JPH0696918A - Nitride magnetic material - Google Patents

Nitride magnetic material

Info

Publication number
JPH0696918A
JPH0696918A JP4245012A JP24501292A JPH0696918A JP H0696918 A JPH0696918 A JP H0696918A JP 4245012 A JP4245012 A JP 4245012A JP 24501292 A JP24501292 A JP 24501292A JP H0696918 A JPH0696918 A JP H0696918A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic material
alloy
nitrogen
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4245012A
Other languages
Japanese (ja)
Other versions
JP3157302B2 (en
Inventor
Nobuyoshi Imaoka
伸嘉 今岡
Yoshio Suzuki
淑男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP24501292A priority Critical patent/JP3157302B2/en
Publication of JPH0696918A publication Critical patent/JPH0696918A/en
Application granted granted Critical
Publication of JP3157302B2 publication Critical patent/JP3157302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a magnetic material having a high magnetic characteristic and excellent oxidation resistance by mixing a specific metallic element in a rare-earth-iron-nitrogen material having a rhombohedral or hexagonal crystal structure. CONSTITUTION:This material is a magnetic material expressed by Ralpha(Fe(1-gamma) Mgamma)(100-alpha-beta)Nbeta (where, R and M respectively represent at least one kind selected from among rare-earth elements including Y and at least one kind selected from among Mn, Cr, and Ni and alpha, beta, and gamma respectively represent 3-20at.%, 3-3at.%, and 0.001-0.5at.%) and the phase containing M and N has a rhombohedral or hexagonal crystal structure. In the composition, in addition, the 0.01-50% of Fe content in the raw material of the magnetic material is replaced with Co. The alloy is heat-treated at 200-650 deg.C in an atmosphere containing at least one kind selected from a nitrogen gas and ammonia gas. Therefore, a magnetic material having an excellent oxidation resistance and high magnetic characteristic can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高磁気特性で耐酸化性
に優れた希土類−鉄−窒素系磁性材料で、特に小型モー
ター、アクチュエーターなどの用途に最適な磁性材料に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-iron-nitrogen based magnetic material having high magnetic properties and excellent oxidation resistance, and more particularly to a magnetic material most suitable for applications such as small motors and actuators.

【0002】[0002]

【従来の技術】磁性材料は家庭電化製品、音響製品、自
動車部品やコンピューターの周辺端末機まで、幅広い分
野で使用されており、エレクトロニクス材料としての重
要性は年々増大しつつある。特に最近、各種電気・電子
機器の小型化、高効率化が要求されてきたため、より高
性能の磁性材料が求められている。
2. Description of the Related Art Magnetic materials are used in a wide range of fields such as home electric appliances, audio products, automobile parts and peripheral terminals of computers, and their importance as electronic materials is increasing year by year. In particular, recently, there has been a demand for miniaturization and high efficiency of various electric / electronic devices, so that a magnetic material with higher performance is required.

【0003】この時代の要請に応え、Sm−Co系、N
d−Fe−B系などの希土類磁性材料の需要が急激に増
大している。しかし、Sm−Co系は原料供給が不安定
で原料コストが高く、Nd−Fe−B系は耐熱性、耐食
性に劣る問題点がある。一方、新しい希土類系磁性材料
として、希土類−鉄−窒素系磁性材料が発明されてい
る。(例えば特開平2−57663)この材料は、磁
化、異方性磁界、キュリー点が高く、Sm−Co系、N
d−Fe−B系の欠点を補う磁性材料として期待されて
いる。しかしながら、この磁性体材料は耐酸化性が悪い
という欠点を有している。この希土類−鉄−M−窒素組
成を有する材料については、特開昭60−14490
6、特開昭60−144907、特開昭60−1449
09に開示されている。
In response to the demands of this era, Sm-Co type, N
The demand for rare earth magnetic materials such as d-Fe-B system is rapidly increasing. However, the Sm-Co type has a problem that the supply of the raw material is unstable and the raw material cost is high, and the Nd-Fe-B type has poor heat resistance and corrosion resistance. On the other hand, as a new rare earth magnetic material, a rare earth-iron-nitrogen magnetic material has been invented. (For example, JP-A-2-57663) This material has high magnetization, anisotropic magnetic field, and high Curie point.
It is expected as a magnetic material that supplements the drawbacks of the d-Fe-B system. However, this magnetic material has the drawback of poor oxidation resistance. For a material having this rare earth-iron-M-nitrogen composition, see JP-A-60-14490.
6, JP-A-60-144907, JP-A-60-1449
09.

【0004】しかし、特開昭60−144906〜14
4909に開示されている材料は、その製造工程及び条
件から、窒化鉄、α−鉄、窒化希土類及びMの窒化物を
多く含む材料となり、保磁力を初めとする磁気特性は著
しく劣化して、これらの材料は高性能な磁石材料となら
ない。このようなことから、磁気特性が高い菱面体晶又
は六面体晶の結晶構造を有し、しかも耐酸化性に優れた
希土類−鉄−M−窒素系材料は現在知られておらず、そ
の出現が強く望まれている。
However, JP-A-60-144906-14
The material disclosed in 4909 becomes a material containing a large amount of iron nitride, α-iron, a rare earth nitride and a nitride of M from the manufacturing process and conditions thereof, and the magnetic properties such as coercive force are significantly deteriorated, These materials do not become high performance magnet materials. From this, a rare earth-iron-M-nitrogen-based material having a rhombohedral or hexahedral crystal structure with high magnetic properties and excellent in oxidation resistance is not currently known, and its appearance Strongly desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、菱面体晶或
は六方晶の結晶構造を有した希土類−鉄−窒素系材料に
金属元素Mを共存させて、高い磁気特性と優れた耐酸化
性を合わせ持つ希土類−鉄−M−窒素組成の磁性材料と
その製造法を提供するものである。
DISCLOSURE OF THE INVENTION According to the present invention, a rare earth-iron-nitrogen-based material having a rhombohedral or hexagonal crystal structure is allowed to coexist with a metal element M to obtain high magnetic properties and excellent oxidation resistance. The present invention provides a magnetic material having a rare earth-iron-M-nitrogen composition and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】高い磁気特性と耐酸化性
を有する希土類−鉄−窒素系磁性材料を得るために、母
合金に種々の元素(M)を添加した系について鋭意検討
した結果、磁気特性が高く耐酸化性の優れた組成及び結
晶構造を有する希土類(R)−鉄(Fe)−M−窒素
(N)系磁性材料を見いだし、本発明を成すに至った。
[Means for Solving the Problems] In order to obtain a rare earth-iron-nitrogen based magnetic material having high magnetic properties and oxidation resistance, as a result of extensive studies on a system in which various elements (M) are added to a mother alloy, The present invention has been accomplished by finding a rare earth (R) -iron (Fe) -M-nitrogen (N) based magnetic material having a composition and a crystal structure with high magnetic properties and excellent oxidation resistance.

【0007】即ち、本発明は(1)一般式Rα(Fe
(1-γ)Mγ)(100-α-β)Nβで表される磁性材料であ
り、RはYを含む希土類元素のうち少なくとも一種、M
は、Mn、Cr、Niの元素のうち少なくとも一種、
α、βは原子百分率で 3≦α≦20 3≦β≦30 γは原子比で 0.001≦γ≦0.5 であって、かつそのR、Fe、M及びNを含んだ相が菱
面体晶及び六方晶の結晶構造を含有することを特徴とす
る磁性材料、及び、(2)上記請求項1に記載の磁性材
料の成分であるFeの0.01〜50原子%をCoで置
換した組成を有することを特徴とする磁性材料であり、
(3)一般式Rα/(100-β)(Fe(1-γ)Mγ)(100-α
-β)/(100-β)で表される合金を、窒素ガス、アンモニ
アガスのうち少なくとも一種を含む雰囲気下で、200
〜650℃の範囲で熱処理することを特徴とする上記請
求項1又は2に記載の磁性材料の製造法である。
That is, the present invention provides (1) the general formula Rα (Fe
(1- γ) Mγ) (100- α - β) is a magnetic material represented by N.beta, at least one kind of rare earth element R, including the Y, M
Is at least one of the elements Mn, Cr, Ni,
α and β are atomic percentages 3 ≦ α ≦ 20 3 ≦ β ≦ 30 γ is an atomic ratio 0.001 ≦ γ ≦ 0.5, and the phase containing R, Fe, M and N is a diamond. A magnetic material containing a crystal structure of a tetrahedron and a hexagonal crystal, and (2) 0.01 to 50 atomic% of Fe, which is a component of the magnetic material according to claim 1, is replaced with Co. A magnetic material characterized by having the following composition:
(3) General formula Rα / (100- β ) (Fe (1- γ ) Mγ) (100- α
- beta) / (an alloy represented by 100- beta), nitrogen gas, in an atmosphere containing at least one of ammonia gas, 200
The method for producing a magnetic material according to claim 1 or 2, wherein the heat treatment is performed in the range of 650 ° C.

