細化した結晶を形成
することの可能性、更にR−T−A合金系の結晶構造安
定性の観点からM1とM2の2種類の内の少なくとも1
種の元素を更に複合添加する際の効果を検討した結果、
本願発明を完成したものである。
(Function) The present inventors have made R-T-M-Cu
As a result of research on the alloy system, the coexistence relationship between the RT phase having a high T concentration and the nonmagnetic Cu-rich phase was found in the RT-M-Cu system, and a patent application has already been made (Japanese Patent Laid-Open No. 2001-2001). 1
98206), the present invention has led to the invention from these research processes. It is possible to form an ultra-fine crystal using the HDDR method by introducing a non-magnetic phase Cu-rich phase. Further, from the viewpoint of the crystal structure stability of the RTA alloy system, at least one of two kinds of M1 and M2 is used.
As a result of studying the effect of further adding multiple elements of the species,
The present invention has been completed.

【0010】すなわち、本発明の磁石材料は、R−T−
A系を基本としてCu元素を添加し、Cuリッチ相を導
入することを特徴としている。これまでに、上記Tの一
部にCuなどの原子を置換することによって磁気特性を
改善する技術に関する幾つかの報告がある。例えば、特
開平11−293418号公報、及び特開平11−29
7518号公報には、SmFeMN磁石材料のM元素群
にCuを添加することが開示されているが、この技術に
おいて、合金組織については主相或いは主相+軟磁性相
の組織が理想であるとの記載があるのみで、20原子%
以上のCuを含む非磁性相(Cuリッチ相)の存在に関
して何ら開示されていない。すなわち、Cuリッチ相を
形成することについては何ら着想されていなかったので
ある。本発明では上記Cuリッチ相の導入によって、そ
れが存在していない場合と比較して結晶粒を超微細化す
ることが可能となることに着想し発明を完成したもので
ある。更に,本発明は上述したCuリッチ相の存在に加
えてR−Fe−A系合金の結晶構造に強い影響を持つ2
種類の元素(Feと固溶しにくいM1元素とFeと固溶
しやすいM2元素)の少なくとも一方を添加することに
よってさらに特性を改善することができるものであり、
これは、Cuリッチ相の存在とこれら2種類の元素の内
の少なくとも一種を添加することによって、HDDR処
理中の各反応の核生成率を向上させ、粒成長を抑制し、
更なる超微細な合金組織と高磁気特性が可能となったも
のである。Cuリッチ相とM1元素とM2元素との少な
くとも三種類複合添加が特に望ましい。
That is, the magnet material of the present invention is R-T-
It is characterized in that Cu element is added to introduce a Cu-rich phase based on the A type. Up to now, there have been some reports on a technique for improving the magnetic characteristics by substituting an atom such as Cu for part of the T. For example, JP-A-11-293418 and JP-A-11-29
Japanese Patent No. 7518 discloses that Cu is added to the M element group of the SmFeMN magnet material, but in this technique, the main phase or the main phase + soft magnetic phase structure is ideal for the alloy structure. 20 atom%
There is no disclosure regarding the existence of the nonmagnetic phase (Cu-rich phase) containing Cu. That is, there was no idea of forming a Cu-rich phase. The present invention has been completed with the idea that the introduction of the Cu-rich phase makes it possible to make the crystal grains ultrafine as compared with the case where it does not exist. Furthermore, the present invention has a strong influence on the crystal structure of the R-Fe-A based alloy in addition to the presence of the Cu-rich phase described above.
The characteristics can be further improved by adding at least one of two kinds of elements (M1 element which is hard to form a solid solution with Fe and M2 element which is easy to form a solid solution with Fe).
This is because the presence of a Cu-rich phase and the addition of at least one of these two types of elements improve the nucleation rate of each reaction during the HDDR process and suppress grain growth.
It is possible to achieve a further ultrafine alloy structure and high magnetic properties. It is particularly desirable to add at least three kinds of Cu-rich phase, M1 element and M2 element in combination.

【0011】さらに、本製造方法の発明においては、H
DDR処理には主として水素化・分解反応(HD反応:
粗大な主相―>T相+R水素化物)と脱水素・再結合反
応(DR反応:T相+R水素化物―>微細な主相)とい
う複雑な反応が発生しており、超微細かつ均一な結晶粒
を得るため、HD反応とDR反応の制御が極めて重要で
ある。本発明ではHDDR処理中の雰囲気種類・分圧、
処理温度・時間の制御によって結晶粒を超微細化するこ
とが可能となるものである。
Further, in the invention of this manufacturing method, H
For the DDR processing, mainly hydrogenation / cracking reaction (HD reaction:
Coarse main phase-> T phase + R hydride) and dehydrogenation / recombination reaction (DR reaction: T phase + R hydride-> fine main phase) occur complicated reactions, and ultrafine and uniform The control of the HD reaction and the DR reaction is extremely important for obtaining crystal grains. In the present invention, the atmosphere type and partial pressure during HDDR treatment,
By controlling the processing temperature and time, it becomes possible to make the crystal grains ultrafine.

【0012】[0012]

【発明の実施の形態】以下、本発明を実施するための形
態について説明する。本発明の磁石材料は、上述したよ
うに 一般式 R(T1−u−v−wCuM1M2
1−x−y (式中、RはYを含む希土類元素から選ばれる少なくと
も1種の元素、TはFeまたはCoから選ばれる少なく
とも1種の元素、M1はZr,Ti,Nb,Mo,T
a,W,Hfから選ばれる少なくとも1種の元素、M2
はCr,V,Mn,Niから選ばれる少なくとも1種の
元素、AはNまたはBから選ばれる少なくとも1種の元
素、x,y,u,vはそれぞれ原子比で0.04≦x≦
0.2、0.001≦y≦0.2、0.002≦u≦
0.2、0≦v≦0.2、0≦w≦0.2)で実質的に
表され、20原子%以上のCuを含む非磁性相0.2〜
10体積%と硬磁性主相を含み、かつ前記硬磁性主相の
平均結晶粒径が100nm以下であることを特徴とする
ものである。
BEST MODE FOR CARRYING OUT THE INVENTION Modes for carrying out the present invention will be described below. Magnet materials of the present invention have the general formula R x as described above (T 1-u-v- w Cu u M1 v M2 w)
During 1-x-y A y (wherein, at least one element R selected from rare earth elements including Y, T is at least one element selected from Fe or Co, M1 is Zr, Ti, Nb, Mo , T
at least one element selected from a, W, and Hf, M2
Is at least one element selected from Cr, V, Mn, and Ni, A is at least one element selected from N or B, and x, y, u, and v are each an atomic ratio of 0.04 ≦ x ≦.
0.2, 0.001 ≦ y ≦ 0.2, 0.002 ≦ u ≦
0.2, 0 ≤ v ≤ 0.2, 0 ≤ w ≤ 0.2), and a non-magnetic phase containing Cu of 20 atomic% or more 0.2 to
10% by volume and a hard magnetic main phase are included, and the average crystal grain size of the hard magnetic main phase is 100 nm or less.

