JPH0362775B2 - - Google Patents
Info
- Publication number
- JPH0362775B2 JPH0362775B2 JP58100634A JP10063483A JPH0362775B2 JP H0362775 B2 JPH0362775 B2 JP H0362775B2 JP 58100634 A JP58100634 A JP 58100634A JP 10063483 A JP10063483 A JP 10063483A JP H0362775 B2 JPH0362775 B2 JP H0362775B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- magnetic flux
- rare earth
- abc
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 54
- 239000000956 alloy Substances 0.000 claims description 54
- 239000000843 powder Substances 0.000 claims description 29
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 23
- 230000032683 aging Effects 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 6
- 229910052691 Erbium Inorganic materials 0.000 claims description 6
- 229910052689 Holmium Inorganic materials 0.000 claims description 6
- 229910052771 Terbium Inorganic materials 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052775 Thulium Inorganic materials 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 1
- 230000004907 flux Effects 0.000 description 29
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 19
- 238000002156 mixing Methods 0.000 description 19
- 230000007423 decrease Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 238000005191 phase separation Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000005415 magnetization Effects 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 229910001004 magnetic alloy Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910000828 alnico Inorganic materials 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Description
〔発明の技術分野〕
本発明は、希土類コバルト系永久磁石合金に関
するものである。
〔従来技術〕
希土類元素Rとコバルトとからなる希土類コバ
ルト磁石は、RC05系とCuおよびFeを含む2相分
離形R2(CoFeCuM)17系との2つに大別される
が、その最大エネルギー積(BH)naxがRCo5系で
25MGOe、R2(CoFeCuM)17系で33MGOeに達
し、アルニコ磁石の10MGOe、Baフエライト磁
石の4MGOeに比べてきわめて高いため、特に小
形化の要求される機器や強磁界の必要な機器に使
用されている。しかし、磁束の温度係数について
は例えばSmCo5系でほぼ−0.04%/℃、2相分離
形Sm2Co17系でほぼ−0.03%/℃と大きく、アル
ニコ磁石の−0.022〜0.016%/℃と比較して劣る
ため、温度変化の激しい環境での使用は困難であ
つた。
ところで、最近各種の電気計測機器や通信機器
にはますます小形化、軽量化、高性能化、高信頼
性化が求められている。機器の小形化、軽量化の
ためには高い(BH)naxを持つ磁石が求められ、
特に薄形化のためには高い保磁力IHCをも同時に
持つ磁石が求められている。例えば通信衛星用進
行波管には小形化、軽量化のために周期磁石とし
て希土類コバルト磁石が用いられるようになつて
来ており、さらに近年に至つては進行波管の小形
化、大容量化の要求に伴つてますます高(BH)n
axで高IHCの磁石が求められている。さらに機器
の高性能化、高信頼性化のためには、機器使用環
境の温度が変化しても磁束の変化の小さい磁束が
求められている。例えば、宇宙空間で衛星の受け
る温度環境は−50〜+150℃程度ときわめて厳し
く、進行波管の高性能化、高信頼性化のためには
磁束の温度変化の少ない磁石が強く求められてい
る。
このような要求に応えるために磁束の温度係数
を改善した希土類コバルト磁石として、Smの一
部をGd、Er、Ho、Tb、Dyという重希土類元素
で置換した永久磁石が提案されている(特開昭50
−75919、同50−81914、同51−52319)。しかし、
これらは実質的にRCo5を主体とした磁石であり、
その可逆温度係数は0〜−0.03%/℃と小さいも
のの、(BH)naxは8〜13MGOeと低く、各種機器
の小形化には十分に対処できない。
したがつて、高い(BH)naxを持ち、かつ磁束
の温度係数の小さい磁石を開発するためには、磁
