JP2005243884A - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet Download PDF

Info

Publication number
JP2005243884A
JP2005243884A JP2004050982A JP2004050982A JP2005243884A JP 2005243884 A JP2005243884 A JP 2005243884A JP 2004050982 A JP2004050982 A JP 2004050982A JP 2004050982 A JP2004050982 A JP 2004050982A JP 2005243884 A JP2005243884 A JP 2005243884A
Authority
JP
Japan
Prior art keywords
intermetallic compound
magnetic
rare earth
permanent magnet
magnetic intermetallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004050982A
Other languages
Japanese (ja)
Other versions
JP4448713B2 (en
Inventor
Takeshi Ohashi
健 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004050982A priority Critical patent/JP4448713B2/en
Priority to US11/062,961 priority patent/US7713360B2/en
Priority to DE602005003599T priority patent/DE602005003599T2/en
Priority to EP05251040A priority patent/EP1569247B1/en
Publication of JP2005243884A publication Critical patent/JP2005243884A/en
Application granted granted Critical
Publication of JP4448713B2 publication Critical patent/JP4448713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet exhibiting a pinning type initial magnetization curve in which microstructure is not observed but uniform structure is observed. <P>SOLUTION: The permanent magnet contains a magnetic intermetallic compound composed of R which is one kind or more of rare earth elements including Y, T which are two kinds or more of transition metal elements principally comprising Fe and Co, and inevitable impurities. In the magnetic intermetallic compound, T is 6-14 when R is set at 1, the crystalline anisotropy energy of the magnetic intermetallic compound is 1 MJ/m<SP>3</SP>or larger, and a Curie point is 100°C or higher. The magnetic intermetallic compound is composed of particles having a mean grain size of 3 μm or larger in which the structure is substantially uniform, and an initial magnetization curve imparts a pinning type. Furthermore, the magnetic intermetallic compound has TbCu<SB>7</SB>type structure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、希土類永久磁石に関し、特に均質組織を有する希土類永久磁石に関する。本発明に係る希土類永久磁石は、電子機器、電装用のモータやアクチュエータ、耐熱性を要する同期モータや電装用途の位置センサー、回転センサーなどに好適に用いることができる。   The present invention relates to a rare earth permanent magnet, and more particularly to a rare earth permanent magnet having a homogeneous structure. The rare earth permanent magnet according to the present invention can be suitably used for electronic equipment, motors and actuators for electrical equipment, synchronous motors requiring heat resistance, position sensors for electrical equipment, rotation sensors, and the like.

2−17型Sm−Co系磁石(代表的な構成;Sm(CoFeCuT)7.5,T=Zr,Tiなど)は、高磁気特性と良好な温度特性、耐食性を示し、NdFeB系磁石とともに広く利用されている希土類磁石である。 2-17 type Sm-Co magnets (typical structure; Sm (CoFeCuT) 7.5 , T = Zr, Ti, etc.) exhibit high magnetic properties, good temperature properties, and corrosion resistance, and are widely used with NdFeB magnets. It is a rare earth magnet.

2−17型Sm−Co系磁石は磁壁ピンニング型保磁力機構(図1a)を示し、核発生成長型保磁力機構(図1b)を示す1−5型Sm−Co系磁石やNdFeB系磁石とは異なる保磁力機構を有する。磁壁ピンニング型磁石とは、二相に分離した一方の相の磁気モーメントが、微細に析出した相との磁壁の至る所でピン止めされるため、一定以上の磁場を印加しない限り磁壁を移動させる事ができず、このため、大きな保磁力が得られるようなタイプの磁石を言う。その特徴は、図1aのような初磁化曲線に現れる。一定以上の外部磁場(H)を印加しなければ磁化(M)が増加せず、磁化が増加し始めると急激に飽和に近づくような初磁化曲線を示す。   The 2-17 type Sm-Co type magnet shows a domain wall pinning type coercive force mechanism (FIG. 1a), and a 1-5 type Sm-Co type magnet or NdFeB type magnet showing a nucleation growth type coercive force mechanism (FIG. 1b) Have different coercivity mechanisms. A domain wall pinning type magnet is one in which the magnetic moment of one phase separated into two phases is pinned everywhere in the domain wall with the finely precipitated phase, so the domain wall is moved unless a magnetic field of a certain level or more is applied. For this reason, it refers to a type of magnet that provides a large coercive force. The characteristic appears in the initial magnetization curve as shown in FIG. If an external magnetic field (H) above a certain level is not applied, the magnetization (M) does not increase, and an initial magnetization curve that suddenly approaches saturation when the magnetization begins to increase is shown.

図2の写真に示すように、2−17型Sm−Co系磁石は、CuリッチなSm(CoCuFe)5粒界相とFeリッチなSm2(CoFeCu)17相がコヒーレンシーを持って2相分離した微細組織を有する。微細組織の大きさは組成により異なるが、2−17相の大きさは概ね数十nm〜300nm程度、それを分割する1−5境界相の大きさは概ね10nm以下である。該磁石のローレンツ電子顕微鏡(ローレンツTEM)観察から、磁壁は1−5相に存在していることが分かっている。 As shown in the photograph of FIG. 2, the 2-17 type Sm—Co magnet is a two-phase separation in which the Cu-rich Sm (CoCuFe) 5 grain boundary phase and the Fe-rich Sm 2 (CoFeCu) 17 phase have coherency. Has a fine structure. Although the size of the microstructure varies depending on the composition, the size of the 2-17 phase is approximately several tens of nm to 300 nm, and the size of the 1-5 boundary phase that divides it is approximately 10 nm or less. From the Lorentz electron microscope (Lorentz TEM) observation of the magnet, it is known that the domain wall exists in the 1-5 phase.

この観察結果と1−5相/2−17相の間の磁壁エネルギーに差がある事から、1−5相/2−17相の磁壁エネルギーの差により磁壁が1−5相にピン止めされていると考えられ、一般的には、保磁力Hciの大きさを見積もるため下記の式が用いられる。
Hci=(γ2-17−γ1-5)/Msδ
(γ;磁壁エネルギー、Ms;磁壁部の飽和磁化、δ;磁壁幅)
Since there is a difference in the domain wall energy between this observation result and the 1-5 phase / 2-17 phase, the domain wall is pinned to the 1-5 phase by the difference in the domain wall energy of the 1-5 phase / 2-17 phase. In general, the following equation is used to estimate the magnitude of the coercive force Hci.
Hci = (γ 2-17 −γ 1-5 ) / Msδ
(Γ: domain wall energy, Ms: saturation magnetization of domain wall, δ: domain wall width)

磁壁エネルギーの差分に相当する値だけ、外部から磁場を印加しなければ磁壁のピンニングは解消されない。これが保磁力に相当する。したがって、従来の解釈では磁壁ピンニング型保磁力機構においては、磁壁エネルギーの差や磁壁エネルギーの不均一を生じるような組織の分離や不均質組織、不純物析出が必要不可欠で、これらがなければ保磁力が得られないと考えられてきた。上記2−17型Sm−Co系磁石では、2−17相と1−5相の2相分離により実現されていると一般的に考えられている。   The domain wall pinning cannot be eliminated unless a magnetic field is applied from the outside by a value corresponding to the difference in domain wall energy. This corresponds to the coercive force. Therefore, according to the conventional interpretation, in the domain wall pinning type coercive force mechanism, the separation of the structure, the heterogeneous structure, and the impurity precipitation that cause the difference in domain wall energy and the domain wall energy are indispensable. It has been thought that can not be obtained. In the above 2-17 type Sm-Co magnet, it is generally considered that it is realized by two-phase separation of 2-17 phase and 1-5 phase.

しかし、前記のようなピンニング型保磁力への一般的な認識に対して、Sm(CoCu)5やCe(CoCo)5やCe(CoFeCu)5磁石は、2−17型Sm−Co系磁石と同様に初磁化曲線がピンニング型の特徴を示すにも関わらず、明確な2相分離組織が観察されていない。透過電子顕微鏡(TEM)による幾つかの観察結果でも、2相分離組織が見出されていない。 However, Sm (CoCu) 5 , Ce (CoCo) 5, and Ce (CoFeCu) 5 magnets are 2-17 type Sm—Co based magnets in contrast to the general recognition of the pinning type coercive force as described above. Similarly, although the initial magnetization curve shows a pinning type characteristic, a clear two-phase separated structure is not observed. Even in some observations using a transmission electron microscope (TEM), no two-phase separated structure has been found.

