JPH02145739A - Permanent magnet material and permanent magnet - Google Patents

Permanent magnet material and permanent magnet

Info

Publication number
JPH02145739A
JPH02145739A JP63298221A JP29822188A JPH02145739A JP H02145739 A JPH02145739 A JP H02145739A JP 63298221 A JP63298221 A JP 63298221A JP 29822188 A JP29822188 A JP 29822188A JP H02145739 A JPH02145739 A JP H02145739A
Authority
JP
Japan
Prior art keywords
permanent magnet
coercive force
atomic
magnet material
kinds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63298221A
Other languages
Japanese (ja)
Inventor
Takao Sawa
孝雄 沢
Isao Sakai
勲 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63298221A priority Critical patent/JPH02145739A/en
Publication of JPH02145739A publication Critical patent/JPH02145739A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the title magnet material of high capacity having high Curie temp., coercive force and maximum energy product by specifying the compsn. of a rare earth-ferrous material. CONSTITUTION:The permanent magnet material expressed by the general formula of RaTbMcTidYe where R=Sm or the one in which a part of Sm is substituted by one or more kinds among Y, La, Nd, Ce, Pr, Dy and Tb, T= Fe or one or both of Fe and Co, M= one or more kinds among Nb, Zr and Hf and Y= one or more kinds among B, C, N, H, P and Si, and 5<=a<=20, 0.5<=c<=8, 1<=d<=8, 0<=e<=8 and the balance (b) are regulated is prepd. Furthermore, the above material is preferably made of an anisotropic sintered body. In this way, the permanent magnet material of high capacity having high Curie temp., coercive force and maximum energy product can be obtd.

Description

【発明の詳細な説明】 (発明の目的) [産業上の利用分野] 本発明は、永久磁石材料に関つ、特に希土類−鉄系の組
成を有するる永久磁石材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Object of the Invention) [Industrial Application Field] The present invention relates to a permanent magnet material, and particularly to a permanent magnet material having a rare earth-iron composition.

[従来の技術] 永久磁石材料としては、残留磁化及び保磁力が大きく、
かつ磁気的安定性が高いことが必要である。この条件を
具備する材料として、従来、希土類−コバルト系である
RCo5  (R=Sm。
[Prior art] As a permanent magnet material, residual magnetization and coercive force are large;
In addition, it is necessary to have high magnetic stability. Conventionally, a rare earth-cobalt-based material RCo5 (R=Sm) has been used as a material satisfying this condition.

Ceなどの希土類金属) 、R=  (Co、Cu。Rare earth metals such as Ce), R= (Co, Cu.

F e、 M) 17型(M−Ti、Zr、Hf等)が
知られており、電子機器、回転機器等に広く用いられて
いる。
Fe, M) 17 type (M-Ti, Zr, Hf, etc.) is known and widely used in electronic equipment, rotating equipment, etc.

一方、最近新しい合金系の永久磁石材料として、Sm−
Ti=Fe系が報告されている。これは、スパッタ法に
よりSmF e5のFeの一部をTiで置換したもので
あり、液体急冷法で製作することによりこの系が保磁力
3.2KOeを有することも示されている。
On the other hand, recently, Sm-
A Ti=Fe system has been reported. This is a system in which a part of Fe in SmFe5 is replaced with Ti by a sputtering method, and it has been shown that this system has a coercive force of 3.2 KOe when manufactured by a liquid quenching method.

(発明が解決しようとする課題) 前記、希土類−コバルト系材料は必須元素であるコ丸ル
トが非常に高価である上、その特性を示す最大エネルギ
ー積も30MGOe程度においてほぼ限界に達している
。そこで、前記Sm−Ti=Fe系に代表される希土類
−鉄系の材料が注目されているが、この系ではキュリー
温度が約300℃と比較的低くかつ、保磁力も十分では
ないという問題点があった。
(Problems to be Solved by the Invention) In the above-mentioned rare earth-cobalt material, the essential element Komaruto is very expensive, and the maximum energy product showing its characteristics has almost reached its limit at about 30 MGOe. Therefore, rare earth-iron based materials such as the above-mentioned Sm-Ti=Fe system are attracting attention, but this system has the problem that its Curie temperature is relatively low at about 300°C and its coercive force is not sufficient. was there.

本発明は、このような問題点を解決するためになされた
もので、希土類−鉄系の永久磁石材料において、キュリ
ー温度及び保磁力を改善し、より高性能の永久磁石材料
を提供することを目的とする。
The present invention was made to solve these problems, and aims to improve the Curie temperature and coercive force of rare earth-iron based permanent magnet materials, and to provide higher performance permanent magnet materials. purpose.

(発明の概要) [課題を解決するための手段] 本発明は、希土類−鉄系材料であるSm−Ti=Fe系
において、第4成分を添加することを特徴とする。本発
明に示される合金系は、一般式 %式% R:Smあるいは一部をY、La、Nd。
(Summary of the Invention) [Means for Solving the Problems] The present invention is characterized in that a fourth component is added to the Sm-Ti=Fe system, which is a rare earth-iron material. The alloy system shown in the present invention has the general formula % R:Sm or a portion of Y, La, Nd.

Ce、Pr、Dy、Tbから選ばれる 少なくとも一種で置換。Selected from Ce, Pr, Dy, Tb Replaced with at least one type.

T:FeあるいはFeC。T: Fe or FeC.

M:Nb、Zr、Hfから選ばれる少なくとも一種。M: At least one selected from Nb, Zr, and Hf.

Y:B、 C,N、 H,P、 Siから選ばれる少な
くとも一種。
Y: At least one selected from B, C, N, H, P, and Si.

a+b+c+d+e −100(原子%)5≦a≦20 0.5≦c≦8 1≦d≦15 0≦e≦8 b;残部 で示される。a+b+c+d+e -100 (atomic%) 5≦a≦20 0.5≦c≦8 1≦d≦15 0≦e≦8 b; remainder It is indicated by.

[作用] 前記一般式で示される合金系において、基本的な元素群
はRとTであり、基本用であるRT5相を形成している
。Rはこの合金系において、5原子%未満では保磁力が
低下し、2O原子%より多くなると飽和磁化が低下し、
最大エネルギー積の低下が起こるので、5〜2O原子%
の範囲で存在する。TはFeを主とするが、−部をCo
に置換することによりキュリー温度が上昇する。但し、
50%以上置換すると保磁力が低下するためこれ以上が
望ましい。
[Function] In the alloy system represented by the above general formula, the basic element groups are R and T, forming the basic RT5 phase. In this alloy system, when R is less than 5 atomic %, the coercive force decreases, and when it exceeds 2 O atomic %, the saturation magnetization decreases.
Since a decrease in the maximum energy product occurs, 5 to 2 O atom%
Exists within the range of T is mainly Fe, but the - part is Co.
By replacing it with , the Curie temperature increases. however,
If the substitution exceeds 50%, the coercive force decreases, so it is desirable that the substitution exceeds this value.

しかし、このRT5は安定相ではないため、Tiが安定
化元素としてこの合金系に含まれ、(RT5 + T 
i )相を形成する。Tiは、1原子%未満では十分に
作用せず、15原子%より多いと基本用以外の相が多く
なりすぎて磁気特性が劣下するので1〜15原子%の範
囲で存在する。
However, since this RT5 is not a stable phase, Ti is included in this alloy system as a stabilizing element, and (RT5 + T
i) forming a phase; Ti does not function sufficiently when it is less than 1 atomic %, and when it is more than 15 atomic %, phases other than the basic phase become too large and the magnetic properties are deteriorated, so Ti is present in the range of 1 to 15 atomic %.

Yは、(RT5 +Ti)相をさらに安定化させる元素
で、8原子%より大では、飽和磁化が低下するためこれ
以下が望ましい。
Y is an element that further stabilizes the (RT5 +Ti) phase, and if it is more than 8 atomic %, the saturation magnetization decreases, so it is preferably less than this.

Mは、保磁力の改善のためにこの合金系に加えられ、特
にNb、Nb+Zr、Nb+Hfの場合に保磁力の改善
が顕著である。
M is added to this alloy system to improve coercive force, and the improvement in coercive force is particularly remarkable in the case of Nb, Nb+Zr, and Nb+Hf.

[実施例] 以下、本発明に関る第一の実施例について説明する。[Example] A first embodiment of the present invention will be described below.

Sm1O原子%、Fe82原子%、Nb 4原子%。Sm1O atomic%, Fe82 atomic%, Nb 4 atomic%.

Ti4原子%からなる合金を高周波溶解炉で溶解して作
成し、母合金とした。この母合金をアルゴン雰囲気中で
急令し、同時にロール周速20m/secの単ロール法
より薄片状の試料を得、さらに700℃の真空中で10
分間熱処理後、平均粒径200μm以下に粉砕した。こ
の試料を樹脂と混合してプラスチック磁石材料とし、射
出成形等によって成形後着磁器により着磁して等方性の
プラスチック磁石を得た。また比較例として、SmLO
原子%、Fe82原子%、T【 8原子%、からなる合
金についても前記と同じ工程にてプラスチック磁石化し
た。
An alloy consisting of 4 atomic % Ti was melted in a high frequency melting furnace to prepare a master alloy. This mother alloy was rapidly cooled in an argon atmosphere, and at the same time a flaky sample was obtained by a single roll method at a roll circumferential speed of 20 m/sec.
After heat treatment for a minute, it was pulverized to an average particle size of 200 μm or less. This sample was mixed with a resin to make a plastic magnet material, and after molding by injection molding or the like, it was magnetized with a magnetizer to obtain an isotropic plastic magnet. In addition, as a comparative example, SmLO
An alloy consisting of 82 atomic % Fe, 8 atomic % T was also made into a plastic magnet in the same process as described above.