【0013】以下、本発明の磁石材料を構成する各成分
について詳細に説明する。 (1)R元素 R元素としてはYを含む希土類元素から選ばれる少なく
とも1種の元素が使用される。R元素はいずれも磁石材
料に大きな磁気異方性をもたらし、高い保磁力を付与す
るために4〜20原子%の範囲で配合される。R元素の
総量を4原子%未満にすると多量のα−Feが析出して
大きな保磁力が得られず、一方20原子%を超えると多
量のRリッチ相が形成し、飽和磁化の低下が著しい。よ
り好ましいR元素の配合量は、A元素は主にNを用いる
場合、8〜12原子%であり、さらに好ましくは8.5
〜11原子%であり、A元素は主にBを用いる場合、8
〜14原子%であり、さらに好ましくは11〜12.5
原子%である。R元素としては、Sm,Nd,Prを用
いることが好ましく、Sm,Ndは特に好ましい。A元
素は主にNを用いる場合、Rの総量の50原子%以上、
さらに好ましくは70原子%以上をSmとすることによ
り、磁石材料の性能、とりわけ保磁力を高めるのに有効
である。
Each component constituting the magnet material of the present invention will be described in detail below. (1) R element As the R element, at least one element selected from rare earth elements including Y is used. Each of the R elements brings about a large magnetic anisotropy to the magnet material and is added in a range of 4 to 20 atomic% in order to impart a high coercive force. If the total amount of R elements is less than 4 atom%, a large amount of α-Fe precipitates and a large coercive force cannot be obtained, while if it exceeds 20 atom%, a large amount of R rich phase is formed and the saturation magnetization is significantly lowered. . The more preferable compounding amount of the R element is 8 to 12 atom% when the A element is mainly N, and more preferably 8.5.
Is about 11 atomic%, and when the A element is mainly B, 8
To 14 atom%, and more preferably 11 to 12.5.
It is atomic%. As the R element, Sm, Nd, and Pr are preferably used, and Sm and Nd are particularly preferable. When N is mainly used as the A element, 50 atomic% or more of the total amount of R,
More preferably, Sm of 70 atom% or more is effective for enhancing the performance of the magnet material, especially the coercive force.

【0014】(2)T元素 T元素はFeまたはCoから選ばれる少なくとも1種の
元素であるが、主として磁石材料の磁化を担うものであ
る。Tを多量に配合することにより磁石材料の飽和磁化
を高めることができるが、過剰に配合するとα−Fe相
の析出により保磁力を低下させる恐れがある。
(2) T Element The T element is at least one element selected from Fe or Co, and mainly plays a role in magnetizing the magnet material. The saturation magnetization of the magnet material can be increased by adding a large amount of T, but if it is added excessively, the coercive force may be lowered due to the precipitation of the α-Fe phase.

【0015】(3)Cu Cuは合金組織微細化のために有効な元素である。適量
なCu添加はHDDR反応中の核生成率の向上をもたら
す他、合金中にCuリッチ合金相(Cu量が20原子%
以上)を形成し、粒成長阻止のピンニングサイトとして
HDDR処理中の粒成長の抑制には極めて有効であり、
組織を超微細させる効果を有する。合金中のCuリッチ
相の主要構成元素はCuとRであるため、Cuリッチ相
を形成するには、主相でのCu固溶域以上のCu元素を
添加する他、導入するCuリッチ相の量によってR元素
の添加量を増やすことが重要である。合金組成中のR元
素量を調整せず、単なる組成中のTをCuに置換する
と、母合金に粗大な軟磁性T相が形成され、保磁力が著
しく低下する場合がある。Cuリッチ合金相がピンニン
グサイトとして働くほか、R−T−A合金のHDDR温
度の低減にも極めて有効である。特に、M1,M2元素
を添加し、合金のHDDR反応温度が高まる場合は、C
uとの複合添加により、HDDR反応がより低い温度お
よび/または短時間で完成でき、結晶粒の微細化に有効
である。Cuの配合量をT,M1,M2,Cuの総量の
0.2原子%未満にするとその配合効果を十分に達成で
きず、一方T,M1,M2,Cuの総量の20原子%を
超えると飽和磁化の低下を招く。より好ましいCu元素
の配合量はT,M1,M2,Cuの総量の0.5〜10
原子%であり、さらに好ましくは1〜7原子%である。
前記Cuの50原子%以下を、Si,Ga,Zn,A
l,Geから選ばれる少なくとも1種の元素で置換する
ことができる。このような組成にすることによって減磁
曲線の角型性が向上するなどして、磁石特性特性が改善
される場合がある。
(3) Cu Cu is an effective element for refining the alloy structure. Addition of an appropriate amount of Cu not only improves the nucleation rate during the HDDR reaction, but also Cu-rich alloy phase (Cu content of 20 atomic%
The above is formed, and it is extremely effective as a pinning site for grain growth inhibition to suppress grain growth during HDDR treatment.
It has the effect of making the tissue ultrafine. Since the main constituent elements of the Cu-rich phase in the alloy are Cu and R, in order to form the Cu-rich phase, in addition to adding the Cu element in the Cu solid solution region or more in the main phase, It is important to increase the addition amount of the R element depending on the amount. If T in the mere composition is replaced with Cu without adjusting the amount of R element in the alloy composition, a coarse soft magnetic T phase may be formed in the mother alloy, and the coercive force may be significantly reduced. The Cu-rich alloy phase acts as a pinning site, and is also extremely effective in reducing the HDDR temperature of the RTA alloy. In particular, when M1 and M2 elements are added to increase the HDDR reaction temperature of the alloy, C
By the combined addition with u, the HDDR reaction can be completed at a lower temperature and / or a shorter time, and it is effective for the refinement of crystal grains. If the compounding amount of Cu is less than 0.2 atom% of the total amount of T, M1, M2, Cu, the compounding effect cannot be sufficiently achieved, while if it exceeds 20 atom% of the total amount of T, M1, M2, Cu. This causes a decrease in saturation magnetization. A more preferable amount of Cu element is 0.5 to 10 of the total amount of T, M1, M2 and Cu.
Atomic%, more preferably 1 to 7 atomic%.
50 atomic% or less of Cu is Si, Ga, Zn, A
It can be substituted with at least one element selected from l and Ge. With such a composition, the squareness of the demagnetization curve may be improved, and the magnet characteristic may be improved.

