JP3370013B2 - Rare earth magnet material and rare earth bonded magnet using the same - Google Patents

Rare earth magnet material and rare earth bonded magnet using the same

Info

Publication number
JP3370013B2
JP3370013B2 JP14314899A JP14314899A JP3370013B2 JP 3370013 B2 JP3370013 B2 JP 3370013B2 JP 14314899 A JP14314899 A JP 14314899A JP 14314899 A JP14314899 A JP 14314899A JP 3370013 B2 JP3370013 B2 JP 3370013B2
Authority
JP
Japan
Prior art keywords
rare earth
magnet
magnet material
powder
ihc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14314899A
Other languages
Japanese (ja)
Other versions
JP2000049006A (en
Inventor
弘 岡島
飛世  正博
幹夫 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP14314899A priority Critical patent/JP3370013B2/en
Publication of JP2000049006A publication Critical patent/JP2000049006A/en
Application granted granted Critical
Publication of JP3370013B2 publication Critical patent/JP3370013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、R−T−M(−
B)−N系合金(RはYを含む希土類元素の1種または
2種以上でありSmを必ず含む、TはFeまたはFeと
Co、MはAl、Ti、V、Cr、Mn、Cu、Ga、
Zr、Nb、Mo、Hf、Ta、W、Znの1種または
2種以上)であり、αFeが非常に少ないかあるいは全
く含まない、微細な2−17型構造の硬質磁性相から実
質的になる希土類磁石材料およびそれを用いた高性能の
等方性希土類ボンド磁石に関する。また本発明は、R−
T−M(−B)−N系合金であり、RがSmとLaとか
ら実質的になる希土類磁石材料およびそれを用いた着磁
性の良好な等方性の希土類ボンド磁石に関する。
TECHNICAL FIELD The present invention relates to R-T-M (-
B) -N alloy (R is one or more rare earth elements including Y and always contains Sm, T is Fe or Fe and Co, M is Al, Ti, V, Cr, Mn, Cu, Ga,
Zr, Nb, Mo, Hf, Ta, W, and Zn), and is substantially free from a fine 2-17 type hard magnetic phase having very little or no αFe. And a high-performance isotropic rare earth bonded magnet using the same. Further, the present invention provides R-
The present invention relates to a rare earth magnet material which is a TM (-B) -N based alloy and R substantially consists of Sm and La, and an isotropic rare earth bonded magnet using the same, which has good magnetizability.

【0002】[0002]

【従来の技術】従来より、Nd-Fe-B系磁粉を配合し
た希土類ボンド磁石が多用されているが、キュリー温度
が300℃前後と低く、保磁力(iHc)の温度係数が
大きいため高温での使用が制限されてきた。最近、Sm
2Fe17化合物が窒素を吸蔵することによりNd2Fe14
B化合物よりも高いキュリー温度(470℃)および異
方性磁界(260kOe)を示すことから、ボンド磁石
用磁粉として工業化が進められつつある。しかし、Sm
2Fe17xは単磁区粉末粒径(数μm)まで微粒化しな
いと有用な高いiHcが得られない。この数μmの微粒
子状態では室温の大気中で容易に酸化し磁気特性が大き
く劣化する。同時にボンド磁石中への磁粉の充填性が悪
くなり等方性のボンド磁石の密度が顕著に低下して有用
な最大エネルギー積(BH)maxを実現困難であるという
問題を有する。
2. Description of the Related Art Conventionally, rare earth bonded magnets containing Nd-Fe-B-based magnetic powder have been widely used. However, the Curie temperature is as low as around 300 ° C and the temperature coefficient of coercive force (iHc) is large, so that the temperature is high. The use of has been restricted. Recently, Sm
When the 2 Fe 17 compound absorbs nitrogen, Nd 2 Fe 14
Since it has a higher Curie temperature (470 ° C.) and an anisotropic magnetic field (260 kOe) than the B compound, it is being industrialized as a magnetic powder for bonded magnets. But Sm
2 Fe 17 N x cannot obtain a useful high iHc unless it is atomized to a single domain powder particle size (several μm). In the state of fine particles of several μm, they are easily oxidized in the atmosphere at room temperature and the magnetic characteristics are greatly deteriorated. At the same time, there is a problem that the filling property of the magnetic powder in the bonded magnet is deteriorated and the density of the isotropic bonded magnet is remarkably reduced, and it is difficult to realize a useful maximum energy product (BH) max.