これに対し、Lectardらは、10nm以下の濃度揺らぎ、すなわちCoリッチなSm(CoCu)5とCuリッチなSm(CoCu)5が微細に揺らいでいる状態であって、結晶構造が同じで僅かの格子定数の差しかないため2相分離組織が観察されないような状態が磁壁ピンニングの原因であろうと推測している(非特許文献1参照)。ピンニング型保磁力に対するこの推測は、2相分離組織を保磁力の起源とはしないものの、濃度揺らぎに起因する磁壁エネルギーの差がピンニング型保磁力の起源であるとする考え方であり、基本的な点では従来の考え方と同じである。
E. Lectard, C. H. Allibert, J. Applied Physics, 75, (1994), 6277 X. Y. Xiong, K. Hono, K. Ohashi and Y. Tawara, Proc. 17th Int. Workshop on RE Magnets and Their Applications, (2002), 893 G. T. Trammell Physical Review, 131, (1963), p932
On the other hand, Lectard et al. Show a concentration fluctuation of 10 nm or less, that is, a state in which Co-rich Sm (CoCu) 5 and Cu-rich Sm (CoCu) 5 are finely fluctuated, and the crystal structure is the same and a little. It is speculated that a domain wall pinning may be caused by a state in which a two-phase separation structure is not observed because only the lattice constant is different (see Non-Patent Document 1). This assumption for the pinning coercivity is based on the idea that the difference in domain wall energy due to concentration fluctuations is the origin of the pinning coercivity, although the two-phase separated structure is not the origin of the coercivity. This is the same as the conventional way of thinking.
E. Lectard, CH Allibert, J. Applied Physics, 75, (1994), 6277 XY Xiong, K. Hono, K. Ohashi and Y. Tawara, Proc. 17th Int. Workshop on RE Magnets and Their Applications, (2002), 893 GT Trammell Physical Review, 131, (1963), p932

Cuを添加した1−5型SmCo磁石に対し、本発明者を含めた宝野のグループは3次元アトムプローブ法により10nm以下の領域で微細組織や元素の濃度揺らぎを解析した(非特許文献2参照)。該解析法は、磁石の針状試料の先端に高電圧をかけて元素を1つ1つ剥ぎ取りながら質量分析し、空間的な分布まで含めた元素分析と分布再構成が可能な強力な分析法であり、TEM観察より空間分解能に優れている。したがって、該解析法によれば、10nm以下の元素の濃度揺らぎが存在していても、観測できるはずである。しかしながら、該解析手段でCoとCuの濃度分布を詳細に調べたが、原子レベルでも明確な濃度揺らぎは見出せなかった。この解析結果より、本発明者は本質的に均質な組織であってもピンニング型保磁力機構が生じ得るとの見解に達した。   For the 1-5 type SmCo magnet added with Cu, the Takano group including the present inventor analyzed the fluctuation of the microstructure and the element concentration in the region of 10 nm or less by the three-dimensional atom probe method (Non-patent Document 2). reference). The analysis method is a powerful analysis capable of elemental analysis and distribution reconstruction including spatial distribution by applying high voltage to the tip of a magnet needle sample and stripping each element one by one. This method is superior in spatial resolution to TEM observation. Therefore, according to the analysis method, even if there is a concentration fluctuation of an element of 10 nm or less, it should be observable. However, although the concentration distribution of Co and Cu was examined in detail by the analysis means, no clear concentration fluctuation was found even at the atomic level. From this analysis result, the present inventor has reached the view that a pinning-type coercive force mechanism can occur even in an essentially homogeneous structure.

2相分離や析出物にかかわらず保磁力を得られる機構として、イントリンシックピンニング(Intrinsic Pinning)機構が知られている。本機構は、アトムオーダーのスピン配置の差により、薄い磁壁が至るところでピン止めされるため保持力が生じるというものである。例えばDy3Al2において、Liq.He温度(4.2K)で保磁力20kOeが報告されている(非特許文献3参照)。また、Sm(Co0.5Cu0.55やSm(CoNi0.45において、Liq.He温度(4.2K)で30〜40kOeの高い保磁力が得られている。しかし、イントリンシックピンニングによる保磁力は温度による変化が大きく、温度が上昇するとともに急速にこの保磁力は低下する。 An intrinsic pinning mechanism is known as a mechanism capable of obtaining a coercive force regardless of two-phase separation or precipitates. In this mechanism, a thin magnetic wall is pinned everywhere due to the difference in the atom order spin arrangement, and a holding force is generated. For example, in Dy 3 Al 2 , Liq. A coercive force of 20 kOe has been reported at a He temperature (4.2 K) (see Non-Patent Document 3). In Sm (Co 0.5 Cu 0.5 ) 5 and Sm (CoNi 0.4 ) 5 , Liq. A high coercive force of 30 to 40 kOe is obtained at a He temperature (4.2 K). However, the coercive force due to intrinsic pinning varies greatly with temperature, and this coercive force rapidly decreases as the temperature rises.

これらの測定結果から、従来はイントリンシックピンニングに基づく保磁力では、室温まで有意な保磁力を保持することは難しいと考えられ、また、該保磁力機構は薄い磁壁幅が実現できる低温のみの現象で、室温以上で使用される実用磁石には適用できないと考えられていた。しかし、定量的にはどの程度の磁壁幅を薄いと判断するのか、どの程度の結晶磁気異方性であれば十分高いと判断するのか、保磁力の温度変化の大きさはキュリー点の低さに起因するものであって本質的なイントリンシックピンニングの問題であるのか否か、等はっきりとした解析は未だなされていない。   From these measurement results, it is thought that it is difficult to maintain a significant coercive force up to room temperature with conventional coercive force based on intrinsic pinning, and the coercive force mechanism is a phenomenon of only a low temperature that can realize a thin domain wall width. Therefore, it was thought that it could not be applied to practical magnets used at room temperature or higher. However, quantitatively, how much the domain wall width is judged to be thin, how much crystal magnetic anisotropy is judged to be sufficiently high, and the magnitude of the temperature change of the coercive force is a low Curie point. Whether or not it is a problem of intrinsic intrinsic pinning due to the above has not yet been clarified.

本発明は、微細組織が観察されず、均一組織に見える磁石であって、ピンニング型初磁化曲線を示す永久磁石を提供することを目的とする。   An object of the present invention is to provide a permanent magnet that shows a pinning-type initial magnetization curve, which is a magnet that does not have a fine structure and looks like a uniform structure.

本発明は、Sm(CoCu)5に対する本発明者らの解析結果を基に、均質で微細組織や本質的な濃度揺らぎを有しない(ただしnm以上で)希土類磁石において、Sm(CoCu)5磁石以外にもピンニング型保磁力機構を有する希土類磁石を見出し発明したものである。 The present invention is based on the Sm (CoCu) analysis of the present inventors for 5, homogeneous microstructure and essentially no concentration fluctuations (in but nm or more) in the rare earth magnet, Sm (CoCu) 5 magnets In addition, the inventors have found and invented a rare earth magnet having a pinning type coercive force mechanism.

具体的には、本発明によると、Yを含めた希土類元素の1種以上であるRと、FeおよびCoを主とする2種以上の遷移金属元素Tと、不可避の不純物とからなる磁性金属間化合物を含む永久磁石であって、該磁性金属間化合物は、原子比で、Rを1としたとき、Tが6〜14であり、該磁性金属間化合物の結晶磁気異方性エネルギーが1MJ/m3以上であり、該磁性金属間化合物のキュリー点が100℃以上であり、該磁性金属間化合物が平均粒径3μm以上の粒子であり、該磁性金属間化合物が実質的に均一な組織であり、初磁化曲線がピンニング型を与える構造を有し、さらに該磁性金属間化合物がTbCu7型構造を有する希土類永久磁石が提供される。 Specifically, according to the present invention, a magnetic metal comprising R which is one or more of rare earth elements including Y, two or more transition metal elements T mainly composed of Fe and Co, and unavoidable impurities. A permanent magnet including an intermetallic compound, wherein the magnetic intermetallic compound has an atomic ratio of R of 1, T is 6 to 14, and the magnetic intermetallic compound has a magnetocrystalline anisotropy energy of 1 MJ / M 3 or more, the Curie point of the magnetic intermetallic compound is 100 ° C. or higher, the magnetic intermetallic compound is a particle having an average particle diameter of 3 μm or more, and the magnetic intermetallic compound is substantially uniform in structure. A rare earth permanent magnet is provided in which the initial magnetization curve has a pinning structure and the magnetic intermetallic compound has a TbCu 7 structure.

以下に詳細に説明するように、本発明によると、微細組織が観察されず、均一組織に見える磁石であって、ピンニング型初磁化曲線を示す永久磁石が提供される。背景で記述したような二相分離組織は、複雑な熱処理により形成されるので、焼結だけでは作製することができない。一方で、本願発明によると、微細構造を有しない均質組織で永久磁石が構成できるため、複雑な熱処理を必要とせず、比較的簡単な工程で磁石を製作できる。また、微細構造を有しない均質組織で永久磁石が構成できると、均質磁石の保持力機構がピンニング機構であるのため、保磁力の温度変化の小さい磁石が得られる。   As will be described in detail below, according to the present invention, there is provided a permanent magnet that shows a pinning-type initial magnetization curve, which is a magnet that does not have a fine structure and looks like a uniform structure. Since the two-phase separated structure as described in the background is formed by complicated heat treatment, it cannot be produced only by sintering. On the other hand, according to the present invention, since the permanent magnet can be configured with a homogeneous structure having no fine structure, the magnet can be manufactured by a relatively simple process without requiring a complicated heat treatment. In addition, when a permanent magnet can be configured with a homogeneous structure having no fine structure, a magnet having a small coercive force temperature change can be obtained because the holding force mechanism of the homogeneous magnet is a pinning mechanism.