【0016】(4)M1元素 M1元素はZr,Ti,Nb,Mo,Ta,W,Hfか
ら選ばれる少なくとも1種の元素であるが、R−Fe−
A系合金の結晶構造に強い影響を及ぼし、DR再結合反
応時の主相の粒成長を抑制させ、合金組織の微細化に有
効である。この他、母合金中のα−Fe相の析出の抑制
にも有効である。ただ、M1元素の置換は合金のHD反
応温度を高める場合があり、M1元素のみの微細化効果
が不十分である。Cuリッチ相とM1元素の複合添加
は、Cuリッチ相のみの添加或いはM1元素のみの添加
に比べ、微細化の効果が高い。M1元素は主として主相
中のT元素が占めるサイトを置換するが、M1の配合量
を、T,M1,M2,Cuの総量の20原子%を超える
と飽和磁化の低下が著しい。より好ましいM1元素の配
合量はT,M1,M2,Cuの総量の1〜10原子%で
あり、さらに好ましくは1.5〜8原子%である。M1
元素としてはTi,Zr,Nb,Hf,Moを用いるこ
とが好ましく、Ti,Zr,Nbが特に好ましく、さら
にTi+Zrの組み合わせが特に好ましい。
(4) M1 element The M1 element is at least one element selected from Zr, Ti, Nb, Mo, Ta, W and Hf.
It has a strong influence on the crystal structure of the A-based alloy, suppresses the grain growth of the main phase during the DR recombination reaction, and is effective for refining the alloy structure. In addition, it is also effective for suppressing the precipitation of α-Fe phase in the master alloy. However, substitution of the M1 element may increase the HD reaction temperature of the alloy, and the effect of refining only the M1 element is insufficient. The composite addition of the Cu-rich phase and the M1 element has a higher effect of miniaturization than the addition of only the Cu-rich phase or the addition of the M1 element alone. The M1 element mainly substitutes the site occupied by the T element in the main phase, but when the compounding amount of M1 exceeds 20 atomic% of the total amount of T, M1, M2 and Cu, the saturation magnetization is significantly lowered. A more preferable compounding amount of the M1 element is 1 to 10 atom% of the total amount of T, M1, M2 and Cu, and further preferably 1.5 to 8 atom%. M1
As elements, Ti, Zr, Nb, Hf and Mo are preferably used, Ti, Zr and Nb are particularly preferable, and a combination of Ti + Zr is particularly preferable.

【0017】(5)M2元素 M2元素はCr,V,Mn,Niから選ばれる少なくと
も1種の元素であるが、R−Fe−A系合金の結晶構造
を決定付ける他、合金組織の微細化に有効である。特
に、M2元素はCuやM1元素と違って、Feと固溶し
やすいため、HD分解反応後のα―Fe相中にも多量存
在し、DR再結合反応(T相+R水素化物―>微細な主
相)時の主相の核生成を促進させ、組織の超微細化に重
要である。ただ、M2元素のみの微細化効果が不十分で
あり、Cu相との複合添加、特にCu相とM1元素との
三元複合添加が組織の超微細化に極めて有効である。M
2元素は主として主相中のT元素が占めるサイトを置換
するが、M2の配合量を、T,M1,M2,Cuの総量
の20原子%を超えると飽和磁化の低下が著しい。より
好ましいD元素の配合量はT,M1,M2,Cuの総量
の1〜10原子%であり、さらに好ましくは1.5〜8
原子%である。M2元素としてはCr,Vを用いること
が好ましい。
(5) M2 element The M2 element is at least one element selected from Cr, V, Mn, and Ni. In addition to determining the crystal structure of the R-Fe-A system alloy, refining the alloy structure. Is effective for. In particular, unlike the Cu and M1 elements, the M2 element is likely to form a solid solution with Fe, so a large amount is also present in the α-Fe phase after the HD decomposition reaction, and the DR recombination reaction (T phase + R hydride-> fine) It is important for the refinement of the structure by promoting the nucleation of the main phase at the time. However, the effect of refining only the M2 element is insufficient, and the composite addition with the Cu phase, particularly the ternary composite addition of the Cu phase and the M1 element is extremely effective for the ultra-fine structure. M
The two elements mainly substitute the sites occupied by the T element in the main phase, but when the compounding amount of M2 exceeds 20 atomic% of the total amount of T, M1, M2 and Cu, the saturation magnetization is significantly lowered. A more preferable compounding amount of D element is 1 to 10 atomic% of the total amount of T, M1, M2 and Cu, and further preferably 1.5 to 8
It is atomic%. It is preferable to use Cr and V as the M2 element.

【0018】(6)A元素 A元素は主として主相のインタースティシャル位置に存
在し、A元素を含まない場合と比較して結晶格子を拡大
させたり、電子構造を変化させることにより、キュリー
温度、磁気異方性、飽和磁化を向上させる働きを有す
る。A元素は主にBを用いる場合は主相の結晶構造はN
Fe14B型であり、A元素は主にNを用いる場合
は主相の結晶構造はTbCu型,ThNi17型,
ThZn 17型のいずれかである。A元素の配合量を
0.1原子%未満にするとその配合効果を十分に達成で
きず、一方20原子%を超えると飽和磁化の低下を招
く。より好ましいA元素の配合量は主にBを用いる場合
4〜10原子%であり、主にNを用いる場合3〜18原
子%である。前記A元素の50原子%以下をH,C,
S,P,Oから選ばれる少なくとも1種の元素で置換す
ることができる。この場合において、H,C,S,P,
Oの置換またはNとBの複合添加により母合金またHD
DR処理途中の合金中には微細な水素化合物相、Bリッ
チ相,Cリッチ相などを形成し、組織を更に微細させる
などの効果を有する。A元素は主にNを用いる場合でも
Bを用いることが好ましい。各元素の配合量や製造プロ
セスによっては、TbCu型、NdFe14B型,
ThNi17型,ThZn17型、ThMn
12相,RFe29相などを主相とすることがある
が、TbCu型,NdFe14B型のいずれかを主
相とする場合に、特に高い磁石特性が得られる。ここ
で、前記主相とは磁石材料を構成する各結晶相および非
晶質相のうちで最大の体積占有率を有する相を意味する
ものである。本発明の磁石材料は50原子%以上のTを
含む軟磁性相を体積率で0.5〜40%含むことができ
る。この場合は、保磁力がある程度低下するが、高いB
rが得られる。平均結晶粒径および合金相の体積比率は
電子顕微鏡や光学顕微鏡による観察、X線回折等を併用
して総合的に判断されるが、磁石材料断面を撮影した透
過型電子顕微鏡写真の面積分析法により求めることがで
きる。本発明の磁石材料は酸化物などの不可避的不純物
を含有することを許容する。
(6) A element Element A mainly exists in the interstitial position of the main phase
Existing, and the crystal lattice is expanded compared to the case where A element is not included.
Curie by changing or changing the electronic structure
Functions to improve temperature, magnetic anisotropy, and saturation magnetization
It When B is mainly used as the A element, the crystal structure of the main phase is N
dTwoFe14When it is B type and N is mainly used as the A element
Has a main phase crystal structure of TbCu7Type, ThTwoNi17Type,
ThTwoZn 17It is one of the types. The blending amount of A element
If it is less than 0.1 atom%, the compounding effect can be sufficiently achieved.
On the other hand, if it exceeds 20 atom%, the saturation magnetization will decrease.
Ku. A more preferable blending amount of element A is mainly when B is used.
4 to 10 atom%, when N is mainly used, 3 to 18 raw
% Child. 50 atomic% or less of the element A is H, C,
Substitute with at least one element selected from S, P and O
You can In this case, H, C, S, P,
By replacing O or adding N and B in combination, the mother alloy or HD
A fine hydrogen compound phase, B
Form a H-phase, C-rich phase, etc. to further refine the structure
And so on. Even if N is mainly used as the A element
It is preferable to use B. Compounding amount of each element and manufacturing professional
Depending on the process, TbCu7Mold, NdTwoFe14B type,
ThTwoNi17Type, ThTwoZn17Mold, ThMn
12Phase, RThreeFe29Phase may be the main phase
But TbCu7Type, NdTwoFe14Mainly one of B type
Particularly high magnetic properties can be obtained when the phases are used. here
In the above, the main phase means each crystal phase and non-crystal phase constituting the magnet material.
Means the phase with the highest volume occupancy of the crystalline phases
It is a thing. The magnetic material of the present invention has a T content of 50 atomic% or more.
The soft magnetic phase may be included in an amount of 0.5 to 40% by volume.
It In this case, the coercive force is lowered to some extent, but high B
r is obtained. The average grain size and the volume ratio of alloy phase are
Observation by electron microscope or optical microscope, X-ray diffraction, etc.
It is judged comprehensively based on the
It can be determined by the area analysis method of a scanning electron micrograph.
Wear. The magnetic material of the present invention contains inevitable impurities such as oxides.
Is allowed to be included.