【0003】微粒化による上記問題を解決するために、
特開平4ー260302号公報では、水素雰囲気中で熱
処理後、続いて減圧雰囲気中で熱処理し、その後窒化す
ることにより、原子%でSmを5〜15%、M(MはZ
r,Hf,Nb,Ta,W,Mo,Ti,V,Cr,G
a,Al,Sb,Pb,Siからなる群から選択される
少なくとも1種の元素)を0〜10%およびNを0.5
〜25%含有し、残部がFeまたはFeおよびCo(F
eの含有率が20原子%以上)であり、Mを含む場合は
磁気異方性を示す平均結晶粒径が1μm以下、平均粉末
粒径が20μm以上の窒化磁石粉末を得られる記載があ
る。しかし、本発明者らの検討によれば、特開平4ー2
60302号公報に記載の製造条件に従い作製した窒化
磁石粉末は磁気等方性のものであり平均結晶粒径が1μ
m超になることがわかった。この原因は特開平4ー26
0302号公報の実施例に記載の水素吸蔵温度が650
℃であり、水素化分解温度未満になるためと判断され
る。
In order to solve the above problems caused by atomization,
In Japanese Patent Laid-Open No. 260302/1992, after heat treatment in a hydrogen atmosphere, heat treatment in a reduced pressure atmosphere, and then nitriding, Sm is 5 to 15% in atomic% and M (M is Z
r, Hf, Nb, Ta, W, Mo, Ti, V, Cr, G
a, Al, Sb, Pb, at least one element selected from the group consisting of Si) 0 to 10% and N 0.5.
~ 25% content, balance Fe or Fe and Co (F
When the content of e is 20 atomic% or more) and M is included, a nitrided magnet powder having an average crystal grain size of 1 μm or less and an average powder grain size of 20 μm or more showing magnetic anisotropy is described. However, according to the study by the present inventors, the Japanese Patent Laid-Open No. 4-2
The nitride magnet powder produced according to the production conditions described in JP-A No. 60302 is magnetically isotropic and has an average crystal grain size of 1 μm.
It turned out to be over m. The cause of this is JP-A-4-26.
The hydrogen storage temperature described in the example of Japanese Patent No. 0302 is 650.
It was determined that the temperature was ℃ and the temperature was below the hydrocracking temperature.

【0004】次に、本発明者らの検討によれば、希土類
窒化磁石材料用母合金の溶湯を急冷用ロールの周速を例
えば45m/秒以上にして急冷凝固した薄帯に、特開平
4ー260302号公報に記載の熱処理条件を適用し、
続いて窒化することにより、平均粉末粒径が10μm以
上でかつ平均結晶粒径が1μm以下のものを得ることが
できた。しかし、この製造条件によると急冷凝固した薄
帯が尖鋭形状を呈し、最終的に窒化して得られた磁石粉
末が前記薄帯の尖鋭形状を反映して圧縮性の悪いものに
なり、等方性ボンド磁石とした場合に6.1g/cm
超の高い密度を実現困難なことがわかった。したがっ
て、密度の向上による(BH)maxの向上をほとんど期待
できない。
Next, according to a study by the present inventors, a thin strip obtained by rapidly solidifying a melt of a mother alloy for rare earth nitride magnet materials with a peripheral speed of a quenching roll of, for example, 45 m / sec or more was used. -Applying the heat treatment conditions described in JP-A-260302,
By subsequent nitriding, it was possible to obtain a powder having an average powder particle size of 10 μm or more and an average crystal particle size of 1 μm or less. However, according to this manufacturing condition, the rapidly solidified thin strip exhibits a sharp shape, and the magnet powder finally obtained by nitriding has a poor compressibility due to the sharp shape of the thin strip. 6.1 g / cm 3 when used as a magnetic bond magnet
It turns out that it is difficult to achieve ultra high density. Therefore, improvement in (BH) max due to improvement in density can hardly be expected.

【0005】次に、着磁性は等方性希土類ボンド磁石の
重要な特性であり、実用上室温における着磁磁界強度は
25kOe以下が望ましい。しかし、従来のR−T−M
−N系の等方性希土類ボンド磁石は前記条件により着磁
した場合に着磁性が悪いという問題を有する。
Next, magnetizing is an important characteristic of the isotropic rare earth bonded magnet, and it is desirable that the magnetizing magnetic field strength at room temperature be 25 kOe or less in practical use. However, conventional R-T-M
The -N-type isotropic rare earth bonded magnet has a problem that it has poor magnetizability when magnetized under the above conditions.

【0006】[0006]

【発明が解決しようとする課題】上記従来の問題を踏ま
えて、本発明の課題は、R−T−M(−B)−N系合金
(RはYを含む希土類元素の1種または2種以上であり
Smを必ず含む、TはFeまたはFeとCo、MはA
l、Ti、V、Cr、Mn、Cu、Ga、Zr、Nb、
Mo、Hf、Ta、W、Znの1種または2種以上)で
あり、αFeが非常に少ないかあるいは全く含まない、
2−17型構造の微細な硬質磁性相から実質的になる希
土類磁石材料およびそれを用いた高性能の等方性希土類
ボンド磁石を提供することである。また、(Sm,L
a)−T−M(−B)−N系合金であり、αFeが非常
に少ないかあるいは全く含まない、2−17型構造の微
細な硬質磁性相から実質的になる希土類磁石材料および
それを用いた着磁性の良好な等方性の希土類ボンド磁石
を提供することである。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, an object of the present invention is to provide an R-T-M (-B) -N-based alloy (R is one or two rare earth elements containing Y). The above is always included, T is Fe or Fe and Co, and M is A
l, Ti, V, Cr, Mn, Cu, Ga, Zr, Nb,
One or more of Mo, Hf, Ta, W, and Zn), and has very little or no αFe.
(EN) A rare earth magnet material consisting essentially of a fine hard magnetic phase having a 2-17 type structure, and a high performance isotropic rare earth bonded magnet using the same. In addition, (Sm, L
a) a rare earth magnet material consisting of a fine hard magnetic phase of 2-17 type structure, which is a -TMM (-B) -N based alloy and contains very little or no αFe, and a It is an object of the present invention to provide an isotropic rare earth bonded magnet having good magnetizability.