【0008】以下本発明について詳細に説明する。希土
類(R)としては、Y、La、Ce、Pr、Nd、P
m、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、YbおよびLuのうち少なくとも一種を含めば良
く、従って、ミッシュメタルやジジム等の二種以上の希
土類元素の混合物を用いても良いが、好ましい希土類と
しては、Y、Ce、Pr、Nd、Sm、Gd、Dy、E
rである。さらに好ましくは、Y、Ce、Pr、Nd、
Smである。
The present invention will be described in detail below. As rare earth (R), Y, La, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
It suffices to include at least one of m, Yb and Lu. Therefore, a mixture of two or more kinds of rare earth elements such as misch metal and didymium may be used, but preferable rare earth elements are Y, Ce, Pr, Nd, Sm, Gd, Dy, E
r. More preferably, Y, Ce, Pr, Nd,
It is Sm.

【0009】また、このRは工業的生産により入手可能
な純度でよく、製造上不可避の不純物、例えばO、H、
C、Al、Si、F、Na、Mg、Ca、Liなどが存
在していても差し支えない。鉄(Fe)は、強磁性を担
う本磁性材料の基本組成であり、その最大50原子%ま
ではCoと置換されてもよい。本発明のポイントである
Mn,Cr,Niの元素Mについては、該Mn,Cr,
Niの元素(M)をFeに対して、0.001〜50原
子%で共存させる。
Further, this R may have a purity which can be obtained by industrial production, and impurities which are unavoidable in production, such as O, H,
C, Al, Si, F, Na, Mg, Ca, Li and the like may be present. Iron (Fe) is a basic composition of the present magnetic material that is responsible for ferromagnetism, and may be replaced with Co up to 50 atomic% at the maximum. Regarding the element M of Mn, Cr, and Ni, which is the point of the present invention, the Mn, Cr, and
The element (M) of Ni is made to coexist at 0.001 to 50 atomic% with respect to Fe.

【0010】本発明におけるR−Fe−M−N系磁性材
料の組成は、希土類が3〜20原子%、鉄及びM成分が
併せて50〜94原子%、Nが3〜30原子%の範囲に
あることが必要である。R成分が3原子%未満のとき、
鉄成分を多く含む軟磁性相が分離し、窒化物の保磁力が
低下して実用的な永久磁石とならない。またR成分が2
0原子%を越えると、残留磁束密度が低下して好ましく
ない。又、希土類の組成として好ましくは5〜15原子
%、更に好ましくは7〜12原子%である。
The composition of the R-Fe-MN magnetic material in the present invention is in the range of 3 to 20 atomic% of rare earth, 50 to 94 atomic% of iron and M components together, and 3 to 30 atomic% of N. Need to be in. When the R component is less than 3 atom%,
The soft magnetic phase containing a large amount of iron component separates, and the coercive force of the nitride decreases, so that a practical permanent magnet cannot be obtained. Also, the R component is 2
If it exceeds 0 atom%, the residual magnetic flux density is lowered, which is not preferable. The composition of the rare earth is preferably 5 to 15 atom%, more preferably 7 to 12 atom%.

【0011】鉄と共存するM成分は、鉄とM成分の合計
に対し原子比で0.001〜0.5の範囲とする必要が
ある。0.5を越えると飽和磁化が低下して好ましくな
く、0.001未満の場合は耐酸化性に対するMの添加
効果がほとんどない。また、Mの共存量として、好まし
くは0.01〜0.2である。さらに鉄をCoで0.0
1〜50原子%置換した場合キュリー点、磁化が高く、
更に耐酸化性の高い材料となる。
The M component coexisting with iron must be in the range of 0.001 to 0.5 in atomic ratio with respect to the total of the iron and M components. If it exceeds 0.5, the saturation magnetization is lowered, which is not preferable, and if it is less than 0.001, there is almost no effect of adding M on the oxidation resistance. The coexisting amount of M is preferably 0.01 to 0.2. Further, iron is 0.0 in Co.
When 1 to 50 atom% is substituted, the Curie point and the magnetization are high,
Further, the material has high oxidation resistance.

【0012】M成分としてのMn、Cr、Niに加え
て、Li、Na、K、Mg、Ca、Sr、Ba、Ti、
Zr、Hf、V、Nb、Ta、Mo、W、Pd、Cu、
Ag、Zn、B、Al、Ga、In、C、Si、Ge、
Sn、Pb、Biの元素のうち1種または2種以上
(M’成分)を添加しても良いが、これらの含有量はM
n、Cr、Niの合計量を越えないで、しかもMn、C
r、Niとの合計量がγ値の範囲にある様にしなければ
ならない。
In addition to Mn, Cr and Ni as M components, Li, Na, K, Mg, Ca, Sr, Ba and Ti,
Zr, Hf, V, Nb, Ta, Mo, W, Pd, Cu,
Ag, Zn, B, Al, Ga, In, C, Si, Ge,
One or more elements (M ′ component) of Sn, Pb and Bi elements may be added, but the content of these elements is M.
Do not exceed the total amount of n, Cr, Ni, and Mn, C
The total amount of r and Ni must be within the range of γ value.

【0013】R−Fe−M−N系磁性材料の主相の結晶
構造としては、六方晶並びに菱面体晶のうち少なくとも
一種を体積分率で全体の50%以上含むことが必要であ
る。例えばRFe12-xxy相といった正方晶を取る磁
性の高い窒化物相を含んでいても良いが、本発明の耐酸
化性の効果を充分発揮させるためには、その体積分率は
本発明の磁性材料の体積分率を越えてはならない。体積
分率が75体積%を越える場合、実用上極めて好ましい
材料となる。 本発明で得られるR−Fe−M−N系材
料の主相は、結晶構造がその原料とするR−Fe−M合
金の主相とほぼ同じ対称性を有し、窒素が格子間に侵入
するかもしくはM成分などと置換して導入され、結晶格
子が多くの場合膨張する。
The crystal structure of the main phase of the R-Fe-MN magnetic material must include at least one of hexagonal and rhombohedral crystals in a volume fraction of 50% or more. For example, a highly magnetic nitride phase having a tetragonal structure such as RFe 12-x M x N y phase may be contained, but in order to fully exert the effect of the oxidation resistance of the present invention, its volume fraction is The volume fraction of the magnetic material of the present invention should not be exceeded. When the volume fraction exceeds 75% by volume, it is a very preferable material for practical use. The main phase of the R-Fe-M-N-based material obtained in the present invention has a crystal structure having substantially the same symmetry as the main phase of the R-Fe-M alloy used as the raw material, and nitrogen penetrates into the interstitial spaces. Or is introduced by substituting the M component or the like, and the crystal lattice is expanded in many cases.