本発明は、一見均質で微細組織を有しない希土類磁石において、ピンニング型保磁力機構を有する磁石を開発できる事を見出し、そのモデルとなる永久磁石を発明したものである。その詳細を以下で述べる。   The present invention finds that a rare earth magnet having a homogeneous structure and no microstructure can be developed as a magnet having a pinning type coercive force mechanism, and invents a permanent magnet as a model thereof. Details are described below.

Sm(Co1-xCux5合金(0<x<0.5)をTEM観察しても2相分離組織が見えない(図3)ことは既に述べた通りである。CoとCuの濃度揺らぎも観測されていないが、原子番号が近いために観測できないと考えられていた。そこで発明者は、3次元アトムプローブ装置を用いて、アトムオーダーでの元素マッピングを行うことにより、Co/Cuの濃度揺らぎを観察することを試みた。3次元アトムプローブ装置はField Ion Microscopy(FIM)と基本構造は同じで、先端を尖らせた被測定試料に高電界を印加することにより、その先端から原子を剥ぎ取り、さらにそれを質量分析器またはTOF法による2次元PSD(Position Sensitive Detector)にかけることで、3次元実空間の元素分布をアトムオーダーで測定する器械である。 As described above, the Sm (Co 1-x Cu x ) 5 alloy (0 <x <0.5) does not show a two-phase separation structure even when TEM observation is performed (FIG. 3). Although fluctuations in the concentration of Co and Cu were not observed, it was thought that they could not be observed because the atomic numbers were close. Therefore, the inventor tried to observe Co / Cu concentration fluctuations by performing element mapping in the atom order using a three-dimensional atom probe apparatus. The basic structure of the 3D atom probe device is the same as that of Field Ion Microscopy (FIM). By applying a high electric field to the sample to be measured with a sharp tip, the atoms are peeled off from the tip, and then the mass spectrometer Or, it is an instrument that measures the element distribution in the three-dimensional real space in the atom order by applying to the two-dimensional PSD (Position Sensitive Detector) by the TOF method.

2−17 Sm−Co系磁石は、2相間(2−17 Sm−Co系では1−5相/2−17相)の磁壁エネルギーの差により磁壁が1−5相にピン止めされている(図4参照)と従来考えられていた。しかし、従来の説明は矛盾を抱えている。何故なら、1−5境界相は2−17主相よりはるかに大きな結晶磁気異方性を有しており、CoサイトをCuが置換してその濃度が高まったとしても、計測されているCu量(20atomic%程度)で結晶磁気異方性の逆転はおき得ない。それにも関わらず、ローレンツTEM観察から、1−5相に磁壁がピンニングされていると見える。保磁力に関する「磁壁エネルギーの差モデル」では、磁壁エネルギーの低い相に磁壁がピン止めされるはずであるから、本来は2−17相にピン止めされているべきである。   In the 2-17 Sm-Co magnet, the domain wall is pinned to the 1-5 phase by the difference in domain wall energy between the two phases (1-5 phase / 2-17 phase in the 2-17 Sm-Co system) ( Conventionally, it was considered as shown in FIG. However, the conventional explanation is inconsistent. This is because the 1-5 boundary phase has much larger magnetocrystalline anisotropy than the 2-17 main phase, and even if the Cu site is replaced by Cu and its concentration is increased, the measured Cu The reversal of magnetocrystalline anisotropy cannot occur with the amount (about 20 atomic%). Nevertheless, from Lorentz TEM observation, it appears that the domain wall is pinned to the 1-5 phase. In the “domain wall energy difference model” regarding the coercive force, the domain wall should be pinned to a phase having a low domain wall energy, and therefore should be originally pinned to the 2-17 phase.

従来のモデルは前述のような矛盾を抱えているが、1−5境界相に磁壁が、イントリンシックピンニングされると考えるならこの矛盾は解消される。しかし2−17Sm−Co系磁石における1−5境界相は5nm以下の非常に狭い幅しか有しておらず、この仮説を実測で裏付けることは現在のところできていない。   The conventional model has the above-described contradiction. However, if the domain wall is considered to be intrinsic pinned in the 1-5 boundary phase, this contradiction is resolved. However, the 1-5 boundary phase in the 2-17Sm-Co magnet has only a very narrow width of 5 nm or less, and this hypothesis cannot be supported by actual measurement.

一見磁壁の移動を妨げる組織や揺らぎがないにも関わらず、磁壁がピンニングされる機構に関して、本発明者は、イントリンシックピンニングと呼ばれる保磁力機構が1−5 Sm−Co系磁石の保磁力を説明できると考える。磁壁の幅が非常に薄い場合、もはや磁壁内部のスピン回転を連続体モデルで扱うことはできない。イントリンシックピンニングモデルによると、磁壁内部のスピン回転のアトムオーダーの揺らぎにより磁壁幅や磁壁エネルギーが分布を持ち、このため、このアトムオーダーの揺らぎが磁壁の移動を妨げ、保磁力を生じる原因となる。   Regarding the mechanism in which the domain wall is pinned despite the structure and fluctuation that impede the movement of the domain wall at first glance, the present inventor has shown that the coercive force mechanism called intrinsic pinning has the coercive force of the 1-5 Sm-Co based magnet. I think I can explain. When the domain wall is very thin, the spin rotation inside the domain wall can no longer be handled by the continuum model. According to the intrinsic pinning model, the domain wall width and domain wall energy are distributed by the fluctuation of the atom order of the spin rotation inside the domain wall, and this fluctuation of the atom order prevents the domain wall from moving and causes coercive force. .

従来イントリンシックピンニングが磁石保磁力を生じさせる原因として考えられてこなかったのは、該モデルは低温で希土類元素が大きな結晶磁気異方性を有する場合しか適応できないと考えられていたためである。しかし、SmCo5化合物は室温で18MJ/m3の非常に大きな結晶磁気異方性を有し、CeCo5化合物はそれより小さいとはいえ3MJ/m3の結晶磁気異方性を有している。SmCo5の磁壁幅は、測定者により異なるが2〜5nmの間の値に納まっており、この磁壁幅は、SmCo5ユニットセルの個数で5ユニットから10ユニット強に相当する。該ユニット数は磁壁幅の観点から十分厚いものではなく、離散的な取扱いが必要になる。したがって、イントリンシックピンニングは本系の保磁力機構として十分成り立ち得るものである。 The reason why intrinsic pinning has not been considered as a cause of causing a magnet coercive force is that the model is considered to be applicable only when a rare earth element has a large magnetocrystalline anisotropy at a low temperature. However, the SmCo 5 compound has a very large magnetocrystalline anisotropy of 18 MJ / m 3 at room temperature, and the CeCo 5 compound has a magnetocrystalline anisotropy of 3 MJ / m 3 although it is smaller. . Although the domain wall width of SmCo 5 varies depending on the measurer, it falls within the range of 2 to 5 nm. This domain wall width corresponds to 5 to 10 units in terms of the number of SmCo 5 unit cells. The number of units is not sufficiently thick from the viewpoint of domain wall width, and discrete handling is required. Therefore, intrinsic pinning can be sufficiently realized as a coercive force mechanism of the present system.

イントリンシックピンニングが成立するには、どのような要件が必須かを考察すると、1)薄い磁壁幅、2)アトムオーダーでの磁壁エネルギーの揺らぎが必要である。   Considering what requirements are necessary to establish intrinsic pinning, 1) a thin domain wall width and 2) fluctuation of domain wall energy in the atom order are necessary.

1)「薄い磁壁幅」はどの程度の磁壁幅まで薄いと言えるのか、定量性については理論が固まっていないためはっきりしないが、概ね10nm以下で結晶磁気異方性定数は1〜2MJ/m3以上と考えられる。したがって、このような条件を満足できる磁性化合物は概ね希土類−遷移金属金属間化合物である。 1) To what extent the “thin domain wall width” can be said to be thin, it is not clear because the theory is not fixed, but the magnetocrystalline anisotropy constant is about 1 to 2 MJ / m 3 at about 10 nm or less. This is considered to be the above. Therefore, magnetic compounds that can satisfy such conditions are generally rare earth-transition metal intermetallic compounds.

また、2)「アトムオーダーでの磁壁エネルギーの揺らぎ」を満たすためには、下記式(1)で示される磁壁エネルギーの分布を大きくする必要がある。   Further, in order to satisfy 2) “fluctuation of domain wall energy in the atom order”, it is necessary to increase the distribution of domain wall energy represented by the following formula (1).