【0019】(製造方法)次に、本発明に係わる磁石材
料の製造方法の例について説明する。まず所定量のR,
T,M1,M2,Cu,A元素を含む合金粗粉末を作製
する。A元素を主にNにする場合には、HDDR処理の
後ガス処理を用いて窒素含有させる。合金粗粉末はアー
ク溶解や高周波溶解などによって得られた母合金を平均
粉末粒径3〜500μmに粉砕して得ることが出来る。
この母合金の平均粉末粒径を、この範囲に設定すること
により、HDDR後均一な微細組織と良い角型性を得る
効果が発揮される。ストリップキャスト法で作製した合
金薄帯を粉砕して得ることも出来る。このようにして得
られた合金粉末または粉砕前の合金に対して必要に応じ
て熱処理を施して均質化することが可能である。合金粉
末の調整法や熱処理の条件によって主相の種類や体積占
有率を制御することも可能である。好ましい母合金の組
織はR−T−M−D−Cu−A硬質磁性相と体積率で
0.1〜10%Cuリッチ相(R−Cu相)を含む。ま
た、ストリップキャスト法によって作製した合金薄帯の
使用は粉末のシャープな粒度分布に繋がるため、HDD
R処理を通じてより均一な超微細組織が得られ、更によ
り均一な窒素処理とより高い磁気特性が得られる。
(Manufacturing Method) Next, an example of a method for manufacturing the magnet material according to the present invention will be described. First, a certain amount of R,
Coarse alloy powder containing T, M1, M2, Cu and A elements is prepared. When the element A is mainly N, a gas treatment is used after the HDDR treatment to contain nitrogen. Coarse alloy powder can be obtained by crushing a master alloy obtained by arc melting, high frequency melting, or the like to an average powder particle size of 3 to 500 μm.
By setting the average powder particle size of this master alloy in this range, the effect of obtaining a uniform fine structure and good squareness after HDDR is exhibited. It can also be obtained by crushing an alloy ribbon produced by the strip casting method. The alloy powder thus obtained or the alloy before pulverization can be heat-treated as necessary to homogenize it. It is also possible to control the type and volume occupancy of the main phase by adjusting the alloy powder and the heat treatment conditions. A preferable master alloy structure includes an RTMD-Cu-A hard magnetic phase and a volume ratio of 0.1 to 10% Cu-rich phase (R-Cu phase). Also, the use of alloy ribbon produced by the strip casting method leads to a sharp particle size distribution of the powder, so the HDD
A more uniform ultrafine structure is obtained through the R treatment, and a more uniform nitrogen treatment and higher magnetic properties are obtained.

【0020】次に、本発明に好適なHDDR条件を説明
する。水素化・分解反応処理(HD処理)は0.1〜1
0atmの水素ガス中または水素ガス分圧を有した不活
性ガス(窒素ガスを除く)中で450〜950℃,1〜
8時間保持して行なう。HD過程では、水素化・分解反
応により母合金中の主相である硬質磁性相がR水素化物
とT,T−M1−M2,T−M1−M2−Cu,Cuへ
分解し、R水素化物が粗大化する前にHD処理を終える
ことが微細な組織と良好な磁気特性を得るために好まし
い。HD過程がより低温側および/または短時間側では
分解反応が全く起こらないか、あるいは母合金の一部だ
けしか分解反応が起こらない。この場合、分解反応が起
こらなかった部分は結晶粒が微細化しないため、後処理
のDR過程、窒化処理(A元素は主にNとする場合の
み)を経て得られた窒化磁石粉末のBr,Hc,(B
H)maxが低い。他方、HD過程がより高温側および
/または長時間側ではHD処理後の組織が粗大粒化し、
このためDR処理、窒化処理(A元素は主にNとする場
合のみ)後の硬質磁性相が粗大化するため磁気特性が劣
化する。好ましいHD処理条件は合金主相の結晶構造に
依存するが、NdFe 14B構造の場合には600〜
850℃、2〜4時間であり、その以外には500〜7
50℃、2〜4時間である。なお、HD処理を多段化す
ることも組織の超微細化に有効である。この温度範囲及
び加熱時間をこの範囲にすることによって、水素化・分
解反応中に十分な核を生成させ、異常粒成長を抑制し、
処理後超微細な(R水化物+T相)組織が得られる。
Next, the HDDR conditions suitable for the present invention will be explained.
To do. Hydrogenation / decomposition reaction treatment (HD treatment) is 0.1 to 1
Inactive in hydrogen gas of 0 atm or with hydrogen gas partial pressure
450 ~ 950 ℃, 1 ~ in natural gas (excluding nitrogen gas)
Hold for 8 hours. In the HD process, hydrogenation and decomposition reactions
Therefore, the hard magnetic phase, which is the main phase in the master alloy, is R hydride.
And T, T-M1-M2, T-M1-M2-Cu, Cu
HD processing is completed before decomposition and R hydride coarsening
Is preferred to obtain a fine structure and good magnetic properties
Yes. If the HD process is colder and / or shorter
No decomposition reaction at all, or part of the master alloy
Only the decomposition reaction occurs. In this case, the decomposition reaction
Since the crystal grains do not become finer in the part that did not come up, post treatment
DR process, nitriding treatment (when A element is mainly N)
Of the nitrided magnet powder obtained through
H) max is low. On the other hand, the HD process is
/ Or the structure after HD treatment becomes coarser on the long side,
Therefore, DR treatment and nitriding treatment (when the A element is mainly N)
The magnetic properties are poor because the subsequent hard magnetic phase becomes coarse.
Turn into. The preferred HD treatment condition is the crystal structure of the alloy main phase.
Depends, but NdTwoFe 14600 for B structure
850 ° C, 2 to 4 hours, other than 500 to 7
50 ° C., 2 to 4 hours. It should be noted that HD processing is multistage
It is also effective for ultra-fine structure. This temperature range and
And heating time within this range
Sufficient nuclei are generated during the reaction to suppress abnormal grain growth,
After the treatment, an ultrafine (R hydrate + T phase) structure is obtained.