【0014】それに伴い、耐酸化性及び磁気特性の各項
目のうち一項目以上が向上し、実用上好適な磁性材料と
なる。ここにいう磁気特性とは、材料の飽和磁化(4π
Is)、残留磁束密度(Br)、磁気異方性磁界(H
a)、磁気異方性エネルギー(Ea)、磁気異方性比、
キュリー点(Tc)、固有保磁力(iHc)、角形比
(Br/4πIs)、最大エネルギー積[(BH)ma
x]、熱減磁率のうち少なくとも一つを言う。但し、磁
気異方性比とは、外部磁場を15kOe印加した時の困
難磁化方向の磁化(a)と容易磁化方向の磁化(b)の
比(a/b)であり、磁気異方性比が小さいもの程、磁
気異方性エネルギーが高いと評価される。
Along with this, one or more of the items of oxidation resistance and magnetic properties are improved, and the magnetic material is suitable for practical use. The magnetic property here means the saturation magnetization of the material (4π
Is), residual magnetic flux density (Br), magnetic anisotropic magnetic field (H
a), magnetic anisotropy energy (Ea), magnetic anisotropy ratio,
Curie point (Tc), intrinsic coercive force (iHc), squareness ratio (Br / 4πIs), maximum energy product [(BH) ma
x], and at least one of the thermal demagnetization rates. However, the magnetic anisotropy ratio is the ratio (a / b) of the magnetization (a) in the difficult magnetization direction and the magnetization (b) in the easy magnetization direction when an external magnetic field of 15 kOe is applied. The smaller the value, the higher the magnetic anisotropy energy.

【0015】例えば、希土類−鉄−M母合金として、菱
面体構造を有するSm10.5(Fe0. 9Ni0.189.5を選
んだ場合、窒素を導入することによって、結晶磁気異方
性が面内異方性から硬磁性材料として好適な一軸異方性
に変化し、磁気異方性エネルギーを初めとする磁気特性
と耐酸化性が向上する。導入される窒素(N)量は、3
〜30原子%にしなければならない。30原子%を越え
ると磁化が低く、磁石材料用途としては実用性が小さ
い。3原子%未満では原料合金の性能をあまり向上させ
ることができず、好ましくない。窒素量としてさらに好
ましくは、5〜25原子%、特に好ましくは10〜17
原子%である。
[0015] For example, rare earth - as an iron -M master alloy, when choosing the Sm 10.5 (Fe 0. 9 Ni 0.1 ) 89.5 having a rhombohedral structure, by introducing nitrogen, crystal magnetic anisotropy in-plane Anisotropy changes to uniaxial anisotropy suitable for a hard magnetic material, and magnetic properties such as magnetic anisotropy energy and oxidation resistance are improved. The amount of nitrogen (N) introduced is 3
Must be ~ 30 atomic%. If it exceeds 30 atomic%, the magnetization is low, and its practicality as a magnet material is small. If it is less than 3 atomic%, the performance of the raw material alloy cannot be improved so much, which is not preferable. The amount of nitrogen is more preferably 5 to 25 atomic%, particularly preferably 10 to 17
It is atomic%.

【0016】また、目的とするR−Fe−M−N系磁性
材料のR−Fe−M組成比や副相の量比などによって、
最適な窒素量は異なり、例えば菱面体構造を有するNd
10.5(Fe0.9Mn0.189.5を原料合金として選ぶと、
最適な窒素量は13〜14原子%付近となる。このとき
の最適な窒素量とは、目的に応じて異なるが材料の耐酸
化性及び磁気特性のうち少なくとも一項目が最適となる
窒素量であり、磁気特性が最適とは磁気異方性比、減磁
率は極小、その他は極大となることである。
Also, depending on the R-Fe-M composition ratio of the target R-Fe-M-N magnetic material and the amount ratio of the sub-phase,
The optimum amount of nitrogen is different, for example, Nd having a rhombohedral structure.
When 10.5 (Fe 0.9 Mn 0.1 ) 89.5 is selected as the raw material alloy,
The optimum nitrogen amount is around 13 to 14 atom%. The optimum nitrogen amount at this time is the nitrogen amount for which at least one item of the oxidation resistance and magnetic properties of the material is optimal although it varies depending on the purpose, and the optimal magnetic property is the magnetic anisotropy ratio, The demagnetization rate is minimum, and the others are maximum.

【0017】本発明により得られたR−Fe−M−N系
磁性材料には、水素(H)が0.01〜15原子%、さ
らに酸素(O)が0.01〜15原子%含まれることが
好ましい。更に好ましい水素量及び酸素量は、0.1〜
10原子%及び0.1〜10原子%である。従って、特
に好ましい本発明のR−Fe−M−N系材料の組成は、
一般式Rα(Fe(1-γ)Mγ)(100-α-β-δ-ε)Nβ
HδOεで表わしたとき、α、β、δ、εは原子%で、 2.4≦α≦20 2.4≦β≦30 0.1≦δ≦10 0.1≦ε≦10 γは原子比で、 0.001≦γ≦0.5 の範囲である。
The R—Fe—M—N magnetic material obtained by the present invention contains 0.01 to 15 atomic% of hydrogen (H) and 0.01 to 15 atomic% of oxygen (O). It is preferable. A more preferable amount of hydrogen and oxygen is 0.1 to
It is 10 atomic% and 0.1-10 atomic%. Therefore, the particularly preferable composition of the R-Fe-M-N-based material of the present invention is
General formula Rα (Fe (1- γ ) Mγ) (100- α - β - δ - ε )
When expressed by HδOε, α, β, δ, ε are atomic%, 2.4 ≦ α ≦ 20 2.4 ≦ β ≦ 30 0.1 ≦ δ ≦ 10 0.1 ≦ ε ≦ 10 γ is an atomic ratio Then, the range is 0.001 ≦ γ ≦ 0.5.

【0018】R−Fe−N系磁性材料に対するM成分の
共存効果としては、主に耐酸化性の向上である。特に、
R−Fe−N系磁性材料の酸化による劣化では、磁化の
低下に比べ、保磁力の低下が問題となる。本発明の組成
物は酸化に対する保磁力の安定性に優れる特徴を有す
る。その効果の源は強磁性を担うR−Fe−N磁性材料
主相にM成分が共存することによるが、主相そのものが
酸化されづらくなって磁化の劣化を妨げるだけに限ら
ず、酸化により分離する鉄主体の軟磁性成分にM成分が
含有したり、析出状態に影響したりして、窒化物磁性材
料の保磁力低下を防ぐのにも寄与している。
The coexistence effect of the M component with respect to the R—Fe—N magnetic material is mainly improvement of oxidation resistance. In particular,
Deterioration of the R—Fe—N-based magnetic material due to oxidation causes a problem of a decrease in coercive force as compared with a decrease in magnetization. The composition of the present invention is characterized by excellent stability of coercive force against oxidation. The source of the effect is due to the coexistence of the M component in the main phase of the R-Fe-N magnetic material that is responsible for ferromagnetism. However, the main phase itself is not easily oxidized and prevents deterioration of the magnetization. The M component is contained in the soft magnetic component mainly composed of iron, and the precipitation state is affected, which also contributes to preventing the decrease in the coercive force of the nitride magnetic material.

【0019】また、母合金の調整方法や条件によって
は、粒界近傍、或はRFe3相などのRリッチの窒化物
相並びにα−Fe相またはその窒化物相の様なR−Fe
−N組成の材料では軟磁性を示す副相にM成分が多く分
配されて、非磁性相化されることにより、窒化物の角形
比や保磁力を向上させたり、耐酸化性を向上させたりす
る効果もある。
Depending on the preparation method and conditions of the master alloy, R-rich nitride phases such as near the grain boundaries or in the RFe 3 phase, and R-Fe such as α-Fe phase or its nitride phase may be used.
In the material of -N composition, a large amount of M component is distributed to the sub-phase exhibiting soft magnetism to form a non-magnetic phase, thereby improving the squareness ratio and coercive force of the nitride, and improving the oxidation resistance. There is also an effect to do.

【0020】以下、本発明の製造法について例示する。 (1)母合金の調製 本発明の磁性材料において、窒化原料となるR−Fe−
M合金の主相は、R−Fe合金結晶構造中のFeサイト
にM成分が置き替わる構造、及びまたは、副相がMの添
加によりR−Feの2成分系とは異なる組成、構造を取
り、本発明の効果を発揮する。従って、Mの添加は母合
金調整の段階で行うことが望ましい。
The production method of the present invention will be illustrated below. (1) Preparation of master alloy In the magnetic material of the present invention, R-Fe- serving as a nitriding raw material
The main phase of the M alloy has a structure in which the M component replaces the Fe site in the R-Fe alloy crystal structure, and / or the sub-phase has a composition and structure different from that of the R-Fe binary system due to the addition of M. The effect of the present invention is exhibited. Therefore, it is desirable to add M at the stage of adjusting the mother alloy.