【0007】[0007]

【課題を解決するための手段】本発明者らは希土類窒化
磁石粉末およびそれを用いた等方性の希土類ボンド磁石
に関し、下記の開発目標を設定し、鋭意検討した。(1)
面積比率の平均値で、希土類窒化磁石粒子が実質的に2
−17型構造の硬質磁性相からなり、面積率の平均値で
αFeが好ましくは5%以下、より好ましくは2%以
下、特に好ましくは0%であること、(2)実用性に富ん
だ成形圧力で等方性の希土類ボンド磁石を容易に成形で
きること、さらには6.1g/cm超の高い密度が得
られること、(3)実用に耐える耐熱性、(BH)maxを有
すること、(4)実用に耐える改善された着磁性を有する
こと。この4点に注力するにあたり、例えば、 R−T
−M−N系窒化磁石合金(RはYを含む希土類元素の1
種または2種以上でありSmを必ず含む、TはFeまた
はFeとCo、MはAl、Ti、V、Cr、Mn、C
u、Ga、Zr、Nb、Mo、Hf、Ta、W、Znの
1種または2種以上)の主成分組成に対応する母合金を
溶解法により作製後、窒素を含まない不活性ガス雰囲気
中で1010〜1280℃×1〜40時間の均質化熱処
理を行い、その後後述の水素化・分解反応処理およびこ
れに続く脱水素・再結合反応処理を施し、続いて窒化を
行うことにより、(1)、(2)、(3)を満足し得る。しかし
この場合、均質化熱処理を行なう必要があり、コストア
ップになる。よって本発明は、R−T−M−B−N系窒
化磁石合金(RはYを含む希土類元素の1種または2種
以上でありSmを必ず含む、TはFeまたはFeとC
o、MはAl、Ti、V、Cr、Mn、Cu、Ga、Z
r、Nb、Mo、Hf、Ta、W、Znの1種または2
種以上でありTiを必ず含む)の特定主成分組成に対応
する母合金の溶湯急冷における冷却用ロールの周速を、
好ましくは0.05〜10m/秒、より好ましくは0.
08〜9m/秒、特に好ましくは0.1〜8m/秒とし
た条件で急冷凝固する。次に、後述の水素化・分解反応
処理およびこれに続く脱水素・再結合反応処理を施した
後、窒化を行うことにより、均質化熱処理をすることな
く(1)、(2)、(3)を満足し得ることを知見した。また、
着磁性の改善のために、RとしてSmとLaとの組み合
わせを選択することが有効であることを知見した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made earnest studies on the rare earth nitride magnet powder and the isotropic rare earth bonded magnet using the same, by setting the following development goals. (1)
The average value of the area ratio shows that the rare earth nitride magnet particles are substantially 2
It is composed of a hard magnetic phase of -17 type structure, and αFe is preferably 5% or less, more preferably 2% or less, and particularly preferably 0% in terms of average area ratio. (2) Practical molding It is possible to easily form an isotropic rare earth bonded magnet by pressure, obtain a high density of more than 6.1 g / cm 3 , (3) have a heat resistance for practical use, and have (BH) max. 4) Must have improved magnetism for practical use. In focusing on these four points, for example, RT
-MN Nitride magnet alloy (R is one of rare earth elements including Y)
T is Fe or Fe and Co, M is Al, Ti, V, Cr, Mn, C
u, Ga, Zr, Nb, Mo, Hf, Ta, W, Zn) or a master alloy corresponding to the main component composition corresponding to the main component composition by a melting method, and then in a nitrogen-free inert gas atmosphere By homogenizing heat treatment at 1010 to 1280 ° C for 1 to 40 hours, then performing a hydrogenation / decomposition reaction treatment described below and a subsequent dehydrogenation / recombination reaction treatment, and subsequently performing nitriding, (1 ), (2) and (3) can be satisfied. However, in this case, it is necessary to carry out a homogenizing heat treatment, resulting in an increase in cost. Therefore, the present invention provides an R-T-M-B-N based nitride magnet alloy (R is one or more rare earth elements including Y and always contains Sm, T is Fe or Fe and C).
o and M are Al, Ti, V, Cr, Mn, Cu, Ga, Z
1 or 2 of r, Nb, Mo, Hf, Ta, W, Zn
The peripheral speed of the cooling roll in the melt quenching of the master alloy corresponding to the specific main component composition of at least one species and including Ti)
It is preferably 0.05 to 10 m / sec, more preferably 0.
Rapid solidification is carried out under the conditions of 08-9 m / sec, particularly preferably 0.1-8 m / sec. Next, after the hydrogenation / decomposition reaction treatment described below and the subsequent dehydrogenation / recombination reaction treatment are performed, nitriding is performed to perform (1), (2), (3 ) Was satisfied. Also,
It was found that it is effective to select a combination of Sm and La as R in order to improve the magnetizability.

【0008】[0008]

【課題を解決するための手段】すなわち本発明は、原子
%でRα100−(α+β+γ+δ)βγδ(Rは
Yを含む希土類元素の1種または2種以上でありSmを
必ず含む、TはFeまたはFeとCo、MはAl、T
i、V、Cr、Mn、Cu、Ga、Zr、Nb、Mo、
Hf、Ta、W、Znの1種または2種以上でありTi
を必ず含み、6≦α≦15,0.5≦β≦10,0.1
≦γ≦4,4≦δ≦30)で表される主成分組成を有す
る母合金を用い、冷却用ロールの周速を0.05〜10
m/秒として溶湯急冷した、平均結晶粒径が0.01〜
1μmの2−17型構造の硬質磁性相から実質的にな
り、かつαFeの面積比率の平均値が5%以下であるこ
とを特徴とする等方性ボンド磁石用の希土類磁石材料で
ある。本発明を適用することにより、均質化熱処理を施
さなくてもαFeの存在しない窒化磁石粉末が得られ
る。次に、M元素の含有量が5原子%以上のときに硬質
磁性相がThZn17型構造の菱面体晶とThNi
17型構造の六方晶との混晶のものが得られる。また、
RがSm、Laおよび不可避不純物からなるとともに、
原子%でLaの含有量が0.05〜1%の場合に着磁性
が改善される。La含有量が0.05原子%未満では着
磁性が改善されず、1%超では角形(Hk)が逆に低下
する。前記特定La含有量のときに異方性磁界(Ha)
および飽和磁束密度(Bs)はやや低下するが、室温の
25kOe以下で着磁した等方性ボンド磁石の(BH)
maxおよびHkを高めることができる。 Hkは4πI−
H減磁曲線上において0.7Brの位置におけるHの値
であり、減磁曲線の矩形性の尺度である。Brは残留磁
束密度、Hは磁界の強さ、4πIは磁化の強さである。
Means for Solving the Problems That is, according to the present invention, in atomic%, R α T 100- (α + β + γ + δ) M β B γ N δ (R is one or more rare earth elements including Y and Sm is Must contain, T is Fe or Fe and Co, M is Al, T
i, V, Cr, Mn, Cu, Ga, Zr, Nb, Mo,
One or more of Hf, Ta, W, Zn and Ti
Must be included, 6 ≦ α ≦ 15, 0.5 ≦ β ≦ 10, 0.1
≦ γ ≦ 4, 4 ≦ δ ≦ 30) and a peripheral speed of the cooling roll of 0.05 to 10 using a mother alloy having a main component composition represented by
The average crystal grain size is 0.01-
A rare earth magnet material for an isotropic bonded magnet, which is substantially composed of a hard magnetic phase having a 1-17 μm 2-17 type structure and has an average area ratio of αFe of 5% or less. By applying the present invention, it is possible to obtain a nitrided magnet powder without αFe even without performing homogenizing heat treatment. Next, when the content of the M element is 5 atomic% or more, the hard magnetic phase is a rhombohedral crystal having a Th 2 Zn 17 type structure and Th 2 Ni.
A mixed crystal with a hexagonal crystal having a 17- type structure is obtained. Also,
R consists of Sm, La and unavoidable impurities,
The magnetizability is improved when the La content is 0.05 to 1% in atomic%. If the La content is less than 0.05 atom%, the magnetizability is not improved, and if it exceeds 1%, the squareness (Hk) is decreased. Anisotropy field (Ha) at the specific La content
And the saturation magnetic flux density (Bs) is slightly lowered, but (BH) of an isotropic bonded magnet magnetized at room temperature of 25 kOe or less.
The max and Hk can be increased. Hk is 4πI-
The value of H at the position of 0.7 Br on the H demagnetization curve, which is a measure of the rectangularity of the demagnetization curve. Br is the residual magnetic flux density, H is the magnetic field strength, and 4πI is the magnetization strength.

【0009】前記希土類磁石材料粉末は1山粒径分布を
有し、かつ平均粒径が10〜300μmのものが好まし
い。通常、粒径分布の異なる2種以上の粉末を混合しな
い限り、1山粒径分布となる。また、平均粒径が10μ
m未満では酸化劣化、成形性劣化が顕著になり、300
μm超では不均質な窒化組織となり磁気特性が低下す
る。
The rare earth magnet material powder preferably has a one-peak particle size distribution and an average particle size of 10 to 300 μm. Usually, unless two or more kinds of powders having different particle size distributions are mixed, one peak particle size distribution is obtained. The average particle size is 10μ
When it is less than m, deterioration of oxidation and deterioration of moldability become remarkable,
If it exceeds μm, a non-uniform nitriding structure is formed and the magnetic properties deteriorate.

【0010】前記希土類磁石材料粉末を樹脂で結着する
ことにより等方性の希土類ボンド磁石が構成される。特
に、結着樹脂が熱硬化性樹脂であり、圧縮成形後、加熱
硬化処理を施せば、6.1g/cm超の密度が得られ
る。加熱硬化の条件は大気中または不活性ガス雰囲気中
で100〜200℃×0.5〜5時間が好ましい。10
0℃×0.5時間未満では加熱硬化の重合反応が不十分
であり、200℃×5時間超では熱処理の効果が飽和す
る。特に、Arガス雰囲気中で加熱硬化を行うと(B
H)maxを高められるので好ましい。
An isotropic rare earth bonded magnet is formed by binding the rare earth magnet material powder with a resin. In particular, the binder resin is a thermosetting resin, and if a heat curing treatment is performed after the compression molding, a density of more than 6.1 g / cm 3 can be obtained. The conditions for heat curing are preferably 100 to 200 ° C. and 0.5 to 5 hours in the air or an inert gas atmosphere. 10
If it is less than 0 ° C. × 0.5 hours, the polymerization reaction of heat curing is insufficient, and if it exceeds 200 ° C. × 5 hours, the effect of heat treatment is saturated. In particular, when heat curing is performed in an Ar gas atmosphere (B
H) max can be increased, which is preferable.

【0011】前記希土類磁石材料において、RにはSm
を必ず含み、Sm以外にY、La、Ce、Pr、Nd、
Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、L
uのうちの1種または2種以上を含むことが許容され
る。Smミッシュメタルやジジム等の2種以上の希土類
元素の混合物を用いてもよい。Rとして、好ましくはS
mとLa、Y、Ce、Pr、Nd、Gd、Dy、Erの
うちの1種または2種以上との組み合わせ、さらに好ま
しくはSmとLa、Y、Ce、Pr、Ndのうちの1種
または2種以上との組み合わせ、特に好ましくは実質的
にSmのみかあるいはSmとLaとからなる場合であ
る。Smの純度でいえば、有用なiHcを得るために、
Rに占めるSm比率を50原子%以上、さらには70原
子%以上とすることがよい。なお、Rには、製造上混入
が避けられないO、H、C、Al、Si、Na、Mg、
Ca等の不可避不純物の含有が許容される。
In the rare earth magnet material, R is Sm.
Must be included, and in addition to Sm, Y, La, Ce, Pr, Nd,
Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, L
It is acceptable to include one or more of u. A mixture of two or more kinds of rare earth elements such as Sm misch metal and didymium may be used. As R, preferably S
m in combination with one or more of La, Y, Ce, Pr, Nd, Gd, Dy, Er, and more preferably Sm and one of La, Y, Ce, Pr, Nd or A combination of two or more kinds, particularly preferably a case of substantially only Sm or Sm and La. In terms of Sm purity, in order to obtain useful iHc,
The Sm ratio in R is preferably 50 atom% or more, and more preferably 70 atom% or more. In addition, R is mixed with O, H, C, Al, Si, Na, Mg, and
Inclusion of inevitable impurities such as Ca is allowed.

【0012】R含有量は6〜15原子%が好ましい。R
が6原子%未満ではiHcが低下し、15原子%超では
飽和磁化(σ)が低下する。さらに好ましいR含有量は
7〜12原子%である。
The R content is preferably 6 to 15 atomic%. R
Is less than 6 atomic%, iHc decreases, and if it exceeds 15 atomic%, the saturation magnetization (σ) decreases. A more preferable R content is 7 to 12 atomic%.

【0013】Tiを含むM元素とB元素とを特定量含有
する母合金の主成分組成とし、かつ前記溶湯急冷条件を
採用すれば、溶体化熱処理を施さなくてもαFeのない
母合金を得られる。この場合、原子%で、Tiを含むM
元素の含有量(β)を0.5〜10%、より好ましくは
1〜6%、特に好ましくは1〜4%にするとともに、T
iの含有量を0.5原子%以上にする必要がある。理想
的にはM元素をTiおよび不可避不純物で構成するとよ
い。溶体化熱処理を施す場合、BおよびTiは必須では
ない。この場合のM元素の含有量(β)は、前記と同様
に原子%で、好ましくは0.5〜10原子%、より好ま
しくは1〜6原子%、特に好ましくは1〜4%である。
M元素が10原子%超ではThMn12型のSm(Fe,
M)12相が生成して磁気特性が低下し、M元素
(Ti)が0.5原子%未満でも磁気特性が低下する。
B含有量(γ)は0.1〜4原子%が好ましい。前記溶
湯急冷条件を採用し、均質化熱処理を行わない場合、B
含有量が0.1原子%未満ではiHcが大きく低下し、
4原子%超ではiHc、σが低下する。窒素含有量は4
〜30原子%が好ましく、10〜20原子%がより好ま
しい。窒素含有量が4原子%未満および30原子%超で
はiHc、σが大きく低下する。また、 Coおよび/
またはNiにより、Feの0.5〜30原子%を置換す
ることが好ましく、1〜20原子%を置換することがよ
り好ましい。Coおよび/またはNiの導入によりキュ
リー温度およびiHcの温度係数(η)が向上するが、
置換量が30原子%超ではiHc、σが顕著に低下し、
0.5原子%未満では添加効果が認められない。前記希
土類磁石材料は平均粉末粒径が10〜300μmのもの
で高いiHcを実現できるので、酸素含有量を0.25
重量%以下に抑えることができる。また、αFe形成元
素である炭素の含有量を0.1重量%以下に抑えてあり
αFeの低減のために好ましい。
If the main component composition of the mother alloy containing a specific amount of M elements and B elements including Ti and the above-mentioned melt quenching conditions are adopted, a mother alloy without αFe can be obtained without carrying out solution heat treatment. To be In this case, M containing Ti in atomic%
The content (β) of the element is 0.5 to 10%, more preferably 1 to 6%, particularly preferably 1 to 4%, and T
The content of i must be 0.5 atomic% or more. Ideally, the M element should be composed of Ti and inevitable impurities. When performing solution heat treatment, B and Ti are not essential. In this case, the content (β) of the M element is atom% as described above, preferably 0.5 to 10 atom%, more preferably 1 to 6 atom%, and particularly preferably 1 to 4%.
When the M element exceeds 10 atomic%, ThMn 12 type Sm (Fe,
M) 12 N z phase is generated to deteriorate the magnetic properties, and even if the M element (Ti) is less than 0.5 atomic%, the magnetic properties are deteriorated.
The B content (γ) is preferably 0.1 to 4 atom%. If the above-mentioned melt quenching conditions are adopted and homogenizing heat treatment is not performed, B
If the content is less than 0.1 atom%, iHc is significantly reduced,
If it exceeds 4 atomic%, iHc and σ decrease. Nitrogen content is 4
-30 atom% is preferable, and 10-20 atom% is more preferable. When the nitrogen content is less than 4 atom% or more than 30 atom%, iHc and σ are greatly reduced. Also, Co and /
Alternatively, Ni is preferably used to replace 0.5 to 30 atomic% of Fe, more preferably 1 to 20 atomic%. The introduction of Co and / or Ni improves the Curie temperature and the temperature coefficient (η) of iHc,
If the amount of substitution exceeds 30 atomic%, iHc and σ decrease significantly,
If it is less than 0.5 atom%, the effect of addition is not recognized. The rare earth magnet material having an average powder particle size of 10 to 300 μm can realize a high iHc, and thus has an oxygen content of 0.25.
It can be suppressed to less than or equal to weight%. Further, the content of carbon, which is an αFe forming element, is suppressed to 0.1% by weight or less, which is preferable for reducing αFe.

【0014】硬質磁性相の平均結晶粒径が0.01〜1
μmのときに高い磁気特性が得られる。工業生産上、
0.01μm未満のものを安定生産することは困難を伴
い、1μm超ではiHcが大きく低下する。硬質磁性
相、αFeの同定および面積比率の算出は、電子顕微鏡
および/または光学顕微鏡による観察結果ならびに必要
に応じてX線回折結果等を総合的に考慮して行う。例え
ば、対象とする窒化磁石粒子の断面を撮影した透過型電
子顕微鏡写真およびその断面組織の同定結果を符合させ
て求めることができる。
The average crystal grain size of the hard magnetic phase is 0.01 to 1
High magnetic properties can be obtained at μm. In industrial production,
It is difficult to stably produce a material having a thickness of less than 0.01 μm, and iHc is significantly reduced when the thickness exceeds 1 μm. Identification of the hard magnetic phase and αFe and calculation of the area ratio are performed by comprehensively considering the observation result by an electron microscope and / or an optical microscope and, if necessary, the X-ray diffraction result. For example, it can be determined by matching the transmission electron microscope photograph of the cross section of the target nitride magnet particle and the identification result of the cross section structure.

【0015】本発明の等方性ボンド磁石のバインダーと
して樹脂、ゴム材料または前記希土類磁石材料のキュリ
ー温度よりも低い融点の金属(合金)を用いることがで
きる。このうち、熱硬化性樹脂、熱可塑性樹脂またはゴ
ム材料が実用的であり、圧縮成形法、射出成形法、押出
成形法または回転する圧延用ローラ間にコンパウンドを
通してシート状成形体を得る成形方法を採用できる。圧
縮成形法による場合は熱硬化性樹脂がよく、特に熱硬化
性液状樹脂が適している。具体例を挙げれば、エポキシ
樹脂、ポリイミド樹脂、ポリエステル樹脂、フェノール
樹脂、フッ素樹脂、ケイ素樹脂またはポリフェニレンサ
ルファイド樹脂(PPS)の液状樹脂が利用できる。液
状エポキシ樹脂は安価であり、取り扱いが容易で良好な
耐熱性を示すため最もよい。
As the binder of the isotropic bonded magnet of the present invention, a resin, a rubber material, or a metal (alloy) having a melting point lower than the Curie temperature of the rare earth magnet material can be used. Of these, thermosetting resins, thermoplastic resins or rubber materials are practical, and compression molding methods, injection molding methods, extrusion molding methods, or molding methods for obtaining a sheet-shaped molded body by passing a compound between rotating rolling rollers are used. Can be adopted. When the compression molding method is used, a thermosetting resin is preferable, and a thermosetting liquid resin is particularly suitable. As a specific example, liquid resin such as epoxy resin, polyimide resin, polyester resin, phenol resin, fluororesin, silicon resin or polyphenylene sulfide resin (PPS) can be used. Liquid epoxy resins are the best because they are inexpensive, easy to handle and exhibit good heat resistance.

【0016】本発明の希土類磁石材料の製造条件につい
て以下に説明する。まず溶湯急冷用ロールの周速を上記
特定範囲に設定して急冷凝固し、窒化磁石粉末の主成分
に対応したSm−Fe−Ti−B系母合金を得る。非急
冷凝固方式の溶解法(高周波溶解法、アトマイズ法また
はアーク溶解法等)を用いた場合、αFeを低減するに
は均質化熱処理が必要である。均質化熱処理は窒素を含
まない不活性ガス雰囲気中で1010〜1280℃×1
〜40時間加熱するため、コスト的に不利になるだけで
なく、加熱中にSm等の蒸発による組成ずれが顕著にな
り、特性の安定化が困難であったが、本発明によりその
工程を省くことができる。次に、0.1〜10atmの
水素ガス中または水素ガス分圧を有する不活性ガス(窒
素ガスを除く)中で675〜900℃×0.5〜8時間
加熱する水素化・分解反応処理と、続いて1×10−2
Torr以下の高真空中で700〜900℃×0.5〜
10時間加熱する脱水素・再結合反応処理とを行う。水
素化・分解反応により母合金を希土類元素Rの水素化物
RHx、T−M相などに分解する。次に、脱水素・再結
合反応により、母合金相に再結合させて平均結晶粒径が
0.01〜1μmの微細な再結晶粒からなる母合金が得
られる。個々の再結晶粒子は通常ランダムに配向する
が、前記M元素の組み合わせにより異方性が付与され得
る。水素化・分解反応の水素分圧が0.1atm未満で
は分解反応がほとんど起こらず、10atm超では処理
設備の大型化、コスト増を招く。よって水素分圧は0.
1〜10atmが好ましく、0.5〜5atmがより好
ましい。水素化・分解反応の加熱条件が675℃(ほぼ
水素化分解温度相当)×0.5時間未満では母合金が水
素を吸収するのみでRHx、T-M相などへの分解が起こ
らず、900℃×8時間超では脱水素後の母合金が粗大
粒化し、窒化磁石粉末のiHcが大きく低下する。よっ
て、水素化・分解反応の加熱条件は675〜900℃×
0.5〜8時間が好ましく、675〜800℃×0.5
〜8時間がより好ましい。脱水素・再結合反応の水素分
圧が1×10−2Torrよりも低真空では処理に長時
間を要し、1×10−6Torr超の高真空とすると真
空排気装置のコスト増を招く。脱水素・再結合反応の加
熱条件が700℃×0.5時間未満ではRHx等の分解
が進行せず、900℃×10時間超では再結晶組織が粗
大粒化してiHcが大きく低下する。よって、平均再結
晶粒径を0.01〜1μmとするために、脱水素・再結
合反応の加熱条件は700〜900℃×0.5〜10時
間が好ましく、725〜875℃×0.5〜10時間が
より好ましい。次に必要に応じて粉砕を行い、その後窒
化処理を行うことにより本発明の希土類磁石材料粉末を
製造できる。窒化前に必要に応じて分級または篩分して
粒径分布を調整することが均一な窒化組織を実現し、か
つボンド磁石の成形容易性、密度を向上するために好ま
しい。窒化は、0.2〜10atmの窒素ガス、水素が
1〜95モル%で残部が窒素からなる(水素+窒素)の
混合ガス、NHのモル%が1〜50%で残部水素から
なる(NH+水素)の混合ガスのいずれかの雰囲気中
で300〜650℃×0.1〜30時間加熱するガス窒
化が実用性に富んでいる。ガス窒化の加熱条件は300
〜650℃×0.1〜30時間が好ましく、400〜5
50℃×0.5〜20時間がより好ましい。300℃×
0.1時間未満では窒化が進行せず、650℃×30時
間超では逆にRNとFe−M相を生成しiHcが低下す
る。窒化における窒素単独ガスまたは窒素含有ガスの圧
力は0.2〜10atmが好ましく、0.5〜5atm
がより好ましい。0.2atm未満では窒化反応が非常
に遅くなり、10atm超では高圧ガス設備によるコス
ト増を招く。窒化後に、真空中あるいは不活性ガス中
(窒素ガスを除く)で300〜600℃×0.5〜50
時間の熱処理を行うと、iHcをさらに高められる場合
がある。前記希土類磁石材料粉末には0.01〜10原
子%の水素の含有が許容される。
The manufacturing conditions of the rare earth magnet material of the present invention will be described below. First, the peripheral speed of the molten metal quenching roll is set in the above-mentioned specific range and rapidly solidified to obtain an Sm-Fe-Ti-B based master alloy corresponding to the main component of the nitrided magnet powder. When a non-quenching solidification melting method (high-frequency melting method, atomizing method, arc melting method, or the like) is used, homogenizing heat treatment is required to reduce αFe. The homogenization heat treatment is 1010 to 1280 ° C x 1 in an inert gas atmosphere containing no nitrogen.
Since heating is performed for 40 hours, not only the cost becomes disadvantageous, but also compositional deviation due to evaporation of Sm or the like becomes remarkable during heating, and it is difficult to stabilize the characteristics, but the present invention saves the step. be able to. Next, a hydrogenation / decomposition reaction treatment of heating at 675 to 900 ° C. for 0.5 to 8 hours in 0.1 to 10 atm of hydrogen gas or an inert gas (excluding nitrogen gas) having a hydrogen gas partial pressure is performed. , Then 1 × 10 -2
700-900 ° C x 0.5-in high vacuum below Torr
A dehydrogenation / recombination reaction treatment of heating for 10 hours is performed. The hydrogenation / decomposition reaction decomposes the mother alloy into a hydride RHx of the rare earth element R, a TM phase, and the like. Next, by a dehydrogenation / recombination reaction, the mother alloy phase is recombined to obtain a mother alloy composed of fine recrystallized grains having an average crystal grain size of 0.01 to 1 μm. The individual recrystallized grains are usually randomly oriented, but anisotropy can be imparted by the combination of the M elements. If the hydrogen partial pressure of the hydrogenation / cracking reaction is less than 0.1 atm, the cracking reaction hardly occurs, and if it exceeds 10 atm, the processing equipment becomes large and the cost increases. Therefore, the hydrogen partial pressure is 0.
1-10 atm is preferable and 0.5-5 atm is more preferable. If the heating conditions for the hydrogenation / cracking reaction are less than 675 ° C (corresponding to the hydrogenolysis temperature) x 0.5 hours, the mother alloy only absorbs hydrogen and does not decompose into RHx, TM phase, etc. If the temperature exceeds 8 hours, the mother alloy after dehydrogenation becomes coarse and iHc of the nitrided magnet powder is greatly reduced. Therefore, the heating conditions for the hydrogenation / decomposition reaction are 675 to 900 ° C.
0.5 to 8 hours is preferable, 675 to 800 ° C. × 0.5
~ 8 hours is more preferred. If the hydrogen partial pressure of the dehydrogenation / recombination reaction is lower than 1 × 10 −2 Torr, it takes a long time to process, and if the vacuum is higher than 1 × 10 −6 Torr, the cost of the vacuum exhaust device will increase. . If the heating conditions of the dehydrogenation / recombination reaction are less than 700 ° C. × 0.5 hours, decomposition of RHx and the like does not proceed, and if it exceeds 900 ° C. × 10 hours, the recrystallized structure becomes coarse and iHc is greatly reduced. Therefore, in order to set the average recrystallized grain size to 0.01 to 1 μm, the heating conditions for the dehydrogenation / recombination reaction are preferably 700 to 900 ° C. × 0.5 to 10 hours, and 725 to 875 ° C. × 0.5. 10 hours is more preferable. Next, the rare earth magnet material powder of the present invention can be manufactured by pulverizing if necessary and then nitriding. It is preferable to adjust the particle size distribution by classifying or sieving as needed before nitriding in order to realize a uniform nitriding structure and to improve the moldability and density of the bonded magnet. Nitriding is a mixed gas of nitrogen gas of 0.2 to 10 atm, hydrogen of 1 to 95 mol% and the balance of nitrogen (hydrogen + nitrogen), and mol% of NH 3 of 1 to 50% and balance of hydrogen ( Gas nitriding, which heats in an atmosphere of a mixed gas of (NH 3 + hydrogen) in 300 to 650 ° C. for 0.1 to 30 hours, is highly practical. The heating conditions for gas nitriding are 300
~ 650 ° C x 0.1 to 30 hours are preferred, 400 to 5
50 ° C. × 0.5 to 20 hours is more preferable. 300 ° C ×
If it is less than 0.1 hours, nitriding does not proceed, and if it exceeds 650 ° C. × 30 hours, RN and Fe-M phase are conversely produced and iHc is lowered. The pressure of nitrogen alone gas or nitrogen-containing gas in nitriding is preferably 0.2 to 10 atm, and 0.5 to 5 atm.
Is more preferable. If it is less than 0.2 atm, the nitriding reaction is very slow, and if it exceeds 10 atm, the cost is increased due to the high pressure gas equipment. After nitriding, in vacuum or in an inert gas (excluding nitrogen gas) 300 to 600 ° C x 0.5 to 50
If heat treatment is performed for a long time, iHc may be further increased. The rare earth magnet material powder may contain 0.01 to 10 atomic% of hydrogen.