【0021】脱水素・再結合反応処理(DR処理)は1
3.3Pa以下の真空中に650℃〜950℃で0.1
〜2時間保持して行なう。DR過程では、脱水素・再結
合反応によりR水素化物が消失し、TbCu型、Nd
Fe14B型,ThNi 17型,ThZn
17型,ThMn12相,RFe29相のいずれか結
晶構造を有する相に再結晶するが、再結晶粒が粗大化す
る前にDR処理を終えることが良好な磁気特性を得るた
めに好ましい。DR過程がより低温側および/または短
時間側では再結合反応が全く起こらないか、あるいは一
部だけしか再結合反応が起こらない。この場合、再結合
反応が起こらなかった部分は軟磁性相であるT相が残っ
ているため、窒化処理(A元素は主にNとする場合の
み)を経て得られた磁石粉末のiHcが低い。他方、D
R過程がより高温側および/または長時間側ではDR処
理後の組織が粗大粒化し、このためDR処理、窒化処理
(A元素は主にNとする場合のみ)後の硬質磁性相が粗
大化するため磁気特性が劣化する。好ましいHD処理条
件は合金主相の結晶構造に依存するが、NdFe14
B構造の場合には13.3Pa以下の真空中、700〜
950℃、0.2〜1時間であり、その以外には13.
3Pa以下の真空中、650℃〜900℃、0.2〜1
時間である。この温度範囲及び加熱時間をこの範囲にす
ることによって、脱水素・再結合反応中に十分な主相核
を生成させ、かつ異常粒成長を抑制し、処理後超微細な
組織が得られる。
Dehydrogenation / recombination reaction treatment (DR treatment) is 1
0.1 at 650 ° C to 950 ° C in a vacuum of 3.3 Pa or less.
Hold for ~ 2 hours. In the DR process, dehydrogenation / reconstitution
The R hydride disappears due to the combination reaction, and TbCu7Mold, Nd
TwoFe14B type, ThTwoNi 17Type, ThTwoZn
17Mold, ThMn12Phase, RThreeFe29One of the phases
Recrystallizes into a phase with a crystal structure, but the recrystallized grains become coarse
It is possible to obtain good magnetic properties by finishing the DR process before
Preferred for DR process is colder and / or shorter
On the time side, no recombination reaction occurs, or
The recombination reaction occurs only in part. In this case, rejoin
The T phase, which is a soft magnetic phase, remains in the area where the reaction did not occur.
Nitriding treatment (when the A element is mainly N,
IHc of the magnet powder obtained through the above (3) is low. On the other hand, D
If the R process is at a higher temperature side and / or a longer time side, DR treatment is performed.
After the treatment, the structure becomes coarse-grained, and therefore DR treatment and nitriding treatment
(Only when the A element is mainly N)
The magnetic properties deteriorate due to the increase in size. Preferred HD treatment strip
The condition depends on the crystal structure of the alloy main phase, but NdTwoFe14
In the case of B structure, in a vacuum of 13.3 Pa or less, 700 to
950 ° C., 0.2 to 1 hour, and other than that, 13.
650 ° C to 900 ° C, 0.2 to 1 in a vacuum of 3 Pa or less
It's time. Set this temperature range and heating time to this range.
The main phase nuclei during the dehydrogenation / recombination reaction by
Is generated, and abnormal grain growth is suppressed.
The organization is obtained.

【0022】A元素を主にNにする場合には、次に、前
記合金粉末に対してNを含有させる。この場合、0.1
〜100atmの窒素ガス雰囲気中で0.1〜100時
間、300〜900℃の温度下で熱処理することが望ま
しい。前記熱処理の雰囲気は、窒素ガスに代えてアンモ
ニア等の窒素化合物ガスを用いても良い。窒素ガスある
いは窒素化合物ガスと水素ガスとを混合して用いること
で窒化反応を制御することも可能である。アンモニア等
の窒素化合物ガスを用いたり、水素ガスを混合したりす
ることによりNの一部をHで置換することが可能とな
る。本発明の磁石材料はボンド磁石として利用すること
が可能である。バインダーとしては通常エポキシ系ある
いはナイロン系などの樹脂が用いわれているが、低融点
金属または低融点合金をバインダーとしてメタルボンド
磁石を製造することも可能である。また、本発明の磁石
材料をホットプレス、熱間静水圧プレス、放電プラズマ
焼結などにより高密度の成形体として一体化することに
より磁石を製造することも可能である。また、本発明の
磁石材料を用いた磁石の製造においては、800℃以上
の温度にまで昇温しないことが望ましい。
When the A element is mainly N, then N is added to the alloy powder. In this case, 0.1
It is desirable to perform heat treatment at a temperature of 300 to 900 ° C. for 0.1 to 100 hours in a nitrogen gas atmosphere of ˜100 atm. As the atmosphere of the heat treatment, a nitrogen compound gas such as ammonia may be used instead of nitrogen gas. It is also possible to control the nitriding reaction by using a mixture of nitrogen gas or nitrogen compound gas and hydrogen gas. It is possible to replace a part of N with H by using a nitrogen compound gas such as ammonia or by mixing hydrogen gas. The magnetic material of the present invention can be used as a bonded magnet. Epoxy type or nylon type resin is usually used as a binder, but it is also possible to manufacture a metal bond magnet using a low melting point metal or a low melting point alloy as a binder. It is also possible to manufacture a magnet by integrating the magnet material of the present invention into a high-density compact by hot pressing, hot isostatic pressing, spark plasma sintering, or the like. In the manufacture of a magnet using the magnet material of the present invention, it is desirable not to raise the temperature to 800 ° C or higher.

【0023】[0023]