Figure 2005243884
{ただし、A(r);交換定数(場所rの関数)、K(r);結晶磁気異方性定数(場所rの関数)}
Figure 2005243884
{Where A (r); exchange constant (function of location r), K (r); magnetocrystalline anisotropy constant (function of location r)}

A(r)は主に遷移金属により決まっており、ほぼ2体間の相互作用で決まるため、遷移金属サイトを主に非磁性元素で置き換えたときに一番ばらつきを大きくできる。   Since A (r) is mainly determined by the transition metal and is determined by the interaction between the two bodies, the variation can be maximized when the transition metal site is mainly replaced by a nonmagnetic element.

このような観点からイントリンシックピンニングモデルが成り立ちえる磁性化合物系を探索し、次の化合物系を見出した。
すなわち、本発明は、Yを含めた希土類元素の1種以上であるRと、FeおよびCoを主とする2種以上の遷移金属元素Tと、不可避の不純物とからなる磁性金属間化合物を含む永久磁石であって、該磁性金属間化合物は、原子比で、Rを1としたとき、Tが6〜14であり、該磁性金属間化合物の結晶磁気異方性エネルギーが1MJ/m3以上であり、該磁性金属間化合物のキュリー点が100℃以上であり、該磁性金属間化合物が平均粒径3μm以上の粒子であり、該磁性金属間化合物が実質的に均一な組織であり、初磁化曲線がピンニング型を与える構造を有し、さらに該磁性金属間化合物がTbCu7型構造を有する希土類永久磁石を提供する。
From this point of view, the inventors searched for a magnetic compound system in which an intrinsic pinning model can be established, and found the following compound system.
That is, the present invention includes a magnetic intermetallic compound comprising R which is one or more of rare earth elements including Y, two or more transition metal elements T mainly composed of Fe and Co, and unavoidable impurities. A permanent magnet, wherein the magnetic intermetallic compound has an atomic ratio of R of 1, T is 6 to 14, and the magnetocrystalline anisotropy energy of the magnetic intermetallic compound is 1 MJ / m 3 or more. The Curie point of the magnetic intermetallic compound is 100 ° C. or higher, the magnetic intermetallic compound is a particle having an average particle size of 3 μm or more, and the magnetic intermetallic compound has a substantially uniform structure, There is provided a rare earth permanent magnet having a structure in which a magnetization curve gives a pinning type, and the magnetic intermetallic compound has a TbCu 7 type structure.

希土類元素RはYを含む希土類元素である。また、遷移金属元素Tは、Co、Fe、Cu、Zr、Ti、V、Mo、Nb、W、Hf、Mn、Cr等を含む。ここで、「FeおよびCoを主とする」とは、遷移金属元素Tの総量に対して、FeとCoの合計の含有量が50atomic%(原子百分率)以上であることをいう。また、不可避の不純物として、C、O、N、Si等が挙げられ、これらが不純物として混入する場合、その含有量は、一般的に、1重量%以下である。
また、「磁性金属間化合物を含む永久磁石」は、永久磁石中に、当該化合物が好ましくは50体積%以上含まれる永久磁石であって、その他の成分として、樹脂、ゴム等を含んでもよい。
The rare earth element R is a rare earth element containing Y. The transition metal element T includes Co, Fe, Cu, Zr, Ti, V, Mo, Nb, W, Hf, Mn, Cr, and the like. Here, “mainly Fe and Co” means that the total content of Fe and Co is 50 atomic% (atomic percentage) or more with respect to the total amount of the transition metal element T. Moreover, C, O, N, Si etc. are mentioned as an unavoidable impurity, When these are mixed as an impurity, the content is generally 1 weight% or less.
The “permanent magnet containing a magnetic intermetallic compound” is a permanent magnet in which the compound is preferably contained in an amount of 50% by volume or more in the permanent magnet, and may contain resin, rubber, etc. as other components.

なお、該磁性金属間化合物は、原子比で、Rを1としたとき、Tが6〜14である。Tが6に満たないとき、またはTが14を超えるとき、TbCu7型構造が安定しない場合がある。 The magnetic intermetallic compound has an atomic ratio of T of 6 to 14 when R is 1. When T is less than 6 or when T exceeds 14, the TbCu 7 type structure may not be stable.

また、磁性金属間化合物の結晶磁気異方性エネルギーは、1MJ/m3以上である。このとき、イントリンシックピンニング機構により、微細構造を有しない均質組織で、高い保持力を有する永久磁石が構成できる。また、結晶磁気異方性エネルギーが大きいほど、一般的にイントリンシックピンニング機構により高い保持力が得られやすくなるため好ましい。 The magnetocrystalline anisotropy energy of the magnetic intermetallic compound is 1 MJ / m 3 or more. At this time, by the intrinsic pinning mechanism, a permanent magnet having a high holding force can be configured with a homogeneous structure having no fine structure. Further, it is preferable that the magnetocrystalline anisotropy energy is large because a high holding force is generally easily obtained by an intrinsic pinning mechanism.

また、磁性金属間化合物のキュリー点は、100℃以上である。キュリー点が100℃未満のとき、磁気特性の温度変化が大きく高温での特性低下が大きくなる場合がある。また、キュリー点が高い程、一般的に高温での磁気特性低下が小さく、高い温度で使用可能であり好ましい。   The Curie point of the magnetic intermetallic compound is 100 ° C. or higher. When the Curie point is less than 100 ° C., the temperature change of the magnetic characteristics is large, and the characteristic deterioration at high temperatures may be large. In addition, the higher the Curie point, the smaller the decrease in magnetic properties at high temperatures, and it is preferable that it can be used at high temperatures.

本発明にかかる希土類永久磁石は、ボンド磁石にも焼結磁石にも適用できるが、本発明にかかる希土類永久磁石を、ボンド磁石に適用する場合、その磁性金属間化合物の粒子(磁性粉)の平均粒径は、3μm以上、好ましくは3〜6μmである。ここで、磁性粉とは、該磁石を製造する工程において、Yを含めた希土類元素の1種以上であるRと、FeおよびCoを主とする2種以上の遷移金属元素Tと、不可避の不純物とからなる合金を粉砕する工程により得られる粉末である。なお、磁性粉の平均粒径が3μm未満のとき、微粉の酸化による特性劣化という不利益を生じる場合がある。
また、本発明にかかる希土類永久磁石を、焼結磁石に適用する場合、その焼結体の焼結体形成粒子の平均粒径は、3μm以上、好ましくは3〜6μmである。ここで、焼結体とは、磁性粉を磁界中で加圧成形する成形工程により得られる成形体を、焼結することにより得られるものであり、焼結体形成粒子とは、磁性粉に由来し、焼結体を形成する粒子をいう。焼結体形成粒子の平均粒径は、TEMを用いて焼結体を観察し、測定することができる。
The rare earth permanent magnet according to the present invention can be applied to both a bonded magnet and a sintered magnet. However, when the rare earth permanent magnet according to the present invention is applied to a bonded magnet, particles of the magnetic intermetallic compound (magnetic powder) are used. The average particle size is 3 μm or more, preferably 3 to 6 μm. Here, the magnetic powder means that in the process of manufacturing the magnet, R which is one or more of rare earth elements including Y, two or more transition metal elements T mainly composed of Fe and Co, and unavoidable. It is a powder obtained by pulverizing an alloy composed of impurities. When the average particle size of the magnetic powder is less than 3 μm, there may be a disadvantage that the characteristics are deteriorated due to oxidation of the fine powder.
When the rare earth permanent magnet according to the present invention is applied to a sintered magnet, the average particle diameter of the sintered body forming particles of the sintered body is 3 μm or more, preferably 3 to 6 μm. Here, the sintered body is obtained by sintering a molded body obtained by a molding process in which magnetic powder is pressure-molded in a magnetic field. It refers to particles that originate and form a sintered body. The average particle diameter of the sintered body forming particles can be measured by observing the sintered body using TEM.

また、該磁性金属間化合物は、実質的に均一な組織である。好ましくは、該磁性金属間化合物の内部には、1nm以上の微細組織が存在しない。これは、TEMや3次元アトムプローブ法によっても、微細組織や濃度揺らぎが見出せない程度に均一な組織を有することを意味する。
なお、上記したように、3次元アトムプローブ法とは、先端を尖らせた被測定試料に高電界を印加することにより、その先端から原子を剥ぎ取り、さらにそれを質量分析器またはTOF法による2次元PSD(Position Sensitive Detector)にかけることで、3次元実空間の元素分布をアトムオーダーで測定する方法であり、この方法によると、アトムオーダー、すなわち約1オングストローム(0.1nm)の精度で元素の分布を測定できる。
The magnetic intermetallic compound has a substantially uniform structure. Preferably, a fine structure of 1 nm or more does not exist inside the magnetic intermetallic compound. This means that even a TEM or a three-dimensional atom probe method has a uniform structure to such an extent that a fine structure and concentration fluctuation cannot be found.
As described above, the three-dimensional atom probe method is a method in which a high electric field is applied to a sample to be measured with a sharp tip, thereby stripping off atoms from the tip and further removing it by a mass analyzer or TOF method. It is a method of measuring the element distribution in the three-dimensional real space by the atom order by applying it to the two-dimensional PSD (Position Sensitive Detector). According to this method, the accuracy is about 1 angstrom (0.1 nm). The distribution of elements can be measured.