これらのプラスチック磁石について、直流磁化測定装置
を用いて磁石特性を求めた。結果を表1に示す。実施例
において、保磁力Heが特に改善されており、最大エネ
ルギー積(BH)maxの改善につながっている。
Magnetic properties of these plastic magnets were determined using a DC magnetization measurement device. The results are shown in Table 1. In the examples, the coercive force He is particularly improved, leading to an improvement in the maximum energy product (BH) max.

表  す る2種を用いたものである。これらの磁石の磁石特性及
びキュリー温度を求めた結果を表3に示す。
The two types shown below are used. Table 3 shows the results of determining the magnetic properties and Curie temperature of these magnets.

表  2 さらに、表2に示す5種類の合金についてそれぞれ前記
と同じ工程にてプラスチック磁石化した。表2は合金の
成分元素及び存在比を示すもので、同図中上段は各成分
の合金中の存在率(原子%)、下段は各成分の具体的な
元素芯及びこの成分が複数元素よりなる場合にはその存
在比を示す。表2に示される各合金は添加する台4成分
としてNb、  Zr、 Hf、から選ばれ表 いずれの実施例においても、比較例に比して特に保磁力
が改善されている。また、キュリー温度も従来知られて
いる同系の磁石より上昇している。
Table 2 Furthermore, the five types of alloys shown in Table 2 were each made into plastic magnets in the same process as above. Table 2 shows the constituent elements and abundance ratios of the alloy. The upper row in the figure shows the abundance ratio (atomic %) of each component in the alloy, and the lower row shows the specific elemental core of each component and how this component is composed of multiple elements. If so, indicate the abundance ratio. In each of the alloys shown in Table 2, the four added components were selected from Nb, Zr, and Hf, and the coercive force was particularly improved in each of the examples in the table compared to the comparative example. Furthermore, the Curie temperature is higher than that of conventionally known magnets of the same type.

本実施例においては、等方性のプラスチック磁石とした
が、成形と同時に着磁を行なうことにより、異方性のプ
ラスチック磁石とすることも可能である。
In this embodiment, an isotropic plastic magnet is used, but it is also possible to make an anisotropic plastic magnet by magnetizing the magnet at the same time as molding.

次に本発明の台2の実施例を説明する。表2と同様に表
4にその成分と存在率の示されている5種類の合金をそ
れぞれ高周波溶解にて作成し、さらに窒素ガス中でジェ
ットミルにより平均粒径1〜10μmの大きさに微粉砕
した。得られた粉末を1.5Ton/cgtでプレス成
形と同時に15KOeの磁場をかけて着磁し、次にアル
ゴン雰囲気で1.OO0〜1200℃にて1時間焼結後
、さらに真空中で500〜900℃にて2時間熱処理を
施して異方性の焼結磁石を得た。また、比較例として、
Sm13原子%、Fe79原子%、Ti8原子%からな
る合金についても前記と同じ工程にて焼結磁石化した。
Next, an embodiment of the stand 2 of the present invention will be described. Similarly to Table 2, the five types of alloys whose components and abundance rates are shown in Table 4 were created by high-frequency melting, and then micronized to an average particle size of 1 to 10 μm using a jet mill in nitrogen gas. Shattered. The obtained powder was press-molded at 1.5 Ton/cgt and simultaneously magnetized by applying a magnetic field of 15 KOe, and then 1. After sintering at OO0 to 1200°C for 1 hour, heat treatment was further performed in vacuum at 500 to 900°C for 2 hours to obtain an anisotropic sintered magnet. Also, as a comparative example,
An alloy consisting of 13 atomic % Sm, 79 atomic % Fe, and 8 atomic % Ti was also made into a sintered magnet in the same process as described above.

これらの磁石の磁石特性を表5に示す。いずれの実施例
においても保磁力が比較例より著しく改善されている。
Table 5 shows the magnetic properties of these magnets. In all Examples, the coercive force is significantly improved compared to the Comparative Example.

本実施例では異方性磁石を作成したが、等方性磁石とす
ることも可能である。
Although an anisotropic magnet was created in this example, it is also possible to use an isotropic magnet.