【実施例】次に、本発明の具体的な実施例について説明
する。 (実施例1〜36)まず、高純度の各原料を表1に示す
所定の割合で調合し、Ar雰囲気中で高周波溶解して母
合金インゴットを作製し、乳鉢を用いて平均粉末粒径3
00μm以下に粉砕した。ひきつづきこの合金粉末を1
atm以上の水素ガス中で500〜800℃で1〜8時
間保持する水素化及び分解反応処理を行ない、次に1
3.3Pa以下の真空中に650℃〜900℃で0.1
〜2時間保持する脱水素・再結合反応処理を行なった
後、1atmの窒素ガス雰囲気中、450℃温度で10
時間熱処理を施して磁石粉末を作製した。各処理段階の
各合金粉末の生成相をX線回折分析とTEM/EDSで
調べたところ、HD処理後は主にSm水素化物とα−F
e相となり、DR処理後は主に均一かつ超微細な主相と
Cuリッチ相となった。主相はTbCu7型,Th
17型,ThZn17型のいずれの結晶構造からな
る単相、或はTbCu7型,ThNi17型,Th
Zn17型,ThMn12型,RE29型からなあ
る混在相であることが確認された。また、各合金にある
Cuリッチ相の組成は主にCu量が20原子%以上であ
ることが分析された。次に各合金粉末から等方性ボンド
磁石を作製してB−Hトレーサで磁気測定を行った。H
DDR処理後主相はTbCu7型の場合はより高い磁気
特性が得られ、実施例20の合金の場合、Br=0.7
5Tという高いBrが測定された。実施例1〜36の各
合金組成、HDDR処理温度、平均結晶粒径、および等
方性ボンド磁石の磁気特性測定結果を表1に示す。
EXAMPLES Next, specific examples of the present invention will be described.
To do. (Examples 1 to 36) First, the high-purity raw materials are shown in Table 1.
Mix in a predetermined ratio, melt by high frequency in Ar atmosphere
Make alloy ingot and use mortar to average powder particle size 3
It was crushed to a size of 00 μm or less. Continue to add 1 part of this alloy powder
1 ~ 8 hours at 500 ~ 800 ℃ in hydrogen gas above atm
Hydrogenation and cracking reaction treatment is carried out for 1 hour, then 1
0.1 at 650 ° C to 900 ° C in a vacuum of 3.3 Pa or less
Performed dehydrogenation / recombination reaction treatment for ~ 2 hours
Then, in a nitrogen gas atmosphere of 1 atm, at a temperature of 450 ° C. for 10 minutes.
Heat treatment was performed for an hour to produce magnet powder. Of each processing stage
The generation phase of each alloy powder was analyzed by X-ray diffraction analysis and TEM / EDS.
After the HD treatment, it was found that Sm hydride and α-F
It becomes the e phase, and after the DR treatment it is mainly the uniform and ultrafine main phase
It became a Cu-rich phase. Main phase is TbCu7 type, ThTwoN
i 17Type, ThTwoZn17From any crystal structure of the mold
Single phase or TbCu7 type, ThTwoNi17Type, ThTwo
Zn17Mold, ThMn12Type, REThreeT29From mold
It was confirmed that it was a mixed phase. Also in each alloy
The composition of the Cu-rich phase is mainly that the amount of Cu is 20 atomic% or more.
Was analyzed. Next, from each alloy powder, isotropic bond
A magnet was produced and magnetic measurement was performed with a BH tracer. H
After DDR processing, the main phase is higher magnetic in the case of TbCu7 type
Properties were obtained, Br = 0.7 for the alloy of Example 20.
Br as high as 5T was measured. Each of Examples 1-36
Alloy composition, HDDR processing temperature, average grain size, etc.
Table 1 shows the results of measuring the magnetic characteristics of the anisotropic bonded magnet.

【0024】(比較例1〜10)実施例1〜31と同様
にして合金粉末、等方性ボンド磁石を作製し、同様のB
−H測定を行った。比較例1〜10の各合金組成、HD
DR処理温度およびB−H測定結果を表2に示す。実施
例の合金がCuリッチ相を含むのに対し、比較例の合金
は比較例1〜3がCuを含まない場合、比較例4〜6が
Cuを含み、Cuリッチ相を含まない場合ある。Cuリ
ッチ相を含むことにより合金結晶粒径はこれが全く無い
場合より微細であり、磁気特性が優れることがわかっ
た。また、比較例7,8合金のR元素含有量、9,10
合金のA元素含有量がいずれも合金組成の限定範囲外で
あり、磁気特性が極めて低い、合金のR,A含有量が限
定範囲内であることが良好な磁気特性には必須であるこ
とがわかった。
(Comparative Examples 1 to 10) Alloy powders and isotropic bonded magnets were produced in the same manner as in Examples 1 to 31, and the same B was obtained.
-H measurement was performed. Each alloy composition of Comparative Examples 1 to 10, HD
Table 2 shows the DR treatment temperature and the BH measurement result. Whereas the alloys of the examples include the Cu-rich phase, the alloys of the comparative examples include cases where Comparative Examples 1 to 3 do not contain Cu, and Comparative Examples 4 to 6 contain Cu and do not contain the Cu-rich phase. It was found that by including the Cu-rich phase, the alloy crystal grain size was finer than in the case where there was no Cu-rich phase, and the magnetic characteristics were excellent. In addition, the R element content of the alloys of Comparative Examples 7 and 8, 9, 10
It is essential for good magnetic properties that the A element contents of the alloys are all outside the limits of the alloy composition and the magnetic properties are extremely low, and that the R and A contents of the alloys are within the limits. all right.

【0025】(実施例37〜41)まず、高純度の各原
料を表2に示す所定の割合で調合し、Ar雰囲気中で高
周波溶解して母合金インゴットを作製し、乳鉢を用いて
平均粉末粒径106μm以下に粉砕した。ひきつづきこ
の合金粉末を1atmの水素ガス中で600〜850℃
×1〜8時間保持する水素化・分解反応処理を行ない、
次に13.33Pa(0.1Torr)以下の真空中に
700℃〜950℃×0.1〜2時間保持する脱水素・
再結合反応処理を施して磁石粉末を作製した。各処理段
階の各合金粉末の生成相をX線回折分析とTEM/ED
Sで調べたところ、HD処理後は主にNd水化物とα―
Fe相となり、DR処理後は主に均一かつ超微細な主相
とCuリッチ相となった。主相の結晶構造はNdFe
14B型であることが確認された。各合金にあるCuリ
ッチ相の組成は主にCu量が20原子%以上であること
が分析された。次に各合金粉末、同方性ボンド磁石を作
製してB−Hトレーサで磁気測定を行った。実施例39
の合金の場合、Br=0.68Tという高いBrが測定
された。実施例37〜41の各合金組成、HDDR処理
温度、平均結晶粒径、および等方性ボンド磁石の磁気特
性測定結果を表3に示す。
(Examples 37 to 41) First, high-purity raw materials were mixed at a predetermined ratio shown in Table 2, high-frequency melted in an Ar atmosphere to prepare a master alloy ingot, and a mean powder was prepared using a mortar. It was crushed to a particle size of 106 μm or less. This alloy powder is continuously heated at 600 to 850 ° C. in 1 atm of hydrogen gas.
× 1 ~ 8 hours holding hydrogenation / decomposition reaction treatment,
Next, dehydrogenation of 700 ° C to 950 ° C for 0.1 to 2 hours in a vacuum of 13.33 Pa (0.1 Torr) or less.
A recombination reaction treatment was performed to produce magnet powder. X-ray diffraction analysis and TEM / ED of the production phase of each alloy powder at each processing stage
When examined by S, it was found that after HD treatment, mainly Nd hydrate and α-
The Fe phase was formed, and after the DR treatment, it was mainly a uniform and ultrafine main phase and a Cu-rich phase. The crystal structure of the main phase is Nd 2 Fe
It was confirmed to be 14 B type. The composition of the Cu-rich phase in each alloy was mainly analyzed to have a Cu content of 20 atomic% or more. Next, each alloy powder and an isotropic bonded magnet were produced and magnetic measurement was performed with a BH tracer. Example 39
In the case of the alloy No. 3, a high Br of Br = 0.68T was measured. Table 3 shows each alloy composition of Examples 37 to 41, HDDR treatment temperature, average crystal grain size, and magnetic property measurement results of the isotropic bonded magnet.