また、初磁化曲線は、ピンニング型である。初磁化曲線がピンニング型とは、核発生成長型のものと異なり、図1(a)のように初磁化曲線が、一定以上の外部磁場を印加しなければ磁化が増加せず、磁化が増加し始めると急激に飽和に近づくという特徴を有することをいう。   The initial magnetization curve is a pinning type. Unlike the nucleation and growth type, the initial magnetization curve is different from the nucleation growth type, as shown in FIG. 1A, the magnetization does not increase and the magnetization increases unless an external magnetic field of a certain level or more is applied. It means that it has a feature that it suddenly approaches saturation when it starts.

また、好ましくは、前記金属間化合物の組成式は、下記式(I)で表される。
R'(Co1-x-y-aFexCuyT'az ・・・式(I)
(式中、R'は、SmまたはCeを主とするYを含めた希土類元素の1種以上である。T'は、Zr、Ti、V、Mo、Nb、W、Hf、Mn、Crからなる群から選ばれる少なくとも1種以上の遷移金属元素である。x、y、a、zは、0.05≦x≦0.30、0.15≦y≦0.35、0.001≦a≦0.05、6.0≦z≦9.0を満たす数である。)
Preferably, the composition formula of the intermetallic compound is represented by the following formula (I).
R '(Co 1-xya Fe x Cu y T' a) z ··· formula (I)
(In the formula, R ′ is one or more rare earth elements including Y mainly composed of Sm or Ce. T ′ is derived from Zr, Ti, V, Mo, Nb, W, Hf, Mn, and Cr. And at least one transition metal element selected from the group consisting of x, y, a and z, 0.05 ≦ x ≦ 0.30, 0.15 ≦ y ≦ 0.35, 0.001 ≦ a ≦ 0.05, 6.0 ≦ z ≦ 9.0.)

ここで、「R'は、SmまたはCeを主とする」とは、希土類元素R'の総量に対して、SmとCeの合計の含有量が50重量%以上であることをいう。   Here, “R ′ mainly comprises Sm or Ce” means that the total content of Sm and Ce is 50% by weight or more with respect to the total amount of the rare earth element R ′.

R'(CoFeCuT')z合金(6.0<z<9.0、T'=Zr,Ti,V,Mo,Nb,W,Hf,Mn,Crなど1種以上)は、高温安定相としてTbCu7構造を有する相である。TbCu7構造は例えば菱面体晶Sm2Co17構造で、CoダンベルペアをRサイトに対してA,B,C,A,B,Cと規則正しく置換するのではなく、無秩序に置換したものである。 R ′ (CoFeCuT ′) z alloy (6.0 <z <9.0, T ′ = Zr, Ti, V, Mo, Nb, W, Hf, Mn, Cr, etc.) is used as a high-temperature stable phase. It is a phase having a TbCu 7 structure. The TbCu 7 structure is, for example, a rhombohedral Sm 2 Co 17 structure in which the Co dumbbell pair is not randomly replaced with A, B, C, A, B, C with respect to the R site, but randomly replaced. .

すなわち、希土類元素RとCoの組成比が1:5の金属間化合物は、広くR元素につき存在し、これらは図5(a)に示すCaCu5型と呼ばれる、六方晶系の結晶構造をとる。この構造はCoのカメノコ格子の中心にRが配置された格子面と、Coのみからなるカゴメ様の格子面を、交互に積層したものとの見方ができる。積み重ねの位置関係は、R元素が上下のカゴメ格子のつくる六角形の中心になり、かつカメノコ格子の六角形とカゴメ格子の六角形が相互に30°の角度をなしている。 That is, intermetallic compounds having a composition ratio of rare earth elements R and Co of 1: 5 are widely present for R elements, and they have a hexagonal crystal structure called CaCu 5 type shown in FIG. . This structure can be viewed as a structure in which a lattice plane in which R is arranged at the center of a Co kame noko lattice and a kagome-like lattice surface made of only Co are alternately stacked. As for the positional relationship of stacking, the R element is the center of the hexagon formed by the upper and lower kagome lattices, and the hexagon of the kameno lattice and the hexagon of the kagome lattice form an angle of 30 ° with each other.

2Co17化合物はRCo5化合物と近縁の結晶構造と有している。すなわち、3個のRCo5単位胞から1個のRを抜き、その位置に2個のCoを入れるとR2Co17が得られる。Coペアはc軸に沿ってダンベル状に配置し、Coを結ぶ線の中心が置換されたRの元いた位置となる。R原子のCoペアによる置換の仕方は複数通りある。RCo5の基本格子においてRにのみ直目すれば、R副格子は三角格子を層状に積み上げた単純六方晶である。Rの作る三角格子を図5(a)にA,B,Cと示したように3つの三角副格子に分解する。この副格子の1つをCoペアで置換する。Coペアでの置換位置がc軸に沿ってA,B,C,A,B,Cであると、図5(b)のTh2Zn17型と呼ばれる菱面体晶となる。また、1:5化合物のRを、Rの特定の位置でなく、ランダムにCo原子のペアに置換すると、TbCu7型と呼ばれる構造となる。 The R 2 Co 17 compound has a crystal structure closely related to the RCo 5 compound. That is, if one R is extracted from three RCo 5 unit cells and two Cos are inserted at that position, R 2 Co 17 is obtained. Co pairs are arranged in a dumbbell shape along the c-axis, and the center of the line connecting Co is the position where R is replaced. There are multiple ways to substitute R atoms with Co pairs. If straight eyes only R in the basic grid of RCo 5, R sublattice is simple hexagonal piled a triangular lattice in layers. The triangular lattice formed by R is decomposed into three triangular sublattices as indicated by A, B, and C in FIG. One of the sublattices is replaced with a Co pair. When the substitution position in the Co pair is A, B, C, A, B, or C along the c-axis, a rhombohedral crystal called Th 2 Zn 17 type in FIG. Further, when R of the 1: 5 compound is randomly substituted with a pair of Co atoms instead of a specific position of R, a structure called TbCu 7 type is obtained.

例えば、実用化されている2−17 Sm−Co系磁石では、焼結温度領域かそれより少し下の溶体化温度領域では安定なTbCu7構造となり、焼結温度領域まで加熱した焼結体や、溶体化温度領域まで加熱した合金を溶体化温度領域より速やかに冷却する事により、室温でTbCu7相を有する合金を製造することができる。 For example, in a 2-17 Sm-Co magnet that has been put into practical use, a stable TbCu 7 structure is obtained in the solution temperature range just below the sintering temperature range, An alloy having a TbCu 7 phase at room temperature can be produced by cooling the alloy heated to the solution temperature range more quickly than the solution temperature range.

このような系1−7相は、R=Smのとき1MJ/m3以上の結晶磁気異方性を有し、Coサイトを非磁性Cuで適当量置換する事が可能である。もちろんRはSmまたはCeを主体としてYを含む希土類の2種以上でもよい。 Such a system 1-7 phase has a magnetocrystalline anisotropy of 1 MJ / m 3 or more when R = Sm, and can substitute an appropriate amount of Co site with nonmagnetic Cu. Of course, R may be two or more rare earths mainly containing Sm or Ce and containing Y.

実用化されている2−17型SmCo系磁石では、焼結後もしくは溶体化後に全て1−7相が出現している。それでは何故、今まで1−7相で保磁力が得られることが見出されなかったのか、という疑問が生じる。   In a 2-17 type SmCo magnet that has been put into practical use, all 1-7 phases appear after sintering or solution forming. The question then arises as to why it has not been found so far that coercivity can be obtained in the 1-7 phase.

実用磁石の開発においては、飽和磁化を上昇させ高い(BH)maxを得るために、Cuを減少させFeを増やす方向でのみ組成が検討されて来たためである。わざわざ飽和磁化を低下させるような高いCu量の領域は検討されて来なかったため、1−7相自体でピンニング型保磁力が得られる事を本発明によるまで誰も見出さなかったのである。室温以上の温度領域で全く新しくイントリンシックピンニング機構に基づく1−5系以外の永久磁石を見出したものである。 This is because in the development of practical magnets, in order to increase saturation magnetization and obtain a high (BH) max , the composition has been studied only in the direction of decreasing Cu and increasing Fe. Since no region of a high Cu content that would reduce the saturation magnetization has been studied, no one has found that a pinning coercivity can be obtained with the 1-7 phase itself. A permanent magnet other than the 1-5 system based on an intrinsic pinning mechanism has been found in a temperature region above room temperature.