化の高い2相分離形R2(CoFeCuM)17系合金の利
用を考えなければならない。
ところで、2相分離形R2(CoFeCuM)17系磁石
は、CuおよびFeを含む合金を時効によりRCo5相
とR2Co17相とに2相分離させて磁気硬化して製
造することを特徴とするが、そのIHCは一般的に
低く、そのため低いパーミアンス係数の形状では
使用できずしたがつて機器の薄形化のためにはI
HCを高める必要がある。
〔発明の目的および構成〕
本発明はこのような事情に鑑みてなされたもの
であり、その目的は、磁束の温度変化が小さくか
つ保磁力IHC9最大エネルギー積(BH)naxが共に
高い永久磁石合金の製造方法を提供することにあ
る。
このような目的を達成するために、本発明は、
Sm(Co1-a-b-cFeaCubMc)zで示される組成の合金
粉末Aに、X(Co1-a-b-cFeaCubMc)zで示される
組成の合金粉末Bを混合し、圧縮成形した後焼結
するものである。
ここで、MはTi、Zr、Hfの少なくとも一種、
Xは重希土類元素のGd、Tb、Dy、Ho、Er、
Tmのいずれか1種であり、また0.05≦a≦0.35、
0.03≦b≦0.15、0.005≦c≦0.05、7.0≦z≦8.3
である。
このような磁束温度係数が小さく、IHCおよび
(BH)naxが高い永久磁石合金として、出願人は先
に、(Sm1-xXxGdy)(Co1-a-b-cFeaCubMc)の一
般式(式中、XはPr、Ce、ミツシユメタルのう
ちの1種、MはTi、Zr、Hfの少なくとも1種で
あり、また0≦x≦0.2、0.05≦y≦0.7、0.05≦
a≦0.35、0.03≦b≦0.15、0.005≦c≦0.05、7.0
≦z≦8.3)で示される合金(特願昭57−146468)
と、((Sm1-xXx)(Co1-a-b-cFeaCubMc)zの一般式
(式中XはTb、Dy、Ho、Er、Tmの少なくとも
1種、MはTi、Zr、Hfの少なくとも1種、また、
0.05≦x≦0.7、0.05≦a≦0.35、0.03≦b≦0.15、
0.005≦c≦0.05、7.0≦z≦8.3)で示される合金
(特願昭57−146467)を提案している。これら永
久磁石合金の開発原理は次のようなものであつ
た。
すなわち、一般にR2Co17合金においてRが軽
希土類元素からなる場合には、通常の磁石合金と
同様に温度が上昇すると共に合金の磁束が減少す
る。ところが、Rが重希土類からなるGd2Co17合
金においては、常温を含む広い範囲で温度が上昇
すると共に合金の磁束は増加する。上記出願に係
る発明は、これら合金の磁束と温度の関係が、
Cu、FeおよびM(MはTi、Zr、Hfの少なくとも
1種)を含むSm(Co1-a-b-cFeaCubMc)z合金、お
よびX(Co1-a-b-cFeaCubMc)z合金(Xは重希土
類元素Gd、Tb、Dy、Ho、Er、Tmの少なくと
も1種)において2相分離処理を施して磁石化し
た場合でも同様に成り立つことに着目し、
(Sm1-xXx)(Co1-a-b-cFeaCubMc)z合金において
xを変化させることによりSm(Co1-a-b-cFeaCub
Mc)z合金とX(Co1-a-b-cFeaCubMc)z合金との中
間的な磁束の温度係数が得られることの発見に基
いてなされたものである。
このような永久磁石合金の製造方法について、
出願人は、上記出願の明細書において、Smおよ
び重希土類元素(Gd、Tb、Dy、Ho、Er、Tm
の1種以上)を所望の磁束温度係数が得られるよ
うに調整した(Sm1-xXx)(Co1-a-b-cFeaCubMc)
z合金の全成分を溶解しインゴツトを作製し、こ
れを粉砕して得た粉末を磁界中成形し、成形物を
焼結した後均一化処理を行ない、室温まで急冷
し、その後、階段状あるいは連続冷却時効を行な
い製造する旨記載した。
しかし、このような方法は、各種機器の設計に
適合する種々の磁束温度係数をもつ磁石を製造す
る場合、常に、予め所望の温度係数ごとにそれに
みあう成分に調整した元素原料を溶解する必要が
あり、生産性に著しい難点がある。他方で、最近
の機器設計の多様化に伴い、各種の磁束温度係数
をもつ磁石がこれまで以上に求められるようにな
つてきている。
このため、所望の磁束温度係数をもつ上記永久
磁石合金を生産性良く製造できる方法を検討した
結果、予め希土類元素としてSmのみを含むSm
(Co1-a-b-cFeaCubMc)z合金粉末Aと、希土類元
素として磁束温度係数を低下させる作用をもつ重
希土類元素Xのみを含むX(Co1-a-b-cFeaCubMc)
z合金粉末Bとを別々に製造しておき、合金粉末
Aに、Bで示される合金粉末の少なくとも1種を
混合することによつて、混合比に対応して所望の
磁束温度係数をもつ磁石の製造が可能であること
を見出した。すなわち、本発明によれば、予め希
土類元素としてSmのみを含む合金粉末Aと希土
類元素として重希土類元素Xを含む合金粉末Bと
を製造しておけば、必要に応じ両者を混合し、均
一化処理を行ない、およびその後2相分離を起こ
させるため冷却時効を行なうことで所望とする各
種磁束温度係数をもつ磁石の製造が可能となり、
しかもA、Bの混合比を精密に変化させることに
よつて磁束温度係数も精密に変化させることが可
能である。
本発明によれば、永久磁石合金は一般に次のよ
うにして製造される。
まず、前述したAおよびBの組成となるよう
に、各元素原料を調合し、溶解してインゴツトを
得る。この各インゴツトを別々に粗粉砕し、さら
にボールミル、ジエツトミルなどを用いて微粉砕
し、AおよびBで示される合金粉末を製造する。
これらの合金粉末のうち、Aで示される合金粉末
に、所望の磁束温度係数が得られるようにBで示
される合金粉末の少なくとも1種を十分に混合
し、その後、この混合した微粉末を5〜15KOe
程度の磁場中でプレス成形し、成形物を1150〜
1230℃の温度で15分ないし2時間程度焼結する。
焼結は、1150〜1230℃という高温で行なうため、
各元素の拡散が十分に進行し、密度を上昇させる
とともに各元素の組成を均一化させる効果があ
る。このため、本発明による製造方法は2種類以
上の粉末を混合させているにもかかわらず、焼結
後の各元素の組成は均一であり、以後の処理工程
は1種類の粉末から出発した場合と同様に扱うこ
とができる。この後、1100〜1190℃で1時間以上
溶体化処理を行なう。この溶体化処理は長時間行
なうことにより後述する時効後のIHCを増加させ
ることが可能であり、特に5時間以上行なうこと
により15KOe以上という非常に高いIHCが得られ
る。
この溶体化処理の後、750〜950℃で1時間以上
初段時効し、さらに1〜50℃/minの冷却速度で
450〜300℃まで連続冷却する2相分離処理を施
す。連続冷却の代りに多段時効を行なつてもよ
い。初段時効を長時間行なうことにより、微細な
2相分離組織が得られるためにIHCを増加させる
ことが可能であり、5時間以上行なうことが好ま
しい。
これらの溶解、粉砕、焼結、溶体化、時効は、
種々の雰囲気で行なうことができるが、不活性、
真空、非酸化性、還元性の雰囲気中で行なうこと
が好ましい。
本発明に係る永久磁石合金の各成分およびその
成分比の限定は次のような理由による。
まず、Sm(Co1-a-b-cFeaCubMc)zおよびX
(Co1-a-b-cFeaCubMc)zで表わされる一般式にお
いて、Smは優れた(BH)naxを得るために必要な
元素である。
Xで表わした重希土類元素は、前述したように
常温を含む広い温度範囲で温度が上昇したときに
合金の磁束を増加させる効果がある。このため、
希土類元素として重希土類元素Xのみを含む合金
粉末Bは、希土類元素としてSmのみを含む合金
粉末Aに混合することにより、合金の磁束温度係
数を小さくする効果がある。これら希土類元素の
総量に対する他の元素の総量の比zが7.0未満で
はIHCが低下すると共に、飽和磁化が低下するた
めに残留磁束密度Brも低下する。またzが8.3を
越えるとIHCが急激に低下するため、7.0≦z≦
8.3が適当である。
Feは、飽和磁化を増加させてBrを増加させる
効果があるが、aが0.05未満ではその効果が少な
く、0.35を越えるとIHCが低下するため、0.05≦
a≦0.35が適当である。
Cuは、2相分離反応を起こさせるために必要
な元素であり、IHCを増加させる効果がある。し
かしながら、bが0.03未満では2相分離反応が十
分に進行しないために磁石として十分なIHCが得
られず、またbが0.15を越えると飽和磁化が低下
してBrが低下するため、0.03≦b≦0.15が適当で
ある。
Mとして、Ti、Zr、Hfの少なくとも1種を添
加することにより、IHCを増加させる効果がある。
しかしながら、cが0.005未満ではこの効果が顕
著に現われず、また0.05を越えると逆にIHCが急
激に減少するため、0.005≦c≦0.05が適当であ
る。
以下、実施例を用いて本発明を詳細に説明す
る。
〔実施例〕
実施例 1
第1表に示した成分の合金となるように調合し
た原料をアーク溶解し、鉄乳鉢で粗粉砕した後、
ステンレスボールミルを用い、石油ベンジン中で
微粉砕して平均粒径10〜15μmの各合金粉末を製
造した。
[Technical Field of the Invention] The present invention relates to a rare earth cobalt-based permanent magnet alloy. [Prior art] Rare earth cobalt magnets made of rare earth element R and cobalt are roughly divided into two types: RC 05 series and two-phase separated type R 2 (CoFeCuM) 17 series containing Cu and Fe. Energy product (BH) nax is RCo 5 series
25MGOe, R 2 (CoFeCuM) 17 series reaches 33MGOe, which is extremely high compared to 10MGOe for alnico magnets and 4MGOe for Ba ferrite magnets, so it is especially used in equipment that requires miniaturization and equipment that requires a strong magnetic field. There is. However, the temperature coefficient of magnetic flux is large, for example, approximately -0.04%/°C for SmCo 5 system, approximately -0.03%/°C for two-phase separated Sm 2 Co 17 system, and -0.022 to 0.016%/°C for alnico magnets. Because of their comparative inferiority, it was difficult to use them in environments with rapid temperature changes. Incidentally, recently, various electric measuring instruments and communication devices are required to be more and more compact, lightweight, high performance, and highly reliable. To make devices smaller and lighter, magnets with high (BH) nax are required.
In particular, in order to make the magnet thinner, there is a need for a magnet that also has a high coercive force IHC . For example, rare earth cobalt magnets have been used as periodic magnets in traveling wave tubes for communication satellites to make them smaller and lighter, and in recent years, traveling wave tubes have also become smaller and have larger capacities. increasingly high (BH) n
AX and high IHC magnets are in demand. Furthermore, in order to improve the performance and reliability of devices, there is a need for magnetic flux that exhibits small changes even when the temperature of the environment in which the device is used changes. For example, the temperature environment that satellites are exposed to in space is extremely harsh, ranging from -50 to +150 degrees Celsius, and in order to improve the performance and reliability of traveling wave tubes, there is a strong need for magnets whose magnetic flux changes little with temperature. . To meet these demands, permanent magnets in which a portion of Sm is replaced with heavy rare earth elements such as Gd, Er, Ho, Tb, and Dy have been proposed as rare-earth cobalt magnets with improved temperature coefficients of magnetic flux. 1977
-75919, 50-81914, 51-52319). but,
These are essentially magnets based on RCo 5 ,
Although its reversible temperature coefficient is small at 0 to -0.03%/°C, its (BH) nax is low at 8 to 13 MGOe, making it unable to adequately cope with miniaturization of various devices. Therefore, in order to develop a magnet with high (BH) nax and a small temperature coefficient of magnetic flux, it is necessary to consider the use of a two-phase separated R 2 (CoFeCuM) 17 alloy with high magnetization. By the way, two-phase separated R 2 (CoFeCuM) 17- based magnets are manufactured by aging an alloy containing Cu and Fe to separate the two phases into RCo 5 phase and R 2 Co 17 phase, and then magnetically harden the magnet. However, its I H C is generally low, and therefore it cannot be used in a shape with a low permeance coefficient .
It is necessary to increase H C. [Object and Structure of the Invention] The present invention has been made in view of the above circumstances, and its object is to provide a permanent magnet with a small temperature change in magnetic flux and a high coercive force I H C9 maximum energy product (BH) nax . An object of the present invention is to provide a method for manufacturing a magnetic alloy. In order to achieve such an objective, the present invention
Alloy powder A having a composition represented by Sm(Co 1-abc Fe a Cu b M c ) z is mixed with alloy powder B having a composition represented by X(Co 1-abc Fe a Cu b M c ) z , It is compression molded and then sintered. Here, M is at least one of Ti, Zr, and Hf;
X is a heavy rare earth element Gd, Tb, Dy, Ho, Er,
Any one of Tm, and 0.05≦a≦0.35,
0.03≦b≦0.15, 0.005≦c≦0.05, 7.0≦z≦8.3
It is. As a permanent magnetic alloy with such a small magnetic flux temperature coefficient and high I H C and (BH) nax , the applicant previously proposed (Sm 1-x X x Gd y ) (Co 1-abc Fe a Cu b M c ) general formula (wherein, X is one of Pr, Ce, and Mitsushi metal; M is at least one of Ti, Zr, and Hf; ≦
a≦0.35, 0.03≦b≦0.15, 0.005≦c≦0.05, 7.0
≦z≦8.3) (Patent application 1987-146468)
and the general formula of ((Sm 1-x X x ) (Co 1-abc Fe a Cu b M c ) z (wherein, At least one of Zr and Hf, and
0.05≦x≦0.7, 0.05≦a≦0.35, 0.03≦b≦0.15,
0.005≦c≦0.05, 7.0≦z≦8.3) (Japanese Patent Application No. 146467/1983). The development principle of these permanent magnet alloys was as follows. That is, in general, when R in an R 2 Co 17 alloy is made of a light rare earth element, the magnetic flux of the alloy decreases as the temperature rises, similar to a normal magnetic alloy. However, in a Gd 2 Co 17 alloy in which R is a heavy rare earth element, the magnetic flux of the alloy increases as the temperature rises over a wide range including room temperature. The invention according to the above application provides that the relationship between the magnetic flux and temperature of these alloys is
Sm (Co 1-abc Fe a Cu b M c ) z alloy containing Cu, Fe, and M (M is at least one of Ti, Zr, and Hf), and X (Co 1-abc Fe a Cu b M c ) Focusing on the fact that the same holds true even when a z alloy (X is at least one of the heavy rare earth elements Gd, Tb, Dy, Ho, Er, and Tm) is subjected to two-phase separation treatment and magnetized,
(Sm 1-x X x ) ( Co 1-abc Fe a Cu b M c ) Sm (Co 1-abc Fe a Cu b
This was based on the discovery that a temperature coefficient of magnetic flux intermediate between the M c ) z alloy and the X(Co 1-abc Fe a C b M c ) z alloy was obtained. Regarding the manufacturing method of such a permanent magnet alloy,
The applicant states that in the specification of the above application, Sm and heavy rare earth elements (Gd, Tb, Dy, Ho, Er, Tm
(one or more types of) were adjusted to obtain the desired magnetic flux temperature coefficient (Sm 1-x X x ) (Co 1-abc Fe a Cu b M c )
All components of the z alloy are melted to make an ingot, and the powder obtained by crushing this is molded in a magnetic field, the molded product is sintered, homogenized, and rapidly cooled to room temperature. It is stated that the product is manufactured by continuous cooling aging. However, when manufacturing magnets with various temperature coefficients of magnetic flux to suit the design of various devices, this method always requires melting elemental raw materials whose composition has been adjusted in advance to suit each desired temperature coefficient. There are significant problems with productivity. On the other hand, with the recent diversification of equipment designs, magnets with various magnetic flux temperature coefficients are being required more than ever. For this reason, as a result of studying a method for manufacturing the above permanent magnet alloy with a desired magnetic flux temperature coefficient with high productivity, we found that Sm containing only Sm as a rare earth element
(Co 1 - abc Fe a Cu b M c )
By manufacturing alloy powder B separately and mixing at least one of the alloy powders represented by B with alloy powder A, a magnet having a desired magnetic flux temperature coefficient corresponding to the mixing ratio can be created. It was discovered that it is possible to produce That is, according to the present invention, if alloy powder A containing only Sm as a rare earth element and alloy powder B containing heavy rare earth element X as a rare earth element are produced in advance, they can be mixed and homogenized as necessary. By performing treatment and then performing cooling aging to cause two-phase separation, it becomes possible to manufacture magnets with various desired magnetic flux temperature coefficients.
Moreover, by precisely changing the mixing ratio of A and B, it is possible to precisely change the magnetic flux temperature coefficient. According to the present invention, permanent magnet alloys are generally manufactured as follows. First, raw materials for each element are mixed to have the compositions A and B described above and melted to obtain an ingot. These ingots are separately coarsely ground and then finely ground using a ball mill, jet mill, etc. to produce alloy powders shown by A and B.
Among these alloy powders, the alloy powder indicated by A is sufficiently mixed with at least one of the alloy powders indicated by B so as to obtain the desired magnetic flux temperature coefficient, and then this mixed fine powder is ~15KOe
The molded product is press-molded in a magnetic field of about 1150 ~
Sinter at a temperature of 1230℃ for about 15 minutes to 2 hours.
Sintering is performed at a high temperature of 1150 to 1230℃, so
Diffusion of each element progresses sufficiently, which has the effect of increasing the density and making the composition of each element uniform. For this reason, even though the manufacturing method according to the present invention mixes two or more types of powder, the composition of each element after sintering is uniform, and the subsequent processing steps are performed when starting from one type of powder. can be treated in the same way. After this, solution treatment is performed at 1100 to 1190°C for 1 hour or more. By performing this solution treatment for a long time, it is possible to increase I H C after aging, which will be described later. In particular, by performing this solution treatment for 5 hours or more, a very high I H C of 15 KOe or more can be obtained. After this solution treatment, initial aging is performed at 750 to 950℃ for more than 1 hour, and then at a cooling rate of 1 to 50℃/min.
Two-phase separation treatment with continuous cooling to 450-300°C is performed. Multistage aging may be performed instead of continuous cooling. By carrying out the initial aging for a long time, a fine two-phase separated structure can be obtained, so that I H C can be increased, and it is preferable to carry out the aging for 5 hours or more. These melting, crushing, sintering, solution treatment, and aging are
It can be carried out in a variety of atmospheres, including inert,
It is preferable to carry out the reaction in a vacuum or in a non-oxidizing, reducing atmosphere. The limitations on each component and the component ratio of the permanent magnet alloy according to the present invention are due to the following reasons. First, Sm(Co 1-abc Fe a Cu b M c ) z and X
In the general formula represented by (Co 1-abc Fe a Cu b M c ) z , Sm is an element necessary to obtain excellent (BH) nax . As described above, the heavy rare earth element represented by X has the effect of increasing the magnetic flux of the alloy when the temperature rises over a wide temperature range including room temperature. For this reason,
By mixing alloy powder B containing only heavy rare earth element X as a rare earth element with alloy powder A containing only Sm as rare earth element, it has the effect of reducing the magnetic flux temperature coefficient of the alloy. If the ratio z of the total amount of other elements to the total amount of these rare earth elements is less than 7.0, I H C decreases and the saturation magnetization decreases, so the residual magnetic flux density Br also decreases. Also, when z exceeds 8.3, I H C decreases rapidly, so 7.0≦z≦
8.3 is appropriate. Fe has the effect of increasing saturation magnetization and increasing Br, but the effect is small when a is less than 0.05, and when it exceeds 0.35, I H C decreases, so 0.05≦
A≦0.35 is appropriate. Cu is an element necessary for causing a two-phase separation reaction, and has the effect of increasing I H C. However, if b is less than 0.03, the two-phase separation reaction will not proceed sufficiently, making it impossible to obtain sufficient I H C as a magnet, and if b exceeds 0.15, the saturation magnetization will decrease and Br will decrease. ≦b≦0.15 is appropriate. Adding at least one of Ti, Zr, and Hf as M has the effect of increasing I H C.
However, if c is less than 0.005, this effect will not be noticeable, and if c exceeds 0.05, I H C will decrease rapidly, so 0.005≦c≦0.05 is appropriate. Hereinafter, the present invention will be explained in detail using Examples. [Example] Example 1 Raw materials prepared to form an alloy of the components shown in Table 1 were arc melted, coarsely ground in an iron mortar, and then
Each alloy powder with an average particle size of 10 to 15 μm was produced by finely pulverizing it in petroleum benzine using a stainless steel ball mill.
【表】
次いで、(合金2の重量)/(合金1の重量+
合金2の重量)で表わされる混合比が0、0.2、
0.4、0.6、0.8、1.0となるように合金1の粉末と
合金2の粉末とを調合した後、十分に混合し、
13KOeの磁界中で金型を用いて2.5ton/cm2の圧力
で圧縮成形した。これらの圧粉体をAr気流中で
1210℃で30分間焼結し、その後1160℃で6時間の
溶体化処理を施して急冷した。次いでAr気流中
で850℃で10時間の初段時効を施し、さらに350℃
まで1.5℃/minで連続冷却し、350℃で1時間保
持した。
このようにして得た永久磁石合金の磁気特性を
第2票に示す。また、パーミアンス係数を2.0と
して測定した−50〜+150℃の温度範囲における
磁束の可逆温度係数αを図に示す。[Table] Next, (weight of alloy 2) / (weight of alloy 1 +
The mixing ratio expressed by the weight of Alloy 2 is 0, 0.2,
After blending the powder of Alloy 1 and the powder of Alloy 2 so that the powder is 0.4, 0.6, 0.8, 1.0, thoroughly mixed,
Compression molding was performed using a mold in a magnetic field of 13 KOe at a pressure of 2.5 ton/cm 2 . These green compacts are placed in an Ar air stream.
Sintering was carried out at 1210°C for 30 minutes, followed by solution treatment at 1160°C for 6 hours and quenching. Next, initial aging was performed at 850℃ for 10 hours in an Ar flow, and then aged at 350℃.
The sample was continuously cooled at a rate of 1.5°C/min to 350°C for 1 hour. The magnetic properties of the permanent magnet alloy thus obtained are shown in Table 2. The figure also shows the reversible temperature coefficient α of the magnetic flux in the temperature range of -50 to +150°C, which was measured with a permeance coefficient of 2.0.
【表】
まず、第2表からわかるように、合金2の混合
比が増加するに従つてBr、IHC、(BH)naxが低下
する傾向にある。混合比が0.6以下では13〜
25MGOeの高い(BH)naxが得られており、混合
比が0.8以上ではそれが9MGOe以下に低下する。
したがつて、この混合比は0.7以下というのが実
用上の目安となる。一方、図からわかるように合
金2の混合比が増加するにしたがつてαは低下
し、混合比が0.2で−0.021%/℃、混合比が0.5で
ほぼ0となる。さらに混合比が増加すると、αの
符号は正に転じ、その値は増加する。
このように、希土類元素としてSmのみを含む
合金粉末1とGdのみを含む合金粉末2とを混合
することにより、その混合比を調整することによ
つて、αが大幅に改善されかつ所望の磁束温度係
数をもつ磁石が製造できる。
実施例 2
第3表に示した成分の合金となるように調合し
た原料を用い、実施例1と同様に平均粒径10〜
15μmの各合金粉末を製造した。[Table] First, as can be seen from Table 2, as the mixing ratio of Alloy 2 increases, Br, I H C , and (BH) nax tend to decrease. 13~ if the mixing ratio is 0.6 or less
A high (BH) nax of 25MGOe has been obtained, which decreases to 9MGOe or less when the mixing ratio is 0.8 or higher.
Therefore, a practical guideline for this mixing ratio is 0.7 or less. On the other hand, as can be seen from the figure, as the mixing ratio of Alloy 2 increases, α decreases, becoming -0.021%/°C at a mixing ratio of 0.2 and almost 0 at a mixing ratio of 0.5. As the mixing ratio further increases, the sign of α turns positive and its value increases. In this way, by mixing alloy powder 1 containing only Sm as a rare earth element and alloy powder 2 containing only Gd, α can be significantly improved and the desired magnetic flux can be achieved by adjusting the mixing ratio. Magnets with temperature coefficients can be manufactured. Example 2 Using raw materials prepared to form an alloy with the components shown in Table 3, the average particle size was 10 to 10, as in Example 1.
Each alloy powder of 15 μm was produced.
【表】【table】
【表】
次いで、第4表に示した混合比となるように各
合金粉末を調合した後、十分に混合し、13KOe
の磁界中で金型を用いて2.5ton/cm2の圧力で圧縮
成形した。これらの圧粉体をAr気流中で1210℃
で30分間焼結し、その後1160℃で6時間の溶体化
処理を施して急冷した。次いでAr気流中で850℃
で10時間の初段時効を施し、さらに350℃まで1.5
℃/minで連続冷却し、350℃で1時間保持した。[Table] Next, each alloy powder was mixed to have the mixing ratio shown in Table 4, and then thoroughly mixed to obtain 13KOe.
Compression molding was performed using a mold in a magnetic field of 2.5 tons/cm 2 at a pressure of 2.5 tons/cm 2 . These green compacts were heated at 1210℃ in an Ar flow.
The material was sintered for 30 minutes at 1160°C, and then solution treated at 1160°C for 6 hours and rapidly cooled. Then heated to 850℃ in Ar flow.
The first stage aging was performed for 10 hours at
It was continuously cooled at a rate of °C/min and held at 350 °C for 1 hour.
【表】
このようにして得た永久磁石合金の磁気特性お
よびパーミアンス係数を2.0として測定した−50
〜+150℃の温度範囲における磁束の可逆温度係
数αを第5表に示す。[Table] The magnetic properties and permeance coefficient of the permanent magnet alloy thus obtained were measured with a setting of 2.0 -50
Table 5 shows the reversible temperature coefficient α of the magnetic flux in the temperature range of ~+150°C.
【表】【table】
以上説明したように、本発明によれば、2相分
離形Sm2(CoFeCuM)17系合金粉末と2相分離形
X2(CoFeCuM)17系合金(Xは重希土類元素Gd、
Tb、Dy、Ho、Er、Tm)粉末とを混合すること
によつて、磁束温度係数を改善させるとともに所
望の磁束温度係数をもち、しかもIHCおよび
(BH)naxを高めた永久磁石を生産性良く製造する
ことができ、高IHC、高(BH)naxでしかも通信機
器の多様化に伴う各種の磁束温度係数をもつ磁石
の要求に十分に応えることが可能である。
As explained above, according to the present invention, a two-phase separated Sm 2 (CoFeCuM) 17 alloy powder and a two-phase separated type
X 2 (CoFeCuM) 17 series alloy (X is heavy rare earth element Gd,
By mixing Tb, Dy, Ho, Er, Tm) powder, we can improve the magnetic flux temperature coefficient and create a permanent magnet that has the desired magnetic flux temperature coefficient and also has high I H C and (BH) nax . It can be manufactured with high productivity, and can fully meet the demands for magnets with high I H C , high (BH) nax , and various magnetic flux temperature coefficients accompanying the diversification of communication equipment.
図は磁束の可逆温度係数と合金粉末の混合比と
の関係を示す図である。
The figure shows the relationship between the reversible temperature coefficient of magnetic flux and the mixing ratio of alloy powder.
Claims (1)
らなる合金粉末に、X(Co1-a-b-cFeaCubMc)zで
示される組成からなる合金粉末の少なくとも一種
(各式中でMはTi、Zr、Hfの少なくとも一種、X
は重希土類元素Gd、Tb、Dy、Ho、Er、Tmの
いずれか一種、また0.05≦a≦0.35、0.03≦b≦
0.15、0.005≦c≦0.05、7.0≦z≦8.3)を混合し
て磁場中で圧縮成形し、その成形物を焼結した
後、1100〜1190℃で5時間以上加熱することによ
り溶体化処理を行い、該溶体化処理後、750〜950
℃で1時間以上初段時効し、さらに1〜50℃/
minの冷却速度で450〜300℃まで連続冷却又は多
段時効することを特徴とする2相分離形永久磁石
合金の製造方法。1 Sm(Co 1-abc Fe a Cu b M c ) z and at least one kind of alloy powder having the composition X(Co 1-abc Fe a Cu b M c ) z (In each formula, M is at least one of Ti, Zr, Hf,
is one of the heavy rare earth elements Gd, Tb, Dy, Ho, Er, Tm, and 0.05≦a≦0.35, 0.03≦b≦
0.15, 0.005≦c≦0.05, 7.0≦z≦8.3), compression molded in a magnetic field, sintered the molded product, and then subjected to solution treatment by heating at 1100 to 1190°C for 5 hours or more. After the solution treatment, 750 to 950
Initial aging at 1 hour or more at ℃, then further aging at 1 to 50℃/
A method for producing a two-phase separated permanent magnet alloy, characterized by continuous cooling or multistage aging at a cooling rate of 450 to 300°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58100634A JPS59226135A (en) | 1983-06-06 | 1983-06-06 | Manufacture of permanent magnet alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58100634A JPS59226135A (en) | 1983-06-06 | 1983-06-06 | Manufacture of permanent magnet alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59226135A JPS59226135A (en) | 1984-12-19 |
JPH0362775B2 true JPH0362775B2 (en) | 1991-09-27 |
Family
ID=14279261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58100634A Granted JPS59226135A (en) | 1983-06-06 | 1983-06-06 | Manufacture of permanent magnet alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59226135A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007266199A (en) * | 2006-03-28 | 2007-10-11 | Tdk Corp | Manufacturing method of rare earth sintered magnet |
CN101882494A (en) * | 2010-05-17 | 2010-11-10 | 中国科学院宁波材料技术与工程研究所 | Samarium-cobalt sintered magnet material and preparation method thereof |
CN102071339A (en) * | 2011-01-24 | 2011-05-25 | 宁波科星材料科技有限公司 | Samarium-cobalt permanent magnet material and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5030735A (en) * | 1973-07-20 | 1975-03-27 | ||
JPS5075919A (en) * | 1973-11-12 | 1975-06-21 | ||
JPS5081914A (en) * | 1973-10-24 | 1975-07-03 | ||
JPS5152319A (en) * | 1974-10-23 | 1976-05-08 | Tohoku Metal Ind Ltd | Kidorui kobarutokeieikyujishaku oyobi sono seizoho |
-
1983
- 1983-06-06 JP JP58100634A patent/JPS59226135A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5030735A (en) * | 1973-07-20 | 1975-03-27 | ||
JPS5081914A (en) * | 1973-10-24 | 1975-07-03 | ||
JPS5075919A (en) * | 1973-11-12 | 1975-06-21 | ||
JPS5152319A (en) * | 1974-10-23 | 1976-05-08 | Tohoku Metal Ind Ltd | Kidorui kobarutokeieikyujishaku oyobi sono seizoho |
Also Published As
Publication number | Publication date |
---|---|
JPS59226135A (en) | 1984-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3143156B2 (en) | Manufacturing method of rare earth permanent magnet | |
US4814139A (en) | Permanent magnet having good thermal stability and method for manufacturing same | |
JPWO2002103719A1 (en) | Rare earth permanent magnet material | |
JPH06340902A (en) | Production of sintered rare earth base permanent magnet | |
JP3715573B2 (en) | Magnet material and manufacturing method thereof | |
JP2853838B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPS6181606A (en) | Preparation of rare earth magnet | |
JPS61263201A (en) | Manufacture of generator | |
JPH0518242B2 (en) | ||
JP2853839B2 (en) | Manufacturing method of rare earth permanent magnet | |
US5230749A (en) | Permanent magnets | |
US4954186A (en) | Rear earth-iron-boron permanent magnets containing aluminum | |
JPH0316762B2 (en) | ||
JPH0732090B2 (en) | permanent magnet | |
JPH0362775B2 (en) | ||
JPH061726B2 (en) | Method of manufacturing permanent magnet material | |
JPH0461042B2 (en) | ||
JPS6181607A (en) | Preparation of rare earth magnet | |
JPH0146575B2 (en) | ||
JPH0246658B2 (en) | ||
JP3143157B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPH0246657B2 (en) | ||
JPH0535210B2 (en) | ||
JP3178848B2 (en) | Manufacturing method of permanent magnet | |
JPS6365742B2 (en) |