【0026】(比較例11〜13)実施例37〜41と
同様にして合金粉末、等方性ボンド磁石を作製し、同様
のB−H測定を行った。比較例11〜13の各合金組
成、HDDR処理温度およびB−H測定結果を表4に示
す。実施例の合金がCuリッチ相を含むのに対し、比較
例の合金は比較例11〜12がCuを含まない場合、比
較例13がCuを含み、Cuリッチ相を含まない場合で
ある。Cuリッチ相を含むことにより合金結晶粒径はこ
れが全く無い場合より微細であることがわかった。
(Comparative Examples 11 to 13) Alloy powders and isotropic bonded magnets were produced in the same manner as in Examples 37 to 41, and the same BH measurement was performed. Table 4 shows each alloy composition of Comparative Examples 11 to 13, HDDR processing temperature, and B-H measurement result. The alloys of the examples include the Cu-rich phase, whereas the alloys of the comparative examples include Comparative Examples 11 to 12 not containing Cu and Comparative Example 13 containing Cu and not containing the Cu-rich phase. It was found that the inclusion of the Cu-rich phase resulted in a finer grain size of the alloy than in the absence thereof.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】なお、表1,表2,表3及び表4におい
て、R,T,M1,M2,Cu,Aのいろいろ組み合わ
せ組成について記述したが、R,T,M1,M2,C
u,Aの他の組み合わせ組成であっても同様な結果が得
られており、さらに、Cuの50%以下の置換をSi,
Ga,Znなどで行なってもよい。
In Table 1, Table 2, Table 3 and Table 4, various combinations of R, T, M1, M2, Cu and A have been described. R, T, M1, M2, C
Similar results were obtained with other combination compositions of u and A. Further, substitution of 50% or less of Cu with Si,
You may perform by Ga, Zn, etc.

【0032】[0032]

【発明の効果】以上説明したように、本発明の磁石材料
によれば、高い磁気特性を実現できる超微細結晶体の磁
石材料を提供することができる。
As described above, according to the magnet material of the present invention, it is possible to provide a magnet material of an ultrafine crystal body which can realize high magnetic characteristics.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K018 AA27 BB04 BC01 BC03 BC08 BC09 KA45 5E040 AA04 CA01 HB15 HB17 NN01 NN18    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4K018 AA27 BB04 BC01 BC03 BC08                       BC09 KA45                 5E040 AA04 CA01 HB15 HB17 NN01                       NN18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一般式 R(T1−u−v−wCu
M21−x−y (式中、RはYを含む希土類元素から選ばれる少なくと
も1種の元素、TはFeまたはCoから選ばれる少なく
とも1種の元素、M1はZr,Ti,Nb,Mo,T
a,W,Hfから選ばれる少なくとも1種の元素、M2
はCr,V,Mn,Niから選ばれる少なくとも1種の
元素、AはNまたはBから選ばれる少なくとも1種の元
素、x,y,u,v,及びwはそれぞれ原子比で0.0
4≦x≦0.2、0.001≦y≦0.2、0.002
≦u≦0.2、0≦v≦0.2、0≦w≦0.2)で実
質的に表され、20原子%以上のCuを含む非磁性相
0.2〜10体積%と硬磁性主相を含み、かつ前記硬磁
性主相の平均結晶粒径が100nm以下であることを特
徴とする磁石材料。
1. The general formula R x (T 1-u-v-w Cu u M
1 v M2 w ) 1−x−y A y (wherein R is at least one element selected from rare earth elements including Y, T is at least one element selected from Fe or Co, and M1 is Zr, Ti, Nb, Mo, T
at least one element selected from a, W, and Hf, M2
Is at least one element selected from Cr, V, Mn, and Ni, A is at least one element selected from N or B, and x, y, u, v, and w each have an atomic ratio of 0.0.
4 ≦ x ≦ 0.2, 0.001 ≦ y ≦ 0.2, 0.002
.Ltoreq.u.ltoreq.0.2, 0.ltoreq.v.ltoreq.0.2, 0.ltoreq.w.ltoreq.0.2). A magnet material comprising a magnetic main phase and having an average crystal grain size of 100 nm or less in the hard magnetic main phase.
【請求項2】前記硬磁性主相の結晶構造は、TbCu
型、またはThNi17型,Th Zn17型、Nd
Fe14B型のいずれかであることを特徴とする請求
項1記載の磁石材料。
2. The crystal structure of the hard magnetic main phase is TbCu7
Type, or ThTwoNi17Type, Th TwoZn17Mold, Nd
TwoFe14Claims characterized by being one of B type
Item 1. The magnetic material according to item 1.
【請求項3】前記M1は、Ti,Zr,Nb,Hfまた
はMoから選ばれる少なくとも1種の元素を必ず含むこ
とを特徴とする請求項1または請求項2に記載の磁石材
料。
3. The magnetic material according to claim 1, wherein the M1 always contains at least one element selected from Ti, Zr, Nb, Hf or Mo.
【請求項4】前記M2は、CrまたはVから選ばれる少
なくとも1種の元素を必ず含むことを特徴とする請求項
1ないし請求項3のいずれかに記載の磁石材料。
4. The magnet material according to claim 1, wherein the M2 always contains at least one element selected from Cr and V.
【請求項5】原料粉末を、平均粉末粒径3〜500μm
に粉砕し、続いて0.1〜10atmの水素ガス中また
は水素ガス分圧を有した窒素ガス以外の不活性ガス中で
450〜850℃で1〜8時間保持して水素化及び分解
反応処理を行ない、次に13.3Pa以下の真空中に6
00℃〜950℃で0.1〜3時間保持して脱水素及び
再結合反応処理を行なう工程を含むことを特徴とする磁
石材料の製造方法。
5. A raw material powder having an average powder particle diameter of 3 to 500 μm.
And then hydrolyzing and decomposing by holding at 450 to 850 ° C. for 1 to 8 hours in hydrogen gas of 0.1 to 10 atm or in an inert gas having a partial pressure of hydrogen gas other than nitrogen gas. And then 6 in a vacuum of 13.3 Pa or less.
A method for producing a magnet material, comprising the steps of holding at 00 ° C to 950 ° C for 0.1 to 3 hours to perform dehydrogenation and recombination reaction treatment.
JP2001400599A 2001-12-28 2001-12-28 Magnet material and manufacturing method thereof Expired - Fee Related JP3715573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400599A JP3715573B2 (en) 2001-12-28 2001-12-28 Magnet material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400599A JP3715573B2 (en) 2001-12-28 2001-12-28 Magnet material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003193208A true JP2003193208A (en) 2003-07-09
JP3715573B2 JP3715573B2 (en) 2005-11-09