このような合金系で1−7相を安定化する事により、焼結、熱処理を行わなくても800 kA/m以内の保磁力を得る事ができた。もちろん、磁気特性を向上させるためには、磁場中配向を行って異方性焼結磁石にすることが好ましい。   By stabilizing the 1-7 phase in such an alloy system, a coercive force within 800 kA / m could be obtained without performing sintering and heat treatment. Of course, in order to improve the magnetic characteristics, it is preferable to perform orientation in a magnetic field to obtain an anisotropic sintered magnet.

Cuの含量は、15〜35at%(at%はatomic%の略である)が好ましく、15〜30at%が特に好ましい。CoのCuによる置換はR'(CoFeCuT')zの表式で、遷移金属中の10at%以上、好ましくは15at%以上置換されているとよい。CoのCuによる置換が、10at%以下では十分な保磁力が得られない場合がある。また、特に、1.6MA/m以上の保磁力を得るためには、25at%以上のCu置換が好ましい。Cuを置換し過ぎると飽和磁化が低下する場合があるため、該表式で35at%置換までに留めるのが好ましい。 The content of Cu is preferably 15 to 35 at% (at% is an abbreviation for atomic%), and particularly preferably 15 to 30 at%. The substitution of Co by Cu is represented by the formula R ′ (CoFeCuT ′) z , and is preferably 10 at% or more, preferably 15 at% or more in the transition metal. If the substitution of Co with Cu is 10 at% or less, sufficient coercive force may not be obtained. In particular, in order to obtain a coercive force of 1.6 MA / m or more, Cu substitution of 25 at% or more is preferable. If Cu is substituted too much, the saturation magnetization may be lowered, so it is preferable to keep it by 35 at% substitution in the above formula.

また、Feの含量は、5〜30at%が好ましく、5〜20at%が特に好ましい。Feが多いほど飽和磁化が上昇するが、20at%以上では1−7相が安定化される領域が狭くなるため、20at%以下が特に好ましく、5at%以下では飽和磁化が低下しすぎるためそれ以上が好ましい。   Further, the content of Fe is preferably 5 to 30 at%, particularly preferably 5 to 20 at%. The saturation magnetization increases as the amount of Fe increases. However, since the region where the 1-7 phase is stabilized becomes narrow at 20 at% or more, 20 at% or less is particularly preferable, and at 5 at% or less, the saturation magnetization decreases too much. Is preferred.

また、T'の含量は、0.1〜5at%が好ましく、1〜5at%が特に好ましい。T'は該組成式中で1−7相を安定化するために1at%以上あると好ましく、5at%以上では飽和磁化が低下しすぎるために好ましくない。T'は、1−7相を安定化するためには単独の遷移金属元素を用いても良いし、2種以上の遷移金属元素を用いてもよい。   Further, the content of T ′ is preferably from 0.1 to 5 at%, particularly preferably from 1 to 5 at%. T ′ is preferably 1 at% or more in order to stabilize the 1-7 phase in the composition formula, and 5 ′% or more is not preferable because saturation magnetization is excessively lowered. For T ′, in order to stabilize the 1-7 phase, a single transition metal element may be used, or two or more transition metal elements may be used.

また、本発明にかかる磁性金属間化合物を含む永久磁石は、例えば、以下のように製造することができる。すなわち、焼結磁石を製造する場合、主に、Yを含めた希土類元素の1種以上であるRと、FeおよびCoを主とする2種以上の遷移金属元素Tと、不可避の不純物とからなる合金を粉砕することにより磁性粉を得る粉砕工程と、該磁性粉を磁界中で加圧成形することにより成形体を得る成形工程と、該成形体を焼結することにより焼結体を得る焼結工程とにより、本発明にかかる永久磁石を製造することができる。このとき、焼結体に対して時効処理を行う時効工程を行わなくても、高い保持力を得ることができる。   Moreover, the permanent magnet containing the magnetic intermetallic compound concerning this invention can be manufactured as follows, for example. That is, when manufacturing a sintered magnet, mainly from R which is one or more of rare earth elements including Y, two or more transition metal elements T mainly including Fe and Co, and inevitable impurities. A pulverizing step for obtaining magnetic powder by pulverizing the resulting alloy, a forming step for obtaining a compact by press-molding the magnetic powder in a magnetic field, and obtaining a sintered body by sintering the compact The permanent magnet according to the present invention can be manufactured by the sintering process. At this time, a high holding force can be obtained without performing an aging step of performing an aging treatment on the sintered body.

粉砕工程では、原料となる各金属からなる合金の粉砕を行い、磁性粉を得る。粉砕は段階的に道具をかえて行うことができる。第1段階は「叩き割る」で、スタンプミルやジョークラッシャーなどによって行うことができる。第2段階はひき臼の原理でブラウンミルなどにより「磨り潰す」ことができる。ここまでで数100μm程度の粗粉が得られる。この粗粉をさらに細かく粉砕し、平均粒径が、好ましくは2〜10μm、さらに好ましくは3〜5μmである単結晶微粉とする。微粉化のため、ボールミルやジェットミルなどを用いることができる。ジェットミルは、N2ガス等の不活性ガスに高圧をかけ狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粉体の粒子を加速する。粉体の粒子同士の衝突やターゲットあるいは容器壁との衝突を発生させて、破砕する方法である。 In the pulverization step, an alloy made of each metal as a raw material is pulverized to obtain a magnetic powder. Grinding can be performed by changing the tool step by step. The first stage is “smashing”, which can be performed by a stamp mill or a jaw crusher. The second stage can be “ground” by a brown mill or the like based on the principle of a mill. Thus far, coarse powder of about several hundred μm is obtained. This coarse powder is further finely pulverized into a single crystal fine powder having an average particle size of preferably 2 to 10 μm, more preferably 3 to 5 μm. For pulverization, a ball mill or a jet mill can be used. The jet mill applies high pressure to an inert gas such as N 2 gas and opens it from a narrow nozzle to generate a high-speed gas flow, and accelerates powder particles by this high-speed gas flow. This is a method of generating a collision between powder particles and a collision with a target or a container wall, and crushing.

成形工程では、粉砕工程により得た磁性粉を電磁石に抱かれた金型内に充填し、磁場印可によってその結晶軸を配向させた状態で加圧成形する。好ましくは、微粉末の充填密度を真密度に対して10〜30%程度とし、8〜20kOeの磁場中で、0.5〜2ton/cm2前後の圧力で成形して成形体密度を真密度に対して30〜50%程度の成形体を得ることができる。磁場は当然高いほうがよいが、電磁石の製作上制約をうける。微粉末の充填密度を高くすると、粉末同士の摩擦のため上述の配向が阻害さえて、配向度が低くなる場合がある。粉末配向度や成形体密度の向上のため有機系の減摩剤を用いることができる。また、成形体の強度を上げるため有機系のバインダーを用いることもできる。このような有機物は酸化、炭化の原因となり磁石の特性に悪い影響を与える場合がある。それゆえ、焼結に入る前に、好ましくは100〜300℃前後で分解揮発させて除去することができる。これを脱ワックスという。磁場の印可方向は、当然最終的に製品が着磁されるべき方向である。 In the molding step, the magnetic powder obtained in the pulverization step is filled in a mold held by an electromagnet, and is pressure-molded with its crystal axis oriented by applying a magnetic field. Preferably, the packing density of the fine powder is about 10 to 30% of the true density, and the green body density is set to the true density by molding at a pressure of about 0.5 to 2 ton / cm 2 in a magnetic field of 8 to 20 kOe. A molded body of about 30 to 50% can be obtained. Naturally, the magnetic field should be high, but there are restrictions on the production of electromagnets. When the packing density of the fine powder is increased, the above-described orientation may be hindered due to friction between the powders, and the degree of orientation may be lowered. An organic lubricant can be used to improve the degree of powder orientation and the density of the compact. An organic binder can also be used to increase the strength of the molded body. Such organic substances cause oxidation and carbonization and may adversely affect the characteristics of the magnet. Therefore, it can be removed by decomposition and volatilization, preferably at around 100 to 300 ° C., before entering the sintering. This is called dewaxing. The direction in which the magnetic field is applied is naturally the direction in which the product should finally be magnetized.

焼結工程では、成形工程により得た成形体を焼結することで焼結体を得る。焼結は、好ましくは、真空またはアルゴンガス中で行われる。焼結は、好ましくは、1100〜1250℃で、0.5〜3時間行う。この焼結温度は目安であり、組成、粉砕方法、粒度と粒度分布の違い、同時焼成の量などもろもろの条件で加減する必要がある。   In the sintering process, a sintered body is obtained by sintering the molded body obtained in the molding process. Sintering is preferably performed in vacuum or argon gas. Sintering is preferably performed at 1100 to 1250 ° C. for 0.5 to 3 hours. This sintering temperature is a standard, and should be adjusted under various conditions such as composition, pulverization method, difference in particle size and particle size distribution, and amount of co-firing.

なお、時効工程とは、保磁力を制御するための工程であり、例えば、段階的に順次低い温度で熱処理する多段時効や、比較的低い温度から比較的速い冷却速度で行う予備時効の後に800〜900℃の温度で保持してから、ゆっくりと連続冷却を行う本時効を行う2回時効などをいう。本発明によると、時効処理を行わなくても保持力の高い永久磁石が構成できるため、この工程をする必要がなく、より簡単な工程で磁石を製作できる。   The aging step is a step for controlling the coercive force. For example, the aging step is 800 after a multi-step aging in which heat treatment is sequentially performed at a low temperature or preliminary aging performed at a relatively high cooling rate from a relatively low temperature. It refers to double aging, etc., in which the main aging is performed in which continuous cooling is performed slowly after holding at a temperature of ˜900 ° C. According to the present invention, since a permanent magnet having a high holding force can be configured without performing an aging treatment, it is not necessary to perform this step, and the magnet can be manufactured in a simpler step.

また、例えば、ボンド磁石を製造する場合、主に、Yを含めた希土類元素の1種以上であるRと、FeおよびCoを主とする2種以上の遷移金属元素Tと、不可避の不純物とからなる合金を粉砕することにより磁性粉を得る粉砕工程と、該磁性粉を樹脂等と混合し、硬化させる樹脂成形工程とにより、本発明にかかる永久磁石を製造することができる。   Further, for example, when manufacturing a bonded magnet, mainly R, which is one or more of rare earth elements including Y, two or more transition metal elements T, mainly Fe and Co, and inevitable impurities The permanent magnet according to the present invention can be manufactured by a pulverization step of pulverizing an alloy made of the above-described material to obtain a magnetic powder, and a resin molding step of mixing the magnetic powder with a resin or the like and curing it.

粉砕工程は、上記焼結磁石の場合と同様に行うことができる。樹脂成形工程では、磁性粉と樹脂等を混合もしくは混練してペレット化した原料を用いることができる。これを圧縮、射出、押出しなどの手段により成形し、その後硬化させる。射出成形や押出し成形では、加熱して軟化し流動状態となったものを成形し、冷却して硬化させると好ましい。樹脂としては圧縮成形では熱硬化、射出成形では熱可塑性のものを用いると好ましい。前者ではエポキシ系のものが後者ではナイロン系のものが主として用いられる。
樹脂等として、エポキシ樹脂等が好ましい。また、樹脂の量は、ボンド磁石の全量に対して、好ましくは50体積%以下である。
The pulverization step can be performed in the same manner as in the case of the sintered magnet. In the resin molding step, a raw material obtained by mixing or kneading magnetic powder and resin or the like can be used. This is molded by means such as compression, injection, extrusion, and then cured. In injection molding or extrusion molding, it is preferable to mold a material that has been heated and softened to a fluidized state, and then cooled and cured. As the resin, it is preferable to use a thermosetting resin for compression molding and a thermoplastic resin for injection molding. In the former, epoxy type is mainly used, and in the latter, nylon type is mainly used.
As the resin or the like, an epoxy resin or the like is preferable. The amount of the resin is preferably 50% by volume or less with respect to the total amount of the bonded magnet.

純度99.9%のSm,Co,Fe,Cu,ZrをSm(CoresFe0.20Cu0.15Zr0.0257.5となるように秤量して、高周波炉においてAr減圧雰囲気において溶解し、水冷鋳型に鋳込んで合金を作製した。該合金をN2ガスを使用したジェットミルで微粉砕し、平均粒径4μmの微粉とした。該微粉を15kOeの磁場中で磁場配向させながら、1ton/cm2の圧力で圧粉成形して成形体とした。該成形体をArガス雰囲気中で、1210℃で1時間焼結し、引続き1195℃で2時間溶体化処理を行って焼結体を製作した。一般的な2−17 SmCo系磁石のような時効熱処理は一切行わなかった。 Sm, Co, Fe, Cu, and Zr having a purity of 99.9% are weighed so as to be Sm ( Cores Fe 0.20 Cu 0.15 Zr 0.025 ) 7.5 , dissolved in an Ar reduced pressure atmosphere in a high frequency furnace, and cast into a water-cooled mold. To produce an alloy. The alloy was finely pulverized by a jet mill using N 2 gas to obtain a fine powder having an average particle diameter of 4 μm. The fine powder was compacted at a pressure of 1 ton / cm 2 while being magnetically oriented in a magnetic field of 15 kOe to obtain a compact. The molded body was sintered in an Ar gas atmosphere at 1210 ° C. for 1 hour, and subsequently subjected to a solution treatment at 1195 ° C. for 2 hours to produce a sintered body. No aging heat treatment was performed as in a general 2-17 SmCo magnet.

該焼結体をBHトレーサーでヒステリシス曲線を測定したところ、図6に示すようにピンニング型の初磁化曲線を示し、Hci=7.5kOeの保磁力を有していた(図6中、Hextは外部磁場の強さ、4πImは磁束密度を示す)。また、該焼結体の一部を使用して、粉末X線回折、EPMA観察、TEM観察を行った。 When the hysteresis curve of the sintered body was measured with a BH tracer, it showed a pinning-type initial magnetization curve as shown in FIG. 6 and had a coercive force of H ci = 7.5 kOe (in FIG. Is the strength of the external magnetic field, 4πIm is the magnetic flux density). Moreover, powder X-ray diffraction, EPMA observation, and TEM observation were performed using a part of the sintered body.

X線回折による回折パターンのピークは、全てTbCu7構造で指数付けでき、ピークも細く鋭い形状をしていて1−7相が安定していることを示している。また、EPMA観察により磁性主相を構成する成分はほぼ均一な元素分布を示して、特に特定元素の偏りなどは観察されなかった。2次電子像(組成像)を図7に示すが、Sm23の酸化物相と幾分見られるZrCo相を除いて、組成の偏りを示す濃淡は観察されていない。図8にTEM観察により100万倍に拡大した写真を示すが、特定の微細組織は見出せなかった。双晶の境界は存在するが、C面方向に拡がっているのみでこれは保磁力に関係しないため、組織は均質である。 The peaks of the diffraction pattern by X-ray diffraction can all be indexed with the TbCu 7 structure, and the peaks are also thin and sharp, indicating that the 1-7 phase is stable. Further, the components constituting the magnetic main phase showed almost uniform element distribution by EPMA observation, and no particular element bias was observed. A secondary electron image (composition image) is shown in FIG. 7, but no light and shade showing compositional deviation was observed except for the oxide phase of Sm 2 O 3 and the ZrCo phase that is somewhat observed. FIG. 8 shows a photograph magnified 1 million times by TEM observation, but no specific microstructure was found. Although there are twin boundaries, the structure is homogeneous because it only extends in the C-plane direction and does not relate to the coercive force.

これらの観察結果から、該磁石焼結体は微細構造を有しないにも関わらず、ピンニング型の保磁力機構を有する磁石であることが分かった。なお、本発明の組成は当然この実施例に限定されるものではない。   From these observation results, it was found that the magnet sintered body was a magnet having a pinning-type coercive force mechanism although it did not have a fine structure. Of course, the composition of the present invention is not limited to this example.

希土類永久磁石の2つ保磁力機構を示すグラフである。(a)ピンニング型の初磁化曲線(b)核発生成長型の初磁化曲線It is a graph which shows two coercive force mechanisms of a rare earth permanent magnet. (A) Pinning type initial magnetization curve (b) Nucleation growth type initial magnetization curve 従来の2−17型Sm−Co磁石のTEMによる微細組織写真(約7万倍)である。It is the fine structure photograph (about 70,000 times) by the TEM of the conventional 2-17 type | mold Sm-Co magnet. Sm(CoCu)5磁石のTEMによる微細組織写真(約11万倍)である。It is the fine structure photograph (about 110,000 times) by TEM of Sm (CoCu) 5 magnet. 2−17Sm−Co系磁石における従来の磁壁ピンニングモデルの模式図である。It is a schematic diagram of the conventional domain wall pinning model in a 2-17Sm-Co type | system | group magnet. (a)RCo5の結晶構造(六方晶)を示す模式図である。(b)R2Co17の結晶構造(菱面体晶)を示す模式図である。(A) RCo 5 crystalline structure is a schematic diagram showing a (hexagonal). (B) the crystal structure of the R 2 Co 17 is a schematic diagram showing a (rhombohedral). 本発明の一例にかかる合金のヒステリシス曲線を示すグラフである。It is a graph which shows the hysteresis curve of the alloy concerning an example of this invention. 本発明の一例にかかる合金のEPMAによる2次電子像(約300倍)である。It is a secondary electron image (about 300 times) by EPMA of the alloy concerning an example of this invention. 本発明の一例にかかる合金のTEMによる組織拡大写真(約15万倍)である。It is the structure | tissue enlarged photograph (about 150,000 times) by the TEM of the alloy concerning an example of this invention.

Claims (4)

Yを含めた希土類元素の1種以上であるRと、FeおよびCoを主とする2種以上の遷移金属元素Tと、不可避の不純物とからなる磁性金属間化合物を含む永久磁石であって、
該磁性金属間化合物は、原子比で、Rを1としたとき、Tが6〜14であり、
該磁性金属間化合物の結晶磁気異方性エネルギーが1MJ/m3以上であり、
該磁性金属間化合物のキュリー点が100℃以上であり、
該磁性金属間化合物が平均粒径3μm以上の粒子であり、
該磁性金属間化合物が実質的に均一な組織であり、
初磁化曲線がピンニング型を与える構造を有し、さらに
該磁性金属間化合物がTbCu7型構造を有する希土類永久磁石。
A permanent magnet comprising a magnetic intermetallic compound comprising R, which is one or more of rare earth elements including Y, two or more transition metal elements T mainly composed of Fe and Co, and unavoidable impurities,
The magnetic intermetallic compound has an atomic ratio where T is 6 to 14 when R is 1.
The magnetocrystalline anisotropy energy of the magnetic intermetallic compound is 1 MJ / m 3 or more,
The Curie point of the magnetic intermetallic compound is 100 ° C. or higher,
The magnetic intermetallic compound is a particle having an average particle size of 3 μm or more;
The magnetic intermetallic compound has a substantially uniform structure;
A rare earth permanent magnet having a structure in which an initial magnetization curve gives a pinning type, and wherein the magnetic intermetallic compound has a TbCu 7 type structure.
前記磁性金属間化合物の粒子が焼結体形成粒子である、請求項1に記載の希土類磁石。   The rare earth magnet according to claim 1, wherein the magnetic intermetallic compound particles are sintered body-forming particles. 前記磁性金属間化合物の内部に、1nm以上の微細組織が存在しないことを特徴とする、請求項1または2に記載の希土類磁石。   3. The rare earth magnet according to claim 1, wherein a microstructure of 1 nm or more does not exist inside the magnetic intermetallic compound. 前記金属間化合物の組成式が下記式(I)で表される、請求項1〜3のいずれかに記載の希土類永久磁石。
R'(Co1-x-y-aFexCuyT'az ・・・式(I)
(式中、R'は、SmまたはCeを主とするYを含めた希土類元素の1種以上である。T'は、Zr、Ti、V、Mo、Nb、W、Hf、Mn、Crからなる群から選ばれる少なくとも1種以上の遷移金属元素である。x、y、a、zは、0.05≦x≦0.30、0.15≦y≦0.35、0.001≦a≦0.05、6.0≦z≦9.0を満たす数である。)
The rare earth permanent magnet according to any one of claims 1 to 3, wherein a composition formula of the intermetallic compound is represented by the following formula (I).
R '(Co 1-xya Fe x Cu y T' a) z ··· formula (I)
(In the formula, R ′ is one or more rare earth elements including Y mainly composed of Sm or Ce. T ′ is derived from Zr, Ti, V, Mo, Nb, W, Hf, Mn, and Cr. And at least one transition metal element selected from the group consisting of x, y, a and z, 0.05 ≦ x ≦ 0.30, 0.15 ≦ y ≦ 0.35, 0.001 ≦ a ≦ 0.05, 6.0 ≦ z ≦ 9.0.)
JP2004050982A 2004-02-26 2004-02-26 Rare earth permanent magnet Expired - Lifetime JP4448713B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004050982A JP4448713B2 (en) 2004-02-26 2004-02-26 Rare earth permanent magnet
US11/062,961 US7713360B2 (en) 2004-02-26 2005-02-22 Rare earth permanent magnet
DE602005003599T DE602005003599T2 (en) 2004-02-26 2005-02-23 Rare earth permanent magnet
EP05251040A EP1569247B1 (en) 2004-02-26 2005-02-23 Rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004050982A JP4448713B2 (en) 2004-02-26 2004-02-26 Rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JP2005243884A true JP2005243884A (en) 2005-09-08
JP4448713B2 JP4448713B2 (en) 2010-04-14

Family

ID=35025303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050982A Expired - Lifetime JP4448713B2 (en) 2004-02-26 2004-02-26 Rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP4448713B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140993A (en) * 2013-02-04 2013-07-18 Toshiba Corp Permanent magnet, and motor and generator including the same
JP5331885B2 (en) * 2009-08-06 2013-10-30 株式会社東芝 Permanent magnet and variable magnetic flux motor and generator using the same
JP2014005539A (en) * 2013-07-26 2014-01-16 Toshiba Corp Permanent magnet, variable magnetic flux motor using the same and generator
JP2014140045A (en) * 2014-02-21 2014-07-31 Toshiba Corp Permanent magnet, and motor and power generator using the same
CN105489331A (en) * 2015-12-24 2016-04-13 中国科学院宁波材料技术与工程研究所 Preparation method for rare earth cobalt-based material
US9583243B2 (en) 2010-09-24 2017-02-28 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
US9774234B2 (en) 2010-03-30 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
JP2018139495A (en) * 2018-06-18 2018-09-06 株式会社デンソー Inner type rotor and manufacturing method of inner type rotor
US11676747B2 (en) 2017-09-15 2023-06-13 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193208A (en) * 2001-12-28 2003-07-09 Toshiba Corp Magnet material and production method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193208A (en) * 2001-12-28 2003-07-09 Toshiba Corp Magnet material and production method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5331885B2 (en) * 2009-08-06 2013-10-30 株式会社東芝 Permanent magnet and variable magnetic flux motor and generator using the same
US9774219B2 (en) 2009-08-06 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet, motor and electric generator
US9774234B2 (en) 2010-03-30 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
US9583243B2 (en) 2010-09-24 2017-02-28 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
JP2013140993A (en) * 2013-02-04 2013-07-18 Toshiba Corp Permanent magnet, and motor and generator including the same
JP2014005539A (en) * 2013-07-26 2014-01-16 Toshiba Corp Permanent magnet, variable magnetic flux motor using the same and generator
JP2014140045A (en) * 2014-02-21 2014-07-31 Toshiba Corp Permanent magnet, and motor and power generator using the same
CN105489331A (en) * 2015-12-24 2016-04-13 中国科学院宁波材料技术与工程研究所 Preparation method for rare earth cobalt-based material
US11676747B2 (en) 2017-09-15 2023-06-13 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle
JP2018139495A (en) * 2018-06-18 2018-09-06 株式会社デンソー Inner type rotor and manufacturing method of inner type rotor

Also Published As

Publication number Publication date
JP4448713B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
Cui et al. Current progress and future challenges in rare-earth-free permanent magnets
EP0101552B1 (en) Magnetic materials, permanent magnets and methods of making those
US9502165B2 (en) Permanent magnet, motor, and generator
JP6411630B2 (en) Quenched alloy for rare earth magnet and method for producing rare earth magnet
Jia et al. L 1 0 rare-earth-free permanent magnets: The effects of twinning versus dislocations in Mn-Al magnets
KR101936174B1 (en) Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
US7713360B2 (en) Rare earth permanent magnet
US9502164B2 (en) Permanent magnet, motor, and generator
Xiang et al. Coercivity enhancement and magnetization process in Mn55Bi45 alloys with refined particle size
US10734143B2 (en) R-T-B based sintered magnet
JP4448713B2 (en) Rare earth permanent magnet
JPS6110209A (en) Permanent magnet
JP6332479B2 (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2008248369A (en) Nd-Fe-B-BASED META-STABLE SOLIDIFICATION ALLOY AND NANO-COMPOSITE MAGNET MANUFACTURED BY USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME
Hirosawa et al. New aspects of Nd–Fe–B-based hydrogenation-disproportionation-desorption-recombination powders and anisotropic bonded magnets made from them: Microstructure and magnetic properties
Lu et al. Recrystallization induced coercivity and magnetic properties enhancement in hot-deformed L10-Mn1. 8Ga magnet
US11081265B2 (en) Rare-earth sintered magnet
Ahmad et al. Fe69B20. 2Nd4. 2Nb3. 3Y2. 5Zr0. 8 magnets produced by injection casting
JP6510088B2 (en) Permanent magnet and motor, generator and car using the same
JP2005243883A (en) Rare earth permanent magnet
JP6519300B2 (en) Rare earth permanent magnet and method of manufacturing rare earth permanent magnet
Zhao et al. Nitrogenation and Subsequent Surfactant-Assisted High Energy Ball Milling of Sm 2 Fe 17 Melt-Spun Powders
JP2000216015A (en) Compressed type rigid magnetic material and manufacture thereof
Zhong Synthesis of Nd-Fe-B based magnetic materials through the mechanochemical process
Wang Nanostructured Hf-Co and Nd-Fe-B Hard Magnetic Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4448713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160129

Year of fee payment: 6