表  4 表  5 (発明の効果) 本発明によれば、希土類−コバルト系よりも安価な希土
類−鉄系の合金にて、キュリー温度、保磁力、最大エネ
ルギー積の高い高性能の永久磁石材料を提供することが
できる。
Table 4 Table 5 (Effects of the Invention) According to the present invention, a high-performance permanent magnet material with a high Curie temperature, coercive force, and maximum energy product can be produced using a rare earth-iron alloy that is cheaper than a rare earth-cobalt alloy. can be provided.

Claims (3)

【特許請求の範囲】[Claims] (1)R_aT_bM_cTi_dY_eの一般式で表
わされ、R=Smあるいは一部をY,La,Nd,Ce
,Pr,Dy,Tbから選ばれる 少なくとも一種で置換、 T=FeあるいはFe,Co M=Nb,Zr,Hfから選ばれる少なく とも一種、 Y=B,C,N,H,P,Siから選ばれ る少なくとも一種、 さらに 5≦a≦20 0.5≦c≦8 1≦d≦8 0≦e≦8 b;残部 なる材料よりなることを特徴とする永久磁石材料。
(1) Represented by the general formula R_aT_bM_cTi_dY_e, where R=Sm or a part is Y, La, Nd, Ce.
, Pr, Dy, Tb, T=Fe or Fe, Co M=at least one selected from Nb, Zr, Hf, Y=B, C, N, H, P, Si A permanent magnet material comprising at least one material, and the remainder being 5≦a≦20, 0.5≦c≦8, 1≦d≦8, 0≦e≦8 b;
(2)請求項(1)記載の永久磁石材料と樹脂との混合
物よりなることを特徴とする永久磁石。
(2) A permanent magnet comprising a mixture of the permanent magnet material according to claim (1) and a resin.
(3)異方性焼結体であることを特徴とする請求項(1
)記載の永久磁石材料。
(3) Claim (1) characterized in that it is an anisotropic sintered body.
) Permanent magnetic materials listed.
JP63298221A 1988-11-28 1988-11-28 Permanent magnet material and permanent magnet Pending JPH02145739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63298221A JPH02145739A (en) 1988-11-28 1988-11-28 Permanent magnet material and permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63298221A JPH02145739A (en) 1988-11-28 1988-11-28 Permanent magnet material and permanent magnet

Publications (1)

Publication Number Publication Date
JPH02145739A true JPH02145739A (en) 1990-06-05

Family

ID=17856792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63298221A Pending JPH02145739A (en) 1988-11-28 1988-11-28 Permanent magnet material and permanent magnet

Country Status (1)

Country Link
JP (1) JPH02145739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985050A (en) * 1996-09-30 1999-11-16 Honda Giken Kogyo Kabushiki Kaisha SmFe-based magnetostrictive material
DE102015222075A1 (en) * 2015-11-10 2017-05-11 Robert Bosch Gmbh Process for producing a magnetic material and electric machine
CN111933375A (en) * 2020-07-09 2020-11-13 浙江工业大学 Novel samarium-iron-carbon-based anisotropic magnetic powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985050A (en) * 1996-09-30 1999-11-16 Honda Giken Kogyo Kabushiki Kaisha SmFe-based magnetostrictive material
DE102015222075A1 (en) * 2015-11-10 2017-05-11 Robert Bosch Gmbh Process for producing a magnetic material and electric machine
CN111933375A (en) * 2020-07-09 2020-11-13 浙江工业大学 Novel samarium-iron-carbon-based anisotropic magnetic powder

Similar Documents

Publication Publication Date Title
EP0134304A1 (en) Permanent magnets
JPH0510806B2 (en)
JPS6110209A (en) Permanent magnet
JPH0232761B2 (en)
JPH0316761B2 (en)
EP0386286B1 (en) Rare earth iron-based permanent magnet
JPH0518242B2 (en)
JPS60244003A (en) Permanent magnet
JPH0316762B2 (en)
JPH02145739A (en) Permanent magnet material and permanent magnet
JPS62241304A (en) Rare earth permanent magnet
JP2001006911A (en) Manufacture of rare earth permanent magnet
JP3053187B2 (en) Manufacturing method of permanent magnet
JPH0535210B2 (en)
JPH045739B2 (en)
JPH0422006B2 (en)
JPH044386B2 (en)
JPS61253805A (en) Rare-earth permanent magnet
JPH0536494B2 (en)
JPS59219452A (en) Permanent magnet material and its production
JPH044383B2 (en)
JPH0246658B2 (en)
JPH0246657B2 (en)
JPS61245505A (en) Manufacture of rare-earth iron magnet
JPH0362775B2 (en)