【0021】R−Fe−M合金の製造法としては、R、
Fe、M金属を高周波により溶解し、鋳型などに鋳込む
高周波溶解法、銅などのボートに金属成分を仕込み、ア
ーク放電により溶かし込むアーク溶解法、高周波溶解し
た溶湯を、回転させた銅ロール上に落しリボン状の合金
を得る超急冷法、高周波溶解した溶湯をガスで噴霧して
合金粉体を得るガスアトマイズ法、Fe及びまたはMの
粉体またはFe−M合金粉体、R及びまたはMの酸化物
粉体、及び還元剤を高温下で反応させ、RまたはR及び
Mを還元しながら、RまたはR及びMを、Fe及びまた
はFe−M合金粉末中に拡散させるR/D法、各金属成
分単体及びまたは合金をボールミルなどで微粉砕しなが
ら反応させるメカニカルアロイング法、上記何れかの方
法で得た合金を水素雰囲気下で加熱し、一旦R及びまた
はMの水素化物と、Fe及びまたはMまたはFe−M合
金に分解し、この後高温下で低圧として水素を追い出し
ながら再結合させ合金化するHDDR法のいずれを用い
てもよい。
The R-Fe-M alloy can be produced by using R,
High-frequency melting method in which Fe and M metals are melted by high frequency and cast in a mold, arc melting method in which metal components are charged in a boat such as copper and melted by arc discharge, high-frequency molten metal is rotated on a copper roll Quenching method for obtaining a ribbon-shaped alloy, a gas atomization method for obtaining an alloy powder by spraying a high-frequency molten metal with a gas, Fe and / or M powder or Fe-M alloy powder, R and / or M powder R / D method of reacting an oxide powder and a reducing agent at a high temperature to reduce R or R and M while diffusing R or R and M into Fe and / or Fe-M alloy powder. A mechanical alloying method in which a metal component alone and / or an alloy is reacted while being finely pulverized by a ball mill or the like, and the alloy obtained by any one of the above methods is heated in a hydrogen atmosphere, and once converted into a hydride of R and / or M. Decomposed into Fe and or M or Fe-M alloy, both the may be used in the HDDR method alloying are recombined while removing hydrogen as low at a high temperature after this.

【0022】高周波溶解法、アーク溶解法を用いた場
合、溶融状態から、合金が凝固する際にFe主体の軟磁
性成分が析出しやすく、特に窒化工程を経た後も保磁力
の低下をひきおこす。そこで、この軟磁性成分を消失さ
せたり、結晶性を向上させる目的として、アルゴン、ヘ
リウムなどの不活性ガス中もしくは真空中、800℃〜
1300℃の温度範囲で焼鈍を行うことが有効である。
この方法で作製した合金は、超急冷法などを用いた場合
に比べ、結晶粒径が大きく結晶性が良好であり、高い残
留磁束密度を有している。
When the high frequency melting method or the arc melting method is used, a soft magnetic component mainly composed of Fe is likely to precipitate from the molten state when the alloy is solidified, and particularly the coercive force is lowered even after the nitriding step. Therefore, for the purpose of eliminating the soft magnetic component or improving the crystallinity, the temperature is 800 ° C. or higher in an inert gas such as argon or helium or in a vacuum.
It is effective to anneal in the temperature range of 1300 ° C.
The alloy produced by this method has a large crystal grain size, good crystallinity, and high residual magnetic flux density, as compared with the case of using the ultra-quenching method.

【0023】また超急冷法を用いた場合は、微細な結晶
粒が得られ、条件によってはサブミクロンの粒子も調製
できる。但し、冷却速度が大きい場合には、合金の非晶
質化が起こり、窒化後においても磁化などの磁気特性が
低下する。この場合も合金調製後の焼鈍は有効である。
ガスアトマイズ法で得た合金は、球状の形態を取ること
が多く、微粉体から粗粉体まで調製することが可能であ
る。この場合も条件によっては焼鈍を行い、結晶性を良
好にすることが必要となる。この方法に加えてR/D
法、メカニカルアロイング法、HDDR法により調製し
た合金は、微細な結晶粒を調整したり、M成分の組成に
分布を持たしたり、あるいはピニング型の磁石材料とす
ることが可能であるため、本発明の効果をより顕著にす
ることが可能である。
When the ultraquenching method is used, fine crystal grains are obtained, and submicron particles can be prepared depending on the conditions. However, when the cooling rate is high, the alloy becomes amorphous and the magnetic properties such as magnetization are deteriorated even after nitriding. Also in this case, annealing after alloy preparation is effective.
The alloy obtained by the gas atomization method often takes a spherical form, and fine powder to coarse powder can be prepared. Also in this case, depending on the conditions, it is necessary to perform annealing to improve the crystallinity. R / D in addition to this method
The alloy prepared by the method, the mechanical alloying method, or the HDDR method can have fine crystal grains adjusted, the composition of the M component has a distribution, or a pinning type magnet material. It is possible to make the effect of the present invention more remarkable.

【0024】ところで、焼鈍条件によっては、合金の結
晶相が異なる場合がある。例えば、R成分によっては、
焼鈍した場合と急冷した場合で、菱面体晶系をとる場合
と六方晶系をとる場合がある。従って、焼鈍の条件は充
分注意を要するし、また焼鈍条件を制御することで目的
とする結晶相を選ぶことができる。 (2)粗粉砕及び分級 上記方法で作製した合金インゴットを直接窒化すること
も可能であるが、結晶粒径が500μmより大きいと窒
化処理時間が長くなり、粗粉砕を行ってから窒化する方
が効率的である。
By the way, depending on the annealing conditions, the crystal phase of the alloy may differ. For example, depending on the R component,
Depending on whether it is annealed or quenched, it may have a rhombohedral system or a hexagonal system. Therefore, it is necessary to pay sufficient attention to the annealing conditions, and the target crystal phase can be selected by controlling the annealing conditions. (2) Coarse crushing and classification It is also possible to directly nitride the alloy ingot produced by the above method, but if the crystal grain size is larger than 500 μm, the nitriding time will be longer, and it is better to carry out coarse crushing before nitriding. It is efficient.

【0025】粗粉砕はジョ−クラッシャー、ハンマー、
スタンプミル、ローターミル、ピンミル、コーヒーミル
などを用いて行う。また、ボールミルやジェットミルな
どのような粉砕機を用いても、条件次第では窒化に適当
な、合金粉末の調製が可能である。また、粗粉砕の後、
ふるい、振動式あるいは音波式分級機、サイクロンなど
を用いて粒度調整を行うことも、より均質な窒化を行う
ために有効である。
For coarse crushing, a jaw crusher, a hammer,
It is performed by using a stamp mill, a rotor mill, a pin mill, a coffee mill, or the like. Further, even if a crusher such as a ball mill or a jet mill is used, it is possible to prepare an alloy powder suitable for nitriding depending on the conditions. Also, after coarse crushing,
Adjusting the particle size using a sieve, a vibration type or a sonic type classifier, or a cyclone is also effective for performing more uniform nitriding.

【0026】粗粉砕、分級の後、不活性ガスや水素中で
焼鈍を行うと構造の欠陥を除去することができ、場合に
よっては効果がある。以上で、本発明の製造法における
希土類−鉄合金の粉体原料またはインゴット原料の調製
法を例示したが、これらの原料の結晶粒径、粉砕粒径、
微構造、表面状態などにより、以下に示す窒化の最適条
件に違いが見られる。 (3)窒化・焼鈍 窒化はアンモニアガス、窒素ガスのうち少なくとも一種
を含むガスを、上記(1)または、(1)及び(2)で
得たR−Fe−M合金粉体またはインゴットに接触させ
て、結晶構造内に窒素を導入する工程である。
After coarse pulverization and classification, annealing in an inert gas or hydrogen can remove structural defects, which is effective in some cases. In the above, the rare earth-iron alloy powder raw material or ingot raw material preparation method in the production method of the present invention has been illustrated.
The optimum conditions for nitriding shown below differ depending on the microstructure and surface condition. (3) Nitriding / annealing In nitriding, a gas containing at least one of ammonia gas and nitrogen gas is brought into contact with the R-Fe-M alloy powder or ingot obtained in the above (1) or (1) and (2). And the step of introducing nitrogen into the crystal structure.

【0027】このとき、窒化雰囲気ガス中に水素ガスを
共存させると、窒化効率が高いうえに、結晶構造が安定
なまま窒化できる点で好ましい。また反応を制御するた
めに、アルゴン、ヘリウム、ネオンなどの不活性ガスな
どを共存させる場合もある。窒化反応は、ガス組成、加
熱温度、加熱処理時間、加圧力で制御し得る。このうち
加熱温度は、母合金組成、窒化雰囲気によって異なる
が、200〜650℃の範囲で選ばれる。200℃以下
では窒素の侵入速度が遅く、反応に時間がかかりすぎ好
ましくなく、650℃以上では主相が分解して磁気特性
が劣化する。
At this time, coexistence of hydrogen gas in the nitriding atmosphere gas is preferable because the nitriding efficiency is high and the nitriding can be performed while the crystal structure is stable. In addition, in order to control the reaction, an inert gas such as argon, helium, or neon may coexist. The nitriding reaction can be controlled by gas composition, heating temperature, heat treatment time, and pressure. Among them, the heating temperature is selected in the range of 200 to 650 ° C., though it depends on the mother alloy composition and the nitriding atmosphere. If the temperature is 200 ° C. or lower, the penetration rate of nitrogen is slow and the reaction takes too long, which is not preferable, and if the temperature is 650 ° C. or higher, the main phase is decomposed and the magnetic properties are deteriorated.

【0028】また窒化を行った後、不活性ガス及び又は
水素ガス中で焼鈍することは磁気特性を向上させる点で
好ましい。窒化・焼鈍装置としては、横型、縦型の管状
炉、回転式反応炉、密閉式反応炉などが挙げられる。何
れの装置においても、本発明の磁性材料を調整すること
が可能であるが、特に窒素組成分布の揃った粉体を得る
ためには回転式反応炉を用いるのが好ましい。
After nitriding, it is preferable to anneal in an inert gas and / or hydrogen gas in order to improve the magnetic properties. Examples of the nitriding / annealing device include horizontal and vertical tubular furnaces, rotary reaction furnaces, and closed reaction furnaces. It is possible to adjust the magnetic material of the present invention in any of the apparatuses, but it is preferable to use a rotary reactor in order to obtain a powder having a uniform nitrogen composition distribution.

【0029】反応に用いるガスは、ガス組成を一定に保
ちながら1気圧以上の気流を反応炉の送り込む気流方
式、ガスを容器に加圧力0.01〜70気圧の領域で封
入する封入方式、或いはそれらの組合せなどで供給す
る。本磁性材料の製造方法としては、(1)、(2)で
例示した方法でR−Fe−M組成の母合金を調製してか
ら、(3)に示した方法で窒化する工程を用いるのが最
も好ましく、この方法によれば融点の高いM成分を母合
金の所望の部分に含有させることが可能となり、耐酸化
性向上に特に効果的である。
The gas used for the reaction is an air flow system in which a gas flow of 1 atm or more is sent to the reactor while keeping the gas composition constant, an encapsulation system in which the gas is sealed in a container at a pressure of 0.01 to 70 atm, or Supply them in combination. As a method for producing the present magnetic material, a step of preparing a master alloy having an R—Fe—M composition by the method exemplified in (1) and (2) and then nitriding it by the method shown in (3) is used. Is most preferable, and according to this method, the M component having a high melting point can be contained in a desired portion of the mother alloy, which is particularly effective in improving the oxidation resistance.

【0030】以上が本発明のR−Fe−M−N系磁性材
料の製造法に関する説明であるが、実用的な硬磁性材料
として本発明の磁性材料を応用する際には、上記の工程
に続いて、(4)微粉砕、(5)磁場成形、(6)着磁
を行う場合がある。以下、その例を簡単に示す。 (4)微粉砕 例えば、単磁区粒子型のR−Fe−M−N系磁性材料の
うち、特に、窒化処理後も大きな結晶粒径を保っていて
かつ大きな保磁力を発現させたい場合、窒化処理後も多
結晶粒体を保っていてかつ異方性の硬磁性材料としたい
場合などに微粉砕を行う。
The above is a description of the method for producing the R—Fe—M—N magnetic material of the present invention. When the magnetic material of the present invention is applied as a practical hard magnetic material, the above steps are performed. Then, (4) fine pulverization, (5) magnetic field molding, and (6) magnetization may be performed. The example will be briefly described below. (4) Fine pulverization For example, among single-domain particle type R—Fe—M—N magnetic materials, when it is desired to maintain a large crystal grain size even after nitriding treatment and to develop a large coercive force, Fine pulverization is performed when it is desired to keep the polycrystalline particles even after the treatment and to obtain an anisotropic hard magnetic material.

【0031】微粉砕の方法としては、回転ボールミル、
振動ボールミル、遊星ボールミル、ウエットミル、ジェ
ットミル、カッターミル、ピンミル、自動乳鉢及びそれ
らの組合せなどが用いられる。水素や酸素の量の調整及
び目標とする粉砕粒径に応じて、微粉砕方法が選ばれ
る。
As a method of fine pulverization, a rotary ball mill,
Vibratory ball mills, planetary ball mills, wet mills, jet mills, cutter mills, pin mills, automatic mortars and combinations thereof are used. The fine pulverization method is selected according to the adjustment of the amount of hydrogen or oxygen and the target pulverized particle size.

【0032】水素や酸素の量を本発明の特に好ましい範
囲に制御する方法としては、例えばジェットミルを用い
る場合、粉砕ガス中の酸素及び水蒸気濃度を所定の濃度
に保ったり、またアトライターなどの湿式粉砕を用いる
場合は、溶媒中の溶存酸素や水分量を調整するなどの方
法が挙げられる。 (5)磁場成形 例えば、(3)又は(4)で得た磁性粉体を異方性ボン
ド磁石に応用する場合、熱硬化性樹脂や金属バインダー
と混合したのち磁場中で圧縮成形したり、熱可塑性樹脂
と共に混練したのち磁場中で射出成形を行ったりして、
磁場成形する。
As a method for controlling the amounts of hydrogen and oxygen within the particularly preferred range of the present invention, for example, when a jet mill is used, the oxygen and water vapor concentrations in the pulverized gas are maintained at a predetermined concentration, and an attritor or the like is used. When wet pulverization is used, methods such as adjusting the amount of dissolved oxygen and water in the solvent can be mentioned. (5) Magnetic field molding For example, when the magnetic powder obtained in (3) or (4) is applied to an anisotropic bonded magnet, it is mixed with a thermosetting resin or a metal binder and then compression molded in a magnetic field. After kneading with a thermoplastic resin, injection molding in a magnetic field,
Magnetic field molding.

【0033】磁場成形は、R−Fe−M−N系磁性材料
を充分に磁場配向せしめるため、好ましくは10kOe
以上、さらに好ましくは15kOe以上の磁場中で行
う。 (6)着磁 (5)で得た異方性ボンド磁石材料や、焼結磁石材料に
ついては、磁石性能を高めるために、通常着磁が行われ
る。
The magnetic field shaping is preferably 10 kOe in order to sufficiently orient the R-Fe-M-N magnetic material in the magnetic field.
Above, more preferably in a magnetic field of 15 kOe or more. (6) Magnetization The anisotropic bonded magnet material and the sintered magnet material obtained in (5) are usually magnetized in order to improve the magnet performance.

【0034】着磁は、例えば静磁場を発生する電磁石、
パルス磁場を発生するコンデンサー着磁器などによって
行う。充分着磁を行わしめるための、磁場強度は、好ま
しくは15kOe以上、さらに好ましくは30kOe以
上である。
The magnetization is, for example, an electromagnet that generates a static magnetic field,
It is performed by a condenser magnetizer that generates a pulsed magnetic field. The magnetic field strength for sufficiently magnetizing is preferably 15 kOe or more, more preferably 30 kOe or more.

【0035】[0035]

【実施例】以下、実施例により本発明を具体的に説明す
る。評価方法は以下のとおりである。 (1)磁気特性 平均粒径約3μmのR−Fe−M−N系磁性材料を、外
部磁場15kOe中、12ton/cm2で5mm×1
0mm×2mm程度に成形し、室温で60kOeの磁場
でパルス着磁した後、振動試料型磁力計(VSM)を用
いて、固有保磁力(iHc/kOe)を測定した。 (2)窒素量、酸素量及び水素量 Si34(SiO2を定量含む)を標準試料として、不
活性ガス融解法により窒素量及び酸素量を定量した。水
素量は、高純度水素ガス(99.999%)を標準ガス
として、不活性ガス融解法により定量した。 (3)平均粒径 リー・ナース比表面積計を用いて、評価した。 (4)耐酸化性能 (1)で評価した平均粒径3μmの粉体の成形品を、1
10℃の恒温槽に入れ、200時間後の固有保磁力を
(1)と同様にして測定し、(1)の結果と比較して固
有保磁力の保持率(%)を求めた。保持率の高いものほ
ど、耐酸化性能が高い。 (5)酸化試験 平均粒径15μmに調整した粗粉体試料10mgを熱天
秤に入れ、50ml/minの空気気流中、昇温速度1
0℃/minの条件で50℃から250℃までの重量変
化率(重量%)を測定した。重量変化率の小さいものほ
ど酸化されにくい。
EXAMPLES The present invention will be specifically described below with reference to examples. The evaluation method is as follows. (1) Magnetic characteristics An R-Fe-MN magnetic material having an average particle diameter of about 3 μm was used at an external magnetic field of 15 kOe and 12 ton / cm 2 at 5 mm × 1.
After shaping into about 0 mm × 2 mm and pulse-magnetizing at room temperature with a magnetic field of 60 kOe, the intrinsic coercive force (iHc / kOe) was measured using a vibrating sample magnetometer (VSM). (2) Nitrogen content, oxygen content, and hydrogen content Si 3 N 4 (including a fixed amount of SiO 2 ) was used as a standard sample, and the nitrogen content and oxygen content were quantified by the inert gas fusion method. The amount of hydrogen was quantified by an inert gas melting method using high-purity hydrogen gas (99.999%) as a standard gas. (3) Average particle size It was evaluated using a Lee-Nurse specific surface area meter. (4) Oxidation resistance performance A molded product of powder having an average particle diameter of 3 μm evaluated in (1) was
The sample was placed in a constant temperature bath at 10 ° C. and the intrinsic coercive force after 200 hours was measured in the same manner as in (1), and the retention rate (%) of the intrinsic coercive force was determined by comparing with the result of (1). The higher the retention rate, the higher the oxidation resistance performance. (5) Oxidation test 10 mg of a coarse powder sample adjusted to have an average particle size of 15 μm was placed in a thermobalance, and the heating rate was 1 in an air stream of 50 ml / min.
The rate of weight change (% by weight) from 50 ° C. to 250 ° C. was measured under the condition of 0 ° C./min. The smaller the weight change rate, the less likely it is to be oxidized.

【0036】[0036]

【実施例1】純度99.9%のSm、純度99.9%の
Fe及び純度99.9%のNiを用いてアルゴンガス雰
囲気下高周波溶解炉で溶解混合し、次いで溶湯を純鉄の
鋳型中に流し込んで冷却し、さらにアルゴン雰囲気中
で、1050℃、35時間焼鈍することにより、Sm
11.0(Fe0.9Ni0.189.0組成の合金を調製した。
Example 1 Sm having a purity of 99.9%, Fe having a purity of 99.9%, and Ni having a purity of 99.9% were melt-mixed in a high-frequency melting furnace in an argon gas atmosphere, and then the molten metal was cast into a pure iron mold. It is poured into the inside of the container, cooled, and further annealed at 1050 ° C. for 35 hours in an argon atmosphere to obtain Sm.
An alloy having a composition of 11.0 (Fe 0.9 Ni 0.1 ) 89.0 was prepared.

【0037】この合金をジョークラッシャーにより粉砕
し、次いで窒素雰囲気中ローターミルでさらに粉砕した
後、ふるいで粒度を調整して、平均粒径約50μmの粉
体を得た。このSm−Fe−Ni合金粉体を横型管状炉
に仕込み、450℃において、アンモニア分圧0.32
atm、水素ガス0.68atmの混合気流中で加熱処
理し、続いてアルゴン気流中で焼鈍したのち、平均粒径
約15μmに調整した。次いでジェットミルにより、該
粉体を平均粒径約3μmに粉砕した。このとき、粉砕ガ
スとして、窒素を主体とし一部酸素及び水蒸気を混入さ
せたガスを用いた。
This alloy was crushed with a jaw crusher and then further crushed with a rotor mill in a nitrogen atmosphere, and the particle size was adjusted with a sieve to obtain a powder having an average particle size of about 50 μm. This Sm-Fe-Ni alloy powder was charged into a horizontal tubular furnace and the ammonia partial pressure was 0.32 at 450 ° C.
After heat treatment in a mixed gas flow of atm and hydrogen gas of 0.68 atm, followed by annealing in an argon gas flow, the average particle size was adjusted to about 15 μm. Then, the powder was pulverized by a jet mill to an average particle size of about 3 μm. At this time, as the pulverizing gas, a gas containing nitrogen as a main component and partially mixing oxygen and water vapor was used.

【0038】得られたSm−Fe−Ni−N系粉体の組
成、耐酸化性能、酸化試験結果を表1に示した。また約
3μmに粉砕したSm−Fe−Ni−N系粉体の成形体
の固有保磁力は5.1kOe、残留磁束密度は8.7k
Gであった。なお、X線回折法により解析した結果、こ
の材料の結晶構造は主として菱面体晶であり、Ni単体
に対応する回折線は見られなかった。
Table 1 shows the composition, oxidation resistance and oxidation test results of the obtained Sm-Fe-Ni-N powder. The intrinsic coercive force of the Sm-Fe-Ni-N-based powder compact pulverized to about 3 μm was 5.1 kOe and the residual magnetic flux density was 8.7 k.
It was G. As a result of analysis by an X-ray diffraction method, the crystal structure of this material was mainly rhombohedral, and no diffraction line corresponding to Ni alone was observed.

【0039】[0039]

【実施例2〜5】母合金の組成を、表1に示す組成比に
変更する以外は実施例1と同様な操作によって、R−F
e−M−N系粉体を得た。その結果を表1に示す。な
お、X線回折の結果から、実施例2、3及び5の材料は
菱面体晶を有した物質が大部分を占め、実施例4の材料
には菱面体晶を有した物質に正方晶を有する物質が混じ
っていることがわかった。
Examples 2 to 5 By following the same procedure as in Example 1 except that the composition of the mother alloy was changed to the composition ratio shown in Table 1, R-F was obtained.
An e-M-N powder was obtained. The results are shown in Table 1. From the results of X-ray diffraction, the materials of Examples 2, 3 and 5 were mostly substances having rhombohedral crystals, and the materials of Example 4 were tetragonal to substances having rhombohedral crystals. It was found that the substances that it had were mixed.

【0040】[0040]

【比較例1】Niを加えないで、その分量(原子%)だ
けFeを加える以外は実施例1と同様にして、Sm−F
e−N系粉体を得た。その結果を表1に示す。
[Comparative Example 1] Sm-F was prepared in the same manner as in Example 1 except that Ni was not added and Fe was added in an amount (atomic%).
An eN powder was obtained. The results are shown in Table 1.

【0041】[0041]

【比較例2】Mnを加えないで、その分量(原子%)だ
けFeを加える以外は実施例2と同様にして、Nd−F
e−N粉体を得た。その結果を表1に示す。
[Comparative Example 2] Nd-F was prepared in the same manner as in Example 2 except that Mn was not added and Fe was added in the amount (atomic%).
An eN powder was obtained. The results are shown in Table 1.

【0042】[0042]

【比較例3】実施例3で得た粒径約3μmのSm
9.2(Fe0.9Cr0.174.813.80.5 1.7組成の粉
体を、2ton/cm2、15kOeの条件で磁場成形
したあと、アルゴン雰囲気下、800℃、1時間の条件
で熱処理を行った。これを急冷したときの成形体の固有
保磁力は0.06kOeであった。この成形体を再び約
3μmに粉砕した粉体の固有保磁力は0.07kOeで
あった。なおこの材料の結晶構造をX線回折により解析
した結果、α−鉄、窒化鉄に対応する回折線が主に検出
された。
Comparative Example 3 Sm having a particle size of about 3 μm obtained in Example 3
9.2(Fe0.9Cr0.1)74.8N13.8H0.5O 1.7Composition of powder
2 ton / cm2, Magnetic field shaping under conditions of 15 kOe
Then, under argon atmosphere, the condition of 800 ℃, 1 hour
Heat treatment was performed. Peculiarity of the molded body when it is rapidly cooled
The coercive force was 0.06 kOe. About this molded body again
The intrinsic coercive force of powder pulverized to 3 μm is 0.07 kOe.
there were. The crystal structure of this material was analyzed by X-ray diffraction.
As a result, mainly diffraction lines corresponding to α-iron and iron nitride were detected.
Was done.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【発明の効果】以上説明した様に、本発明によれば、優
れた耐酸化性を有し、磁気特性の高い希土類−鉄−窒素
系磁性材料を提供することができる。
As described above, according to the present invention, it is possible to provide a rare earth-iron-nitrogen based magnetic material having excellent oxidation resistance and high magnetic properties.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月8日[Submission date] October 8, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】[0005]

【発明が解決しようとする課題】本発明は、菱面体晶ま
たは六方晶の結晶構造を有した希土類−鉄−窒素系材料
に金属元素Mを共存させて、高い磁気特性と優れた耐酸
化性を合わせ持つ希土類−鉄−M−窒素組成の磁性材料
とその製造法を提供するものである。
DISCLOSURE OF THE INVENTION According to the present invention, a rare earth-iron-nitrogen-based material having a rhombohedral or hexagonal crystal structure is allowed to coexist with a metal element M, and high magnetic properties and excellent oxidation resistance are obtained. The present invention provides a magnetic material having a rare earth-iron-M-nitrogen composition and a method for producing the same.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】即ち、本発明は(1)一般式Rα(Fe
(1-γ) Mγ) (100-α- β) Nβで表される磁性材料
であり、RはYを含む希土類元素のうち少なくとも一
種、Mは、Mn、Cr、Niの元素のうち少なくとも一
種、 α、βは原子百分率で 3≦α≦20 3≦β≦30 γは原子比で 0.001≦γ≦0.5 であって、かつそのR、Fe、M及びNを含んだ相が菱
面体晶または六方晶の結晶構造を含有することを特徴と
する磁性材料、及び、(2)上記請求項1に記載の磁性
材料の成分であるFeの0.01〜50原子%をCoで
置換した組成を有することを特徴とする磁性材料であ
り、(3)一般式Rα/(100-β) (Fe (1-γ )Mγ)
(100-α- β)/ (100-β) で表される合金を、窒素ガ
ス、アンモニアガスのうち少なくとも一種を含む雰囲気
下で、200〜650℃の範囲で熱処理することを特徴
とする上記請求項1又は2に記載の磁性材料の製造法で
ある。
That is, the present invention provides (1) the general formula Rα (Fe
(1- γ) Mγ) (100- α - β) is a magnetic material represented by N.beta, at least one of the at least one, M is, Mn, Cr, Ni element selected from rare earth elements R are including Y , Α and β are atomic percentages 3 ≦ α ≦ 20 3 ≦ β ≦ 30 γ are atomic ratios 0.001 ≦ γ ≦ 0.5, and the phase containing R, Fe, M and N is A magnetic material containing a rhombohedral or hexagonal crystal structure, and (2) 0.01 to 50 atomic% of Fe, which is a component of the magnetic material according to claim 1, is Co. A magnetic material characterized by having a substituted composition, (3) General formula Rα / (100- β ) (Fe (1- γ ) Mγ)
The alloy represented by (100- α - β ) / (100- β ) is heat-treated at a temperature of 200 to 650 ° C. in an atmosphere containing at least one of nitrogen gas and ammonia gas. The method for producing a magnetic material according to claim 1 or 2.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】また、このRは工業的生産により入手可能
な純度でよく、製造上不可避の不純物、例えばO、H、
C、Al、Si、F、Na、Mg、Ca、Liなどが存
在していても差し支えない。鉄(Fe)は、強磁性を担
う本磁性材料の基本組成であり、その最大50原子%ま
ではCoと置換されてもよい。本発明のポイントである
Mn,Cr,Niの元素Mについては、該Mn,Cr,
Niの元素(M)のうち1種または2種以上をFe+M
に対して、0.1〜50原子%で共存させる。
Further, this R may have a purity which can be obtained by industrial production, and impurities which are unavoidable in production, such as O, H,
C, Al, Si, F, Na, Mg, Ca, Li and the like may be present. Iron (Fe) is a basic composition of the present magnetic material that is responsible for ferromagnetism, and may be replaced with Co up to 50 atomic% at the maximum. Regarding the element M of Mn, Cr, and Ni, which is the point of the present invention, the Mn, Cr, and
Fe + M of one or more of Ni elements (M)
On the other hand, 0.1 to 50 atomic% is made to coexist.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】R−Fe−M−N系磁性材料の主相の結晶
構造としては、六方晶および菱面体晶のうち少なくとも
一種を体積分率で全体の50%以上含むことが必要であ
る。主相とはR、Fe、M、Nを含み、かつ菱面体晶ま
たは六方晶の結晶構造を有する相のことであり、それ以
外の組成、結晶構造を有する相を副相と呼ぶ。例えば副
相として、RFe12-xx y 相といった正方晶を取る
磁性の高い窒化物相を含んでいても良いが、本発明の耐
酸化性の効果を充分発揮させるためには、その体積分率
は本発明の磁性材料の体積分率を越えてはならない。体
積分率が75体積%を越える場合、実用上極めて好まし
い材料となる。本発明で得られるR−Fe−M−N系材
料の主相は、結晶構造がその原料とするR−Fe−M合
金の主原料相とほぼ同じ対称性を有し、窒素が格子間に
侵入するかもしくはM成分などと置換して導入され、結
晶格子が多くの場合膨張する。主原料相とはR、Fe、
Mを含み、かつ菱面体晶または六方晶の結晶構造を有す
る相のことであり、それ以外の組成、結晶構造を有し、
かつNを含まない相を副原料相と呼ぶ。
The crystal structure of the main phase of the R-Fe-MN magnetic material must contain at least one of hexagonal and rhombohedral crystals in a volume fraction of 50% or more. The main phase is a phase containing R, Fe, M and N and having a rhombohedral or hexagonal crystal structure, and a phase having other composition and crystal structure is called a subphase. For example, the subphase may include a highly magnetic nitride phase having a tetragonal structure such as RFe 12-x M x N y phase, but in order to fully exert the effect of the oxidation resistance of the present invention, The volume fraction should not exceed the volume fraction of the magnetic material of the present invention. When the volume fraction exceeds 75% by volume, it is a very preferable material for practical use. The main phase of the R-Fe-M-N-based material obtained in the present invention has a crystal structure having substantially the same symmetry as the main raw material phase of the R-Fe-M alloy used as the raw material, and nitrogen is present in the interstitial lattice. It is introduced or replaced with the M component, and the crystal lattice is expanded in many cases. The main raw material phases are R, Fe,
A phase that contains M and has a rhombohedral or hexagonal crystal structure, and has a composition and crystal structure other than that,
A phase that does not contain N is called an auxiliary material phase.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】結晶格子の膨張に伴い、耐酸化性及び磁気
特性の各項目のうち一項目以上が向上し、実用上好適な
磁性材料となる。ここにいう磁気特性とは、材料の飽和
磁化(4πIs)、残留磁束密度(Br)、磁気異方性
磁界(Ha)、磁気異方性エネルギー(Ea)、磁気異
方性比、キュリー点(Tc)、固有保磁力(iHc)、
角形比(Br/4πIs)、最大エネルギー積〔(B
H)max〕、熱減磁率(α)、保磁力の温度変化率
(β)のうち少なくとも一つを言う。但し、磁気異方性
比とは、外部磁場を15kOe印加した時の困難磁化方
向の磁化(a)と容易磁化方向の磁化(b)の比(a/
b)であり、磁気異方性比が小さいもの程、磁気異方性
エネルギーが高いと評価される。
With the expansion of the crystal lattice, one or more of the items of oxidation resistance and magnetic properties are improved, and the magnetic material is suitable for practical use. The magnetic properties referred to here are the saturation magnetization (4πIs) of the material, the residual magnetic flux density (Br), the magnetic anisotropy magnetic field (Ha), the magnetic anisotropy energy (Ea), the magnetic anisotropy ratio, and the Curie point ( Tc), intrinsic coercive force (iHc),
Squareness ratio (Br / 4πIs), maximum energy product [(B
H) max], thermal demagnetization rate (α), and temperature change rate (β) of coercive force. However, the magnetic anisotropy ratio is the ratio (a / a) between the magnetization (a) in the difficult magnetization direction and the magnetization (b) in the easy magnetization direction when an external magnetic field of 15 kOe is applied.
b), and the smaller the magnetic anisotropy ratio, the higher the magnetic anisotropy energy is evaluated.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】また、目的とするR−Fe−M−N系磁性
材料のR−Fe−M組成比や副相の量比などによって、
最適な窒素量は異なり、例えば菱面体構造を有するNd
10.5(Fe0.9 Mn0.1 89.5を原料合金として選ぶ
と、最適な窒素量は13〜14原子%付近となる。この
ときの最適な窒素量とは、目的に応じて異なるが材料の
耐酸化性及び磁気特性のうち少なくとも一項目が最適と
なる窒素量であり、磁気特性が最適とは磁気異方性比、
減磁率および保磁力の温度変化率の絶対値は極小、その
他は極大となることである。
Also, depending on the R-Fe-M composition ratio of the target R-Fe-M-N magnetic material and the amount ratio of the sub-phase,
The optimum amount of nitrogen is different, for example, Nd having a rhombohedral structure.
When 10.5 (Fe 0.9 Mn 0.1 ) 89.5 is selected as the raw material alloy, the optimum nitrogen content is around 13 to 14 atom%. The optimum nitrogen amount at this time is the nitrogen amount for which at least one item of the oxidation resistance and magnetic properties of the material is optimal although it varies depending on the purpose, and the optimal magnetic property is the magnetic anisotropy ratio,
The absolute value of the temperature change rate of the demagnetization rate and the coercive force is minimum, and the others are maximum.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】以下、本発明の製造法について例示する。 (1)母合金の調製 本発明の磁性材料において、窒化原料となるR−Fe−
M合金の主原料相は、R−Fe合金結晶構造中のFeサ
イトにM成分が置き替わる構造、及びまたは、副原料相
がMの添加によりR−Feの2成分系とは異なる組成、
構造を取り、本発明の効果を発揮する。従って、Mの添
加は母合金調整の段階で行うことが望ましい。
The production method of the present invention will be illustrated below. (1) Preparation of master alloy In the magnetic material of the present invention, R-Fe- serving as a nitriding raw material
The main raw material phase of the M alloy has a structure in which the M component replaces the Fe site in the R-Fe alloy crystal structure, and / or the auxiliary raw material phase has a composition different from the binary system of R-Fe by the addition of M,
It has a structure and exhibits the effects of the present invention. Therefore, it is desirable to add M at the stage of adjusting the mother alloy.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一般式Rα(Fe(1-γ)Mγ)(100-α-β
)Nβで表される磁性材料であり、 RはYを含む希土類元素のうち少なくとも一種、 Mは、Mn、Cr、Niの元素のうち少なくとも一種、 α、βは原子百分率で 3≦α≦20 3≦β≦30 γは原子比で 0.001≦γ≦0.5 であって、かつそのR、Fe、M及びNを含んだ相が菱
面体晶及び六方晶の結晶構造を含有することを特徴とす
る磁性材料。
1. The general formula R α (Fe (1- γ ) M γ) (100- α - β
) A magnetic material represented by Nβ, R is at least one of rare earth elements including Y, M is at least one of Mn, Cr, and Ni elements, and α and β are atomic percentages of 3 ≦ α ≦ 20. 3 ≦ β ≦ 30 γ is an atomic ratio of 0.001 ≦ γ ≦ 0.5, and the phase containing R, Fe, M and N contains a rhombohedral and hexagonal crystal structure. Magnetic material characterized by.
【請求項2】上記請求項1に記載の磁性材料の成分であ
るFeの0.01〜50原子%をCoで置換した組成を
有することを特徴とする磁性材料。
2. A magnetic material having a composition in which 0.01 to 50 atomic% of Fe, which is a component of the magnetic material according to claim 1, is replaced by Co.
【請求項3】一般式Rα/(100-β)(Fe(1-γ)Mγ)
(100-α-β)/(100-β)で表される合金を、窒素ガス、ア
ンモニアガスのうち少なくとも一種を含む雰囲気下で、
200〜650℃の範囲で熱処理することを特徴とする
上記請求項1又は2に記載の磁性材料の製造法。
3. The general formula Rα / (100- β ) (Fe (1- γ ) Mγ)
The alloy represented by (100- α - β ) / (100- β ) is used in an atmosphere containing at least one of nitrogen gas and ammonia gas,
The method for producing a magnetic material according to claim 1 or 2, wherein the heat treatment is performed in the range of 200 to 650 ° C.
JP24501292A 1992-09-14 1992-09-14 Nitride magnetic materials Expired - Lifetime JP3157302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24501292A JP3157302B2 (en) 1992-09-14 1992-09-14 Nitride magnetic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24501292A JP3157302B2 (en) 1992-09-14 1992-09-14 Nitride magnetic materials

Publications (2)

Publication Number Publication Date
JPH0696918A true JPH0696918A (en) 1994-04-08
JP3157302B2 JP3157302B2 (en) 2001-04-16

Family

ID=17127266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24501292A Expired - Lifetime JP3157302B2 (en) 1992-09-14 1992-09-14 Nitride magnetic materials

Country Status (1)

Country Link
JP (1) JP3157302B2 (en)

Also Published As

Publication number Publication date
JP3157302B2 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
EP0369097B1 (en) Magnetic materials containing rare earth element iron nitrogen and hydrogen
US5750044A (en) Magnet and bonded magnet
JP2005527989A (en) Nanocrystalline rare earth permanent magnet materials, nanocomposite rare earth permanent magnet materials, and methods for producing these magnet materials
JP2705985B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JPH1041116A (en) R-t-m-n permanent magnetic powder and manufacture of anisotropic bond magnet
JP3560387B2 (en) Magnetic material and its manufacturing method
JPH06207203A (en) Production of rare earth permanent magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JP2000003808A (en) Hard magnetic material
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH06207204A (en) Production of rare earth permanent magnet
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPH06112019A (en) Nitride magnetic material
JP3294645B2 (en) Nitride magnetic powder and its production method
JP3784085B2 (en) Magnetic material having stable coercive force and method for producing the same
JP3209291B2 (en) Magnetic material and its manufacturing method
JPH045739B2 (en)
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP2001006911A (en) Manufacture of rare earth permanent magnet
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JP3200201B2 (en) Nitride magnetic powder and method for producing the same
JPH10312918A (en) Magnet and bonded magnet
JP3209292B2 (en) Magnetic material and its manufacturing method
JP3157302B2 (en) Nitride magnetic materials

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 12