Family

ID=27605085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400599A Expired - Fee Related JP3715573B2 (en) 2001-12-28 2001-12-28 Magnet material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3715573B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023462A1 (en) * 2003-08-27 2005-03-17 Mitsubishi Materials Corporation Rare earth magnet powder and method for production thereof
JP2005243883A (en) * 2004-02-26 2005-09-08 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP2005243884A (en) * 2004-02-26 2005-09-08 Shin Etsu Chem Co Ltd Rare earth permanent magnet
WO2005098071A1 (en) * 2004-04-08 2005-10-20 Tohoku Techno Arch Co., Ltd. Method of atomizing alloy crystal grain by hydrogen treatment
JP2008305835A (en) * 2007-06-05 2008-12-18 Yaskawa Electric Corp Magnetic powder and method of manufacturing the same, and bond magnet using the magnetic powder
US7713360B2 (en) 2004-02-26 2010-05-11 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
WO2011121647A1 (en) * 2010-03-30 2011-10-06 株式会社 東芝 Permanent magnet, method for producing same, and motor and power generator each using same
JP2015005550A (en) * 2013-06-19 2015-01-08 株式会社村田製作所 Rare earth magnet powder
WO2016162990A1 (en) * 2015-04-08 2016-10-13 株式会社日立製作所 Rare earth permanent magnet and method for producing same
JP2017098412A (en) * 2015-11-24 2017-06-01 住友電気工業株式会社 Rare earth magnet, and manufacturing method thereof
WO2017130712A1 (en) * 2016-01-28 2017-08-03 株式会社村田製作所 STARTING MATERIAL FOR MAGNETS, WHICH IS MAINLY COMPOSED OF Sm-Fe BINARY ALLOY, METHOD FOR PRODUCING SAME, AND MAGNET
JP2018041777A (en) * 2016-09-06 2018-03-15 株式会社豊田中央研究所 Metal bond magnet and method for manufacturing the same
JP2018125512A (en) * 2016-08-24 2018-08-09 株式会社東芝 Magnet material, permanent magnet, rotary electric machine, and vehicle
JP2020502776A (en) * 2017-09-20 2020-01-23 株式会社東芝 Magnet materials, permanent magnets, rotating electric machines, and vehicles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011811B (en) * 2012-01-04 2016-11-02 丰田自动车株式会社 Terres rares nano-composite magnet

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023462A1 (en) * 2003-08-27 2005-03-17 Mitsubishi Materials Corporation Rare earth magnet powder and method for production thereof
US7632360B2 (en) 2003-08-27 2009-12-15 Nissan Motor Co., Ltd. Rare earth magnet powder and method of producing the same
JP2005243883A (en) * 2004-02-26 2005-09-08 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP2005243884A (en) * 2004-02-26 2005-09-08 Shin Etsu Chem Co Ltd Rare earth permanent magnet
US7713360B2 (en) 2004-02-26 2010-05-11 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet
WO2005098071A1 (en) * 2004-04-08 2005-10-20 Tohoku Techno Arch Co., Ltd. Method of atomizing alloy crystal grain by hydrogen treatment
EP1749896A1 (en) * 2004-04-08 2007-02-07 Tohoku Techno Arch Co., Ltd. Method of atomizing alloy crystal grain by hydrogen treatment
JPWO2005098071A1 (en) * 2004-04-08 2008-02-28 株式会社 東北テクノアーチ Method for refining alloy crystal grains by hydrogen treatment
EP1749896A4 (en) * 2004-04-08 2009-06-24 Tohoku Techno Arch Co Ltd Method of atomizing alloy crystal grain by hydrogen treatment
JP2008305835A (en) * 2007-06-05 2008-12-18 Yaskawa Electric Corp Magnetic powder and method of manufacturing the same, and bond magnet using the magnetic powder
JPWO2011121647A1 (en) * 2010-03-30 2013-07-04 株式会社東芝 PERMANENT MAGNET AND ITS MANUFACTURING METHOD, AND MOTOR AND GENERATOR USING THE SAME
US9774234B2 (en) 2010-03-30 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
WO2011121647A1 (en) * 2010-03-30 2011-10-06 株式会社 東芝 Permanent magnet, method for producing same, and motor and power generator each using same
CN102821891A (en) * 2010-03-30 2012-12-12 株式会社东芝 Permanent magnet, method for producing same, and motor and power generator each using same
JP2015005550A (en) * 2013-06-19 2015-01-08 株式会社村田製作所 Rare earth magnet powder
WO2016162990A1 (en) * 2015-04-08 2016-10-13 株式会社日立製作所 Rare earth permanent magnet and method for producing same
JPWO2016162990A1 (en) * 2015-04-08 2017-08-17 株式会社日立製作所 Rare earth permanent magnet and manufacturing method thereof
JP2017098412A (en) * 2015-11-24 2017-06-01 住友電気工業株式会社 Rare earth magnet, and manufacturing method thereof
WO2017090635A1 (en) * 2015-11-24 2017-06-01 住友電気工業株式会社 Rare earth magnet, and method of producing rare earth magnet
WO2017130712A1 (en) * 2016-01-28 2017-08-03 株式会社村田製作所 STARTING MATERIAL FOR MAGNETS, WHICH IS MAINLY COMPOSED OF Sm-Fe BINARY ALLOY, METHOD FOR PRODUCING SAME, AND MAGNET
JPWO2017130712A1 (en) * 2016-01-28 2018-10-18 株式会社村田製作所 Magnet raw material mainly composed of Sm-Fe binary alloy, method for producing the same, and magnet
US10632533B2 (en) 2016-01-28 2020-04-28 Murata Manufacturing Co., Ltd. Raw material for magnet, which comprises Sm—Fe binary alloy as main component, method for producing the same, and magnet
JP2018125512A (en) * 2016-08-24 2018-08-09 株式会社東芝 Magnet material, permanent magnet, rotary electric machine, and vehicle
JP2021108373A (en) * 2016-08-24 2021-07-29 株式会社東芝 Magnet material, permanent magnet, rotary electric machine, and vehicle
JP2018041777A (en) * 2016-09-06 2018-03-15 株式会社豊田中央研究所 Metal bond magnet and method for manufacturing the same
JP2020502776A (en) * 2017-09-20 2020-01-23 株式会社東芝 Magnet materials, permanent magnets, rotating electric machines, and vehicles

Also Published As

Publication number Publication date
JP3715573B2 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JP2001189206A (en) Permanent magnet
CN104823249A (en) Rare-earth permanent magnetic powders, bonded magnet comprising same, and device using bonded magnet
JP3715573B2 (en) Magnet material and manufacturing method thereof
WO2007063969A1 (en) Rare earth sintered magnet and method for producing same
JP2000114017A (en) Permanent magnet and material thereof
JP3727863B2 (en) Manufacturing method of magnet material
JP4170468B2 (en) permanent magnet
JP3560387B2 (en) Magnetic material and its manufacturing method
JP2010219499A (en) R-t-b based rare earth sintered magnet and method for manufacturing the same
JP2740981B2 (en) R-Fe-Co-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JPWO2018101409A1 (en) Rare earth sintered magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JP3294645B2 (en) Nitride magnetic powder and its production method
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH06112027A (en) Manufacture of high-quality magnet material
JPH06112019A (en) Nitride magnetic material
JP3209291B2 (en) Magnetic material and its manufacturing method
JP2005286173A (en) R-t-b based sintered magnet
JP3255593B2 (en) Manufacturing method of sintered permanent magnet with good thermal stability
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2016032004A (en) Magnetic material, magnetic material manufacturing method and rare-earth magnet
JP4972919B2 (en) Rare earth sintered magnet and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050825

R151 Written notification of patent or utility model registration

Ref document number: 3715573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees