JP2001006911A - Manufacture of rare earth permanent magnet - Google Patents

Manufacture of rare earth permanent magnet

Info

Publication number
JP2001006911A
JP2001006911A JP11173718A JP17371899A JP2001006911A JP 2001006911 A JP2001006911 A JP 2001006911A JP 11173718 A JP11173718 A JP 11173718A JP 17371899 A JP17371899 A JP 17371899A JP 2001006911 A JP2001006911 A JP 2001006911A
Authority
JP
Japan
Prior art keywords
alloy
magnetic field
rare earth
powder
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11173718A
Other languages
Japanese (ja)
Inventor
Koji Sato
孝治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP11173718A priority Critical patent/JP2001006911A/en
Publication of JP2001006911A publication Critical patent/JP2001006911A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a rare earth permanent magnet which can obtain a rare earth permanent magnet having excellent magnetic characteristic by improving the conventional two alloy method. SOLUTION: In this manufacturing method, powder of A alloy (alloy composed of mainly R2TM14B phase where R is at least one kind of rare earth element which is mainly Nd or Pr or Dy or Tb, and TM is a transition metal element which is mainly Fe or Co) and B alloy (alloy containing R and TM where the amount of R is at least 20 atm.%) are mixed by the ratio wherein B alloy powder of 1-30 wt.% is mixed to A alloy powder of 70-99 wt.%. The obtained mixed powder is molded by applying pressure in a magnetic field, and a molded member is formed. After that, the molded member is sintered in a vacuum or inert gas atmosphere and subjected to aging process at a temperature lower than or equal to a sintering temperature. In this case, the amount of R in the A alloy is 12.4-14.0 atm.%, and the above mixed powder is molded by applying pressure in an intensive magnetic field whose magnetic field intensity is at least 1.6 T.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた磁気特性を
有する希土類永久磁石、特にはR−TM−B系永久磁石
の製造方法に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth permanent magnet having excellent magnetic properties, particularly an R-TM-B permanent magnet.

【0002】[0002]

【従来の技術】希土類永久磁石は、一般家庭製品から大
型コンピュータの周辺端末機器や医療用機器まで幅広い
分野で使用されており、先端技術の鍵を握る極めて重要
な電気、電子材料の一つである。そして、近年における
コンピュータや通信機器の小型軽量化、高能率化、さら
には環境保護や省エネルギーの面から、より一層の高性
能化が要求されている。希土類永久磁石の中でもNd−
Fe−B系磁石は、主成分であるNdが資源的に豊富で
コストが安く、かつ磁気特性に優れているため、近年、
益々その利用が広がりつつある。また、磁気特性を向上
させるための研究開発も、精力的に行われており、数多
くの発明、考案が提案されている。組成の異なる2種類
の合金粉末(A合金粉末とB合金粉末)を混合、焼結し
て高性能希土類磁石を製造する方法(以下、2合金法と
いう)に関しても、数多くの発明、考案が提案されてい
る(特開昭63−9384号公報、特開昭63−115
307号公報等参照)。
2. Description of the Related Art Rare earth permanent magnets are used in a wide range of fields, from general household products to peripheral terminals of large computers and medical equipment, and are one of the extremely important electric and electronic materials that hold the key to advanced technology. is there. Further, in recent years, computers and communication devices have been required to have higher performance in terms of reduction in size and weight, higher efficiency, and environmental protection and energy saving. Among rare earth permanent magnets, Nd-
Fe-B-based magnets are rich in Nd as a main component in terms of resources, are inexpensive, and have excellent magnetic properties.
Its use is spreading more and more. In addition, research and development for improving magnetic properties are also being made energetically, and many inventions and ideas have been proposed. Numerous inventions and inventions have been proposed for a method of producing a high performance rare earth magnet by mixing and sintering two kinds of alloy powders having different compositions (A alloy powder and B alloy powder) (hereinafter referred to as a two alloy method). (JP-A-63-9384, JP-A-63-115)
No. 307).

【0003】従来の2合金法は、B合金粉末としてRリ
ッチなアモルファス合金や微結晶合金を使用するが、こ
れらは結晶磁気異方性がないため、磁場中において、高
特性化するための十分な配向が得られなかった。そこ
で、かかる欠点を克服するため、B合金粉末にCoを添
加して、RFe14B相、Ndリッチ相の他に、RTM4
B相、RTM3 相、RTM2 相、R2 TM7 相、RTM
5 相を出現させて、A合金粉末と混合し、高性能のNd
系磁石を製造する方法が提案されている(特開平5−2
1218号公報、特開平5−21219号公報等参
照)。RTM4 B相、RTM3 相、RTM2 相、R2
7 相、RTM5 相は、結晶磁気異方性を有するので、
これらの相を出現させることにより、配向時にはB合金
も配向されるようになる。
In the conventional two-alloy method, an R-rich amorphous alloy or microcrystalline alloy is used as the B alloy powder. However, since these have no crystalline magnetic anisotropy, they are insufficient for improving the characteristics in a magnetic field. No proper orientation was obtained. Therefore, in order to overcome such a drawback, Co is added to the B alloy powder, and in addition to the RFe 14 B phase and the Nd-rich phase, RTM 4
B phase, RTM 3 phase, RTM 2 phase, R 2 TM 7 phase, RTM
5 phases appeared, mixed with A alloy powder, high performance Nd
A method of manufacturing a system magnet has been proposed (Japanese Patent Laid-Open No. 5-2 / 1993).
1218, JP-A-5-21219, etc.). RTM 4 B phase, RTM 3 phase, RTM 2 phase, R 2 T
Since the M 7 phase and the RTM 5 phase have crystal magnetic anisotropy,
The appearance of these phases causes the B alloy to be oriented at the time of orientation.

【0004】[0004]

【発明が解決しようとする課題】希土類永久磁石の磁気
特性に対する要望は非常に高く、そのため、さらなる高
特性化を図るため、近年、より大きな配向磁場を用いる
傾向にある。強磁性体粒子からなる磁石粉末に磁場を印
加すると、各磁性体粒子は数珠繋ぎにつながり、磁性体
粒子のチェーンを形成する。特にNd2 Fe14B相のよ
うな磁気異方性の大きな磁性体粒子は、各粒子の磁極、
すなわちN極とS極が互いに接合して、強固な磁性体粒
子のチェーンを形成する。この場合、磁場配向により磁
性体粒子は配向磁場方向に回転して、上記チェーンを形
成するが、磁性体粒子は回転時の摩擦により、完全には
N極とS極が接合できず、その結果、配向が悪くなる。
したがって、摩擦に打ち勝つ回転力を得るためには、よ
り大きな磁場で配向させる必要がある。2合金法で使用
される磁石粉末のうち、A合金粉末は主にR2 TM14
相の非常に強い強磁性体からなり、B合金粉末はRリッ
チなアモルファスや微結晶相、Ndリッチ相、RTM4
B相、RTM3 相、RTM2 相、R2 TM7 相、RTM
5 相、R3 TM相の弱い磁性体又は非磁性体からなる。
ところで、Nd系磁石は、Nd2 Fe14B相と焼結時に
液相を形成するRリッチなアモルファスや微結晶相、N
dリッチ相、RTM4 B相、RTM3 相、RTM2 相、
2 TM7 相、RTM5 相、R3 TM相(以下、液相化
相)とが均一に分散して、焼結時にNd2 Fe14B化合
物の周囲に均一な液相が形成される。そして、Nd系磁
石の保持力を向上させるには、Nd2 Fe14B化合物の
粒界に存在する格子欠陥や酸化物相などのニュークリエ
ーションサイトを除去し、粒界をクリーニングする。し
かしながら、従来の2合金法では、強い磁場中で高配向
を得ようとして、使用する磁石粉末に強磁場を印加する
と、非常に強い強磁性体であるA合金粉末のみが、優先
的に磁性体粒子のチェーンを形成してしまい、その結
果、A合金とB合金との分離が起こり、得られる磁石の
保磁力が低下するという問題があった。そこで、本発明
は、従来の2合金法を改良し、優れた磁気特性を有する
希土類永久磁石を得ることができる希土類永久磁石の製
造方法の提供を目的とする。
SUMMARY OF THE INVENTION The magnetism of rare earth permanent magnets
The demands on the properties are very high,
In recent years, larger orientation magnetic fields have been used for characterization
There is a tendency. Apply magnetic field to magnet powder composed of ferromagnetic particles
When added, each magnetic particle connects to a bead,
Form a chain of particles. Especially NdTwo Fe14B phase
Such magnetic particles having a large magnetic anisotropy have magnetic poles of each particle,
That is, the north pole and the south pole are joined to each other to form
Form a child chain. In this case, the magnetic field orientation
The particles rotate in the direction of the alignment magnetic field to form the chain.
However, the magnetic particles are completely
The N and S poles cannot be joined, resulting in poor orientation.
Therefore, in order to obtain rotational force that overcomes friction,
It is necessary to orient with a larger magnetic field. Used in two alloy method
Of the magnet powders used, A alloy powder is mainly RTwo TM14B
It consists of a ferromagnetic material with a very strong phase, and the B alloy powder
Amorphous, microcrystalline, Nd-rich, RTMFour 
B phase, RTMThree Phase, RTMTwo Phase, RTwo TM7 Phase, RTM
Five Phase, RThree It is made of a magnetic or non-magnetic material having a weak TM phase.
By the way, the Nd-based magnet isTwo Fe14When sintering with phase B
R-rich amorphous or microcrystalline phase forming liquid phase, N
d-rich phase, RTMFour B phase, RTMThree Phase, RTMTwo phase,
RTwo TM7 Phase, RTMFive Phase, RThree TM phase (hereinafter referred to as liquid phase
Phase) is uniformly dispersed, and NdTwo Fe14B compound
A uniform liquid phase is formed around the object. And Nd-based magnetism
To improve the stone's holding power, use NdTwo Fe14B compound
Nuclei such as lattice defects and oxide phases existing at grain boundaries
And remove grain boundaries and clean grain boundaries. I
However, in the conventional two-alloy method, high orientation in a strong magnetic field
To apply a strong magnetic field to the magnet powder used to obtain
And only A-alloy powder, which is a very strong ferromagnet, has priority
A chain of magnetic particles is formed,
As a result, the separation of A alloy and B alloy occurs,
There is a problem that coercive force is reduced. Therefore, the present invention
Has improved conventional two-alloy method and has excellent magnetic properties
Manufacture of rare earth permanent magnets that can obtain rare earth permanent magnets
The purpose is to provide a fabrication method.

【0005】[0005]

【課題を解決するための手段】本発明は、A合金(主と
してR2 TM14B相からなり、RはNd,Pr,Dy,
Tbを主とする少なくとも1種類以上の希土類元素、T
MはFe,Coを主とする遷移金属元素)とB合金
(R,TMを含有し、Rの量が20原子%以上の合金)
の各粉末を、A合金粉末70〜99重量%に対してB合
金粉末1〜30重量%混合し、得られた混合粉末を磁場
中で加圧成形して成形体とした後、該成形体を真空又は
不活性ガス雰囲気中で焼結し、焼結温度以下の低温で時
効処理する希土類永久磁石の製造方法において、A合金
中におけるRの量が12.4〜14.0原子%であり、
前記混合粉末を磁場強度1.6T以上の強磁場中で加圧
成形することを特徴とする希土類永久磁石の製造方法で
ある。
The present invention SUMMARY OF] is made A alloy (mainly R 2 TM 14 B phase, R represents Nd, Pr, Dy,
At least one or more rare earth elements mainly composed of Tb;
M is a transition metal element mainly composed of Fe and Co) and a B alloy (an alloy containing R and TM and having an R content of 20 atomic% or more)
Are mixed with 70 to 99% by weight of the A alloy powder and 1 to 30% by weight of the B alloy powder, and the resulting mixed powder is pressed and molded in a magnetic field to form a compact. Sintering in a vacuum or an inert gas atmosphere and aging at a low temperature equal to or lower than the sintering temperature, wherein the amount of R in the A alloy is 12.4 to 14.0 atomic%. ,
A method for producing a rare earth permanent magnet, wherein the mixed powder is subjected to pressure molding in a strong magnetic field having a magnetic field strength of 1.6 T or more.

【0006】[0006]

【発明の実施の形態】本発明の希土類永久磁石の製造方
法は、上記したように、従来の2合金法において、A合
金中におけるRの量が12.4〜14.0原子%であ
り、前記混合粉末を磁場強度1.6T以上の強磁場中で
加圧成形することを特徴とする。そして、この特徴によ
り、A合金は焼結時に液相となる相を付与するため、
1.6T以上の強磁場下でもNd2 Fe14B相と液相化
相の分離が防止され、高配向、高残留磁束密度、高保磁
力の希土類永久磁石の製造が可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the method for producing a rare earth permanent magnet of the present invention, as described above, in the conventional two-alloy method, the amount of R in the A alloy is 12.4 to 14.0 at%, The mixed powder is subjected to pressure molding in a strong magnetic field having a magnetic field strength of 1.6 T or more. And, due to this feature, the A alloy gives a liquid phase during sintering,
Even under a strong magnetic field of 1.6 T or more, separation of the Nd 2 Fe 14 B phase and the liquid phase is prevented, and a rare earth permanent magnet with high orientation, high residual magnetic flux density and high coercive force can be manufactured.

【0007】A合金中のR量を12.4〜14.0原子
%としたのは、12.4原子%未満ではA合金中に十分
な液相化相が形成されず、保磁力が低下することにな
り、14.0原子%を超えると1合金に近くなり、2合
金法により得られる優れた配高度を阻害するからであ
る。磁場強度を1.6T以上としたのは、強磁場で高配
向とすることにより、高残留磁束密度かつ高保磁力の希
土類永久磁石を得るためであり、1.6T未満では従来
の2合金法でもA合金粉末とB合金粉末の分離は生じ
ず、磁気特性の向上が図れないからである。
The reason why the R content in the A alloy is set to 12.4 to 14.0 atomic% is that when the R amount is less than 12.4 atomic%, a sufficient liquid phase is not formed in the A alloy and the coercive force is reduced. This is because if it exceeds 14.0 atomic%, it is close to one alloy and the excellent distribution height obtained by the two alloy method is hindered. The reason for setting the magnetic field strength to 1.6 T or more is to obtain a rare earth permanent magnet having a high residual magnetic flux density and a high coercive force by performing high orientation in a strong magnetic field. This is because the A alloy powder and the B alloy powder do not separate and the magnetic properties cannot be improved.

【0008】A合金粉末はストリップキャスティング法
により作製するのが好ましい。ストリップキャスティン
グ法は、磁石合金の溶融物を単ロール又は双ロール式の
急冷ロールに連続的に供給して、合金薄体を製造する方
法である。その際、A合金のNd2 Fe14B相は、ロー
ル面から磁化難易軸であるa軸が成長し、柱状晶を形成
する。液相化相は、これら柱状晶に挟まれる形で存在す
るので、上記合金薄体を粉砕すると、液相化相はa軸方
向には存在せず、c軸方向にのみ存在する。そして、A
合金粉末とB合金粉末を混合した後に、強磁場下で配向
させると、A合金粉末中の液相化相は、優先的にNd2
Fe14B相の磁性体粒子のチェーンの間に存在すること
になって、Nd2 Fe14B相と液相化相が均一に分布す
るので、保磁力が低下しない。
The A alloy powder is preferably produced by a strip casting method. The strip casting method is a method of manufacturing a thin alloy body by continuously supplying a melt of a magnet alloy to a single-roll or twin-roll quenching roll. At this time, in the Nd 2 Fe 14 B phase of the A alloy, the a-axis, which is the axis of difficulty in magnetization, grows from the roll surface to form columnar crystals. Since the liquefied phase exists between these columnar crystals, when the alloy thin body is pulverized, the liquefied phase does not exist in the a-axis direction but exists only in the c-axis direction. And A
When the alloy powder and the B alloy powder are mixed and then oriented under a strong magnetic field, the liquid phase in the A alloy powder preferentially becomes Nd 2
Supposed to exist between the chain of the magnetic particles of Fe 14 B phase, since Nd 2 Fe 14 B phase and liquidus phase is uniformly distributed, the coercive force is not reduced.

【0009】A合金粉末又はA合金粉末とB合金粉末の
混合粉末に、水素化、脱水素化を施すと、A合金粉末は
液相化相に沿って亀裂が生じ、粉砕される。加えてNd
2 Fe14B相と液相化相とが付着したまま粉砕されるの
で、強磁場下で配向する場合においても、Nd2 Fe14
B相と液相化相とが分離することがなく、Nd2 Fe 14
B相と液晶化相が均一に分布することになり、保磁力を
低下させない。
A alloy powder or a mixture of A alloy powder and B alloy powder
When the mixed powder is subjected to hydrogenation and dehydrogenation, the A alloy powder becomes
Cracks are formed along the liquid phase and are crushed. Plus Nd
Two Fe14Pulverization with B phase and liquid phase attached
In the case of orientation under a strong magnetic field, NdTwo Fe14
The phase B and the liquid phase are not separated, and NdTwo Fe 14
The B phase and the liquid crystal phase are uniformly distributed, and the coercive force is increased.
Do not lower.

【0010】強磁場を発生させる際、パルス磁場を用い
ると強磁場が得られやすく、高配向を得やすい。しか
し、パルス磁場による強磁場は、磁場の立ち上がりが急
峻であり、磁場印下時の磁性粒子を回転させるエネルギ
ーが高い反面、Nd2 Fe14B相と液相化相が分離しや
すくなる。
When a strong magnetic field is generated, the use of a pulsed magnetic field makes it easy to obtain a strong magnetic field and easily obtain a high orientation. However, a strong magnetic field due to a pulsed magnetic field has a steep rise of the magnetic field and has a high energy for rotating the magnetic particles when a magnetic field is applied, but the Nd 2 Fe 14 B phase and the liquid phase are easily separated.

【0011】[0011]

【実施例】以下、本発明に対する実施例を具体的に説明
するが、本発明はこれに限定されるものではない。 (実施例1、比較例1)純度99.9重量%のNd、F
eメタル、フェロボロンを用いて、組成式12.5Nd
−81.5Fe−6B(各原子%)の合金インゴット
を、高周波溶解炉のAr雰囲気中で溶解鋳造した後、こ
の合金インゴットを1070℃、Ar雰囲気中にて20
時間溶体化し、これをA合金とした。次に、同じく純度
99.9重量%のNd、Dy、Fe、Coメタル、フェ
ロボロンを用いて、組成式20Nd−10Dy−20F
e−44Co−6Bの合金インゴットを高周波溶解炉の
Ar雰囲気中で溶解鋳造し、これをB合金とした。A合
金インゴットとB合金インゴットを、それぞれ別々に窒
素雰囲気中にて粗粉砕して30メッシュ以下とし、次に
A合金粗粉90重量%にB合金粗粉を10重量%秤量し
て、窒素置換したVブレンダー中で30分間混合した。
この混合粗粉を高圧窒素ガスを用いたジェットミルにて
平均粒径約5μmに微粉砕した。得られた混合微粉末を
17kOeの静磁場中で配向させながら、約1tonf
/cm2 の圧力でプレス成形し、成形体を得た。次い
で、この成形体をAr雰囲気の焼結炉内で1070℃で
1時間焼結し、さらに530℃で1時間時効処理して急
冷し、実施例1の磁石合金Cを作製した。この磁石の組
成は13.1Nd−0.8Dy−76.6Fe−3.5
Co−6.0Bであった。比較のため、A合金として組
成式12.0Nd−82Fe−6Bなる合金インゴット
を、B合金として組成式27Nd−11Dy−8Fe−
48Co−6Bなる合金インゴットをそれぞれ実施例1
と同様な方法で作製した。次いでAとBを用いて、以下
実施例1と同様にして比較例1の磁石合金Cを作製し
た。表1に実施例1と比較例1の磁石合金Cから得られ
た焼結磁石の磁気特性の値を示す。実施例1の磁気特性
は比較例1と比較して、保磁力が大きく向上し、残留磁
束密度、最大エネルギー積も大きくなった。
EXAMPLES Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. (Example 1, Comparative Example 1) Nd, F having a purity of 99.9% by weight
Compositional formula 12.5Nd using e-metal and ferroboron
After casting an alloy ingot of -81.5Fe-6B (atomic%) in an Ar atmosphere of a high-frequency melting furnace, the alloy ingot was heated at 1070 ° C. in an Ar atmosphere.
This was solution-treated for a time, and this was used as an A alloy. Next, using Nd, Dy, Fe, Co metal and ferroboron having the same purity of 99.9% by weight, the composition formula is 20Nd-10Dy-20F.
An alloy ingot of e-44Co-6B was melt-cast in an Ar atmosphere of a high-frequency melting furnace to obtain a B alloy. The A-alloy ingot and the B-alloy ingot are each separately coarsely pulverized in a nitrogen atmosphere to 30 mesh or less, and then the A-alloy coarse powder is weighed to 90% by weight, and the B-alloy coarse powder is weighed to 10% by weight. In a V blender for 30 minutes.
This mixed coarse powder was finely pulverized with a jet mill using high-pressure nitrogen gas to an average particle size of about 5 μm. While orienting the obtained mixed fine powder in a static magnetic field of 17 kOe, about 1 tonf
/ Cm 2 to obtain a molded body. Next, this molded body was sintered at 1070 ° C. for 1 hour in a sintering furnace in an Ar atmosphere, further subjected to aging treatment at 530 ° C. for 1 hour, and rapidly cooled to produce a magnet alloy C of Example 1. The composition of this magnet is 13.1Nd-0.8Dy-76.6Fe-3.5.
Co-6.0B. For comparison, an alloy ingot having a composition formula of 12.0Nd-82Fe-6B was used as the A alloy, and a composition formula of 27Nd-11Dy-8Fe- was used as the B alloy.
Example 1 was prepared using an alloy ingot of 48Co-6B.
It was produced in the same manner as described above. Next, using A and B, a magnet alloy C of Comparative Example 1 was produced in the same manner as in Example 1 below. Table 1 shows the values of the magnetic properties of the sintered magnets obtained from the magnet alloy C of Example 1 and Comparative Example 1. In the magnetic characteristics of Example 1, the coercive force was greatly improved, and the residual magnetic flux density and the maximum energy product were also larger than those of Comparative Example 1.

【0012】(実施例2、比較例2)A合金として組成
式13.0Nd−79.3Fe−1.7Co−6Bなる
合金インゴットを、B合金として組成式16Nd−22
Dy−3Fe−53Co−6Bなる合金インゴットをそ
れぞれ実施例1と同様な方法で作製した。次いでA合金
95重量%とB合金5重量%を用いて、以下実施例1と
同様にして実施例2の磁石合金Cを作製した。比較のた
め、A合金として組成式13.2Nd−1.0Dy−7
6.9Fe−2.9Co−6Bなる合金インゴットを、
B合金として組成式20Nd−10Dy−35Fe−2
9Co−6Bなるインゴットをそれぞれ実施例1と同様
な方法で作製した。次いでA合金97重量%とB合金3
重量%を用いて、以下実施例1と同様にして比較例2の
磁石合金Cを作製した。表1に実施例2と比較例2の磁
石合金Cから得られた焼結磁石の磁気特性の値を示す。
実施例2の磁気特性は比較例2と比較して、保持力がほ
ぼ等しいにもかかわらず、残留磁束密度、最大エネルギ
ー積が大きく向上した。
Example 2 and Comparative Example 2 An alloy ingot having a composition formula of 13.0Nd-79.3Fe-1.7Co-6B was used as an A alloy, and a composition formula of 16Nd-22 was used as an B alloy.
An alloy ingot of Dy-3Fe-53Co-6B was produced in the same manner as in Example 1. Next, using 95% by weight of the A alloy and 5% by weight of the B alloy, a magnet alloy C of Example 2 was produced in the same manner as in Example 1 below. For comparison, a composition formula of 13.2 Nd-1.0 Dy-7 was used as an A alloy.
An alloy ingot of 6.9Fe-2.9Co-6B was
Composition formula 20Nd-10Dy-35Fe-2 as B alloy
Ingots of 9Co-6B were produced in the same manner as in Example 1. Next, 97 weight% of A alloy and B alloy 3
The magnet alloy C of Comparative Example 2 was produced in the same manner as in Example 1 using the weight%. Table 1 shows the values of the magnetic properties of the sintered magnets obtained from the magnet alloys C of Example 2 and Comparative Example 2.
Regarding the magnetic characteristics of Example 2, the residual magnetic flux density and the maximum energy product were greatly improved as compared with Comparative Example 2 even though the coercive force was almost equal.

【0013】(実施例3〜7、比較例3〜4)表2に示
したように、実施例3〜7の合金組成に応じて、それぞ
れのA合金、B合金を作製し、表1の条件で実施例1と
同様の方法で焼結磁石を作製した。比較のため、表1に
示すように比較例3〜4の合金組成に応じて、それぞれ
のA合金、B合金を作製し、表1の条件で実施例1と同
様の方法で焼結磁石を作製した。表2に、実施例3〜
7、比較例3〜4の焼結磁石の磁気特性を表1に示す。
比較例3〜4により、弱い配向磁場の時、A合金中にお
けるRの量が12.4〜14.0原子%としても磁気特
性が向上しないことがわかる。実施例3〜7により、ス
トリップキャスティング法、水素化、脱水素化、及びパ
ルス磁場による強磁界配向により磁気特性が向上してお
り、本発明が有効であることがわかる。
(Examples 3-7, Comparative Examples 3-4) As shown in Table 2, according to the alloy compositions of Examples 3-7, respective A alloys and B alloys were prepared. A sintered magnet was produced in the same manner as in Example 1 under the conditions. For comparison, A alloys and B alloys were prepared according to the alloy compositions of Comparative Examples 3 and 4 as shown in Table 1, and sintered magnets were produced in the same manner as in Example 1 under the conditions of Table 1. Produced. Table 2 shows Examples 3 to
Table 7 shows the magnetic properties of the sintered magnets of Comparative Examples 3 and 4.
Comparative Examples 3 and 4 show that the magnetic properties are not improved when the amount of R in the A alloy is 12.4 to 14.0 atomic% at the time of a weak orientation magnetic field. Examples 3 to 7 show that the magnetic properties are improved by the strip casting method, hydrogenation, dehydrogenation, and strong magnetic field orientation by a pulsed magnetic field, indicating that the present invention is effective.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】本発明によれば、従来の2合金法では実
施が困難であった強磁場においても、A合金とB合金の
分離を起こすことなく高配向させることができるので、
高残留磁束密度かつ高保磁力を有する希土類永久磁石を
製造することができる。したがって、本発明は、今後、
各種電気、電子機器用の高特性磁石の製造方法として、
汎用されることが期待されるものである。
According to the present invention, even in a strong magnetic field, which is difficult to carry out by the conventional two-alloy method, high orientation can be achieved without separating the A alloy and the B alloy.
A rare earth permanent magnet having a high residual magnetic flux density and a high coercive force can be manufactured. Therefore, the present invention
As a method for manufacturing high-performance magnets for various electric and electronic devices,
It is expected to be widely used.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/053 H01F 1/04 H ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 1/053 H01F 1/04 H

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 A合金(主としてR2 TM14B相からな
り、RはNd,Pr,Dy,Tbを主とする少なくとも
1種類以上の希土類元素、TMはFe,Coを主とする
遷移金属元素)とB合金(R,TMを含有し、Rの量が
20原子%以上の合金)の各粉末を、A合金粉末70〜
99重量%に対してB合金粉末1〜30重量%混合し、
得られた混合粉末を磁場中で加圧成形して成形体とした
後、該成形体を真空又は不活性ガス雰囲気中で焼結し、
焼結温度以下の低温で時効処理する希土類永久磁石の製
造方法において、A合金中におけるRの量が12.4〜
14.0原子%であり、前記混合粉末を磁場強度1.6
T以上の強磁場中で加圧成形することを特徴とする希土
類永久磁石の製造方法。
1. A alloy (mainly composed of R 2 TM 14 B phase, R is at least one or more rare earth element mainly composed of Nd, Pr, Dy, Tb, TM is transition metal mainly composed of Fe, Co) Element) and a B alloy (an alloy containing R and TM and having an R content of 20 atomic% or more),
B alloy powder 1 to 30% by weight is mixed with 99% by weight,
After pressing the obtained mixed powder in a magnetic field to form a molded body, the molded body is sintered in a vacuum or an inert gas atmosphere,
In the method for producing a rare earth permanent magnet subjected to aging treatment at a low temperature equal to or lower than the sintering temperature, the amount of R in the A alloy is from 12.4 to
14.0 atomic%, and the mixed powder was treated with a magnetic field strength of 1.6.
A method for producing a rare-earth permanent magnet, which comprises performing pressure molding in a strong magnetic field of T or more.
【請求項2】 A合金粉末がストリップキャスティング
法により作製される請求項1記載の希土類永久磁石の製
造方法。
2. The method for producing a rare earth permanent magnet according to claim 1, wherein the A alloy powder is produced by a strip casting method.
【請求項3】 A合金粉末又は混合粉末に、水素化及び
脱水素化を施す請求項1記載の希土類永久磁石の製造方
法。
3. The method for producing a rare earth permanent magnet according to claim 1, wherein the A alloy powder or the mixed powder is subjected to hydrogenation and dehydrogenation.
【請求項4】 磁場強度1.6T以上のパルス磁場を印
加することにより、混合粉末を加圧成形する請求項1記
載の希土類永久磁石の製造方法。
4. The method for producing a rare earth permanent magnet according to claim 1, wherein the mixed powder is subjected to pressure molding by applying a pulse magnetic field having a magnetic field strength of 1.6 T or more.
JP11173718A 1999-06-21 1999-06-21 Manufacture of rare earth permanent magnet Pending JP2001006911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11173718A JP2001006911A (en) 1999-06-21 1999-06-21 Manufacture of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11173718A JP2001006911A (en) 1999-06-21 1999-06-21 Manufacture of rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JP2001006911A true JP2001006911A (en) 2001-01-12

Family

ID=15965867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11173718A Pending JP2001006911A (en) 1999-06-21 1999-06-21 Manufacture of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP2001006911A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6907166B2 (en) 2002-10-29 2005-06-14 Agilent Technologies, Inc. Contacting an optical waveguide to a device under test
EA014583B1 (en) * 2010-03-15 2010-12-30 Ооо "Фрязинские Магнитные Технологии" Composition for manufacturing caked permanent magnet, caked permanent magnet and method for producing thereof
CN103779061A (en) * 2012-10-17 2014-05-07 中磁科技股份有限公司 High-corrosion-resistance Re-(Fe, TM)-B magnetic body and manufacturing method thereof
CN103996524A (en) * 2014-05-11 2014-08-20 沈阳中北通磁科技股份有限公司 Method for manufacturing La-and-Ce-contained neodymium iron boron rare earth permanent magnet
CN104269238A (en) * 2014-09-30 2015-01-07 宁波科田磁业有限公司 High-performance sintered neodymium-iron-boron magnet and preparation method
CN105575577A (en) * 2016-03-04 2016-05-11 四川大学 Sintered cerium-rich rare earth permanent magnetic material and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6907166B2 (en) 2002-10-29 2005-06-14 Agilent Technologies, Inc. Contacting an optical waveguide to a device under test
EA014583B1 (en) * 2010-03-15 2010-12-30 Ооо "Фрязинские Магнитные Технологии" Composition for manufacturing caked permanent magnet, caked permanent magnet and method for producing thereof
CN103779061A (en) * 2012-10-17 2014-05-07 中磁科技股份有限公司 High-corrosion-resistance Re-(Fe, TM)-B magnetic body and manufacturing method thereof
CN103996524A (en) * 2014-05-11 2014-08-20 沈阳中北通磁科技股份有限公司 Method for manufacturing La-and-Ce-contained neodymium iron boron rare earth permanent magnet
CN104269238A (en) * 2014-09-30 2015-01-07 宁波科田磁业有限公司 High-performance sintered neodymium-iron-boron magnet and preparation method
CN104269238B (en) * 2014-09-30 2017-02-22 宁波科田磁业有限公司 High-performance sintered neodymium-iron-boron magnet and preparation method
CN105575577A (en) * 2016-03-04 2016-05-11 四川大学 Sintered cerium-rich rare earth permanent magnetic material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN105469917B (en) High temperature hybrid permanent magnet and method of forming the same
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
US5474623A (en) Magnetically anisotropic spherical powder and method of making same
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH07122413A (en) Rare earth permanent magnet and manufacture thereof
JPH0685369B2 (en) Permanent magnet manufacturing method
JP2001006911A (en) Manufacture of rare earth permanent magnet
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JPH0316762B2 (en)
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH06338407A (en) Raw material of rare-earth permanent magnet
EP0288637A2 (en) Permanent magnet and method of making the same
JP3053187B2 (en) Manufacturing method of permanent magnet
JPH03170643A (en) Alloy for permanent magnet
JPS6077959A (en) Permanent magnet material and its manufacture
JPH0316763B2 (en)
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPS6365742B2 (en)
JPH06112019A (en) Nitride magnetic material
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH0521219A (en) Production of rare-earth permanent magnet
JP2868062B2 (en) Manufacturing method of permanent magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JPH02145739A (en) Permanent magnet material and permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050328