【0017】[0017]

【発明の実施の形態】以下、実施例により本発明を詳し
く説明するが、これら実施例により本発明が限定される
ものではない。 (実施例1)純度99.9%以上のSm、Fe、Tiお
よびBを用いて表1のNo.1〜7の希土類窒化磁石粉
末に対応する母合金組成に各々配合し、アルゴンガス雰
囲気の高周波溶解炉で溶解した。この母合金溶湯を用い
て、直径300mmの銅製の冷却ロール2本を設置した
双ロール式ストッリップキャスターにより急冷用ロール
の周速が1.0m/秒の条件で急冷凝固して母合金薄帯
を得た。この母合金薄帯の代表的な断面写真を図4に示
す。図4においてボイドおよび結晶粒界が観察される
が、αFeは生成していなかった。次に、母合金薄帯を
1atmの水素ガス中で680℃×1時間加熱する水素
化・分解反応処理を行った。続いて水素分圧(真空中)
5〜8×10−2Torrで800℃×1.5時間加熱
する脱水素・再結合反応処理を行った。次に、アルゴン
ガス雰囲気中で、ジョークラッシャーとディスクミルを
用いて平均粉末粒径(dp)10〜300μmに粉砕し
た。dpの測定はSympatec社製レーザー回折型粒径分布
測定装置(HELOS・RODOS)を用いた。次に、
粉砕した各dpの粉末を1atmの窒化ガス中で450
℃×10時間加熱する窒化を行い冷却した。その後、ア
ルゴンガス気流中で400℃×30分間熱処理して表1
のNo.1〜7の希土類窒化磁石粉末を得た。No.1
〜7の各希土類窒化磁石粉末の硬質磁性相の平均結晶粒
径(dc)、dp、25℃で測定した飽和磁化(σ)と
iHc、25〜100℃におけるiHcの温度係数
(η)を表1に示す。表1のNo.2の窒化磁石粉末の
HELOS・RODOSによる粒径分布(1山分布)を
図8に示す。図8において、横軸は粒径x(μm)、左
側の縦軸は体積累計分布の比率、右側の縦軸は(q3l
g)=d(q3)/d(lnx)で定義した微分値であ
る。(q3lg)により1山粒径分布かどうかを判定す
る。iHcとσの測定は、各希土類窒化磁石粉末とパラ
フィンワックスとを一定比率で混合後、振動試料型磁力
計(VSM)の銅容器に詰め込んで密封し、続いてこの
容器を加熱後冷却してパラフィンワックスを溶融固化す
ることにより窒化磁石粉末を固定した状態にし、VSM
にセットした。続いて、大気中の25℃で窒化磁石粉末
のみに補正したσ、iHcを測定した。続いて100℃
に加熱した状態でVSMによりσ、iHcを測定した。
これらの測定結果から、25〜100℃におけるiHc
の温度係数(η)を、η=[iHc(25℃)−iHc
(100℃)]÷iHc(25℃)×100(%)の定
義式から求めた。次に、No.1〜7の各窒化磁石粒子
を樹脂に埋め込み、研磨した断面の任意の5視野につい
て透過型電子顕微鏡により電子線回折した。その結果、
いずれの窒化磁石粒子でもThZn17型構造の菱面
体晶の硬質磁性相を主相とする2−17型構造の硬質磁
性相からなることがわかった。αFeは観察されなかっ
た。dcは、No.1〜7の各電子線回折結果に符合す
る視野の各窒化磁石粒子の断面写真から求めた。具体的
なdcの測定例は後述する。 (比較例1)dp=2、400μmとした以外は実施例
1と同様にして希土類窒化磁石粉末を作製し、評価し
た。結果を表1のNo.11、12に示す。 (比較例2)Tiを含有しないNo.21と22、Ti
含有量が少ないNo.23と過多のNo.24の各希土
類窒化磁石粉末の主成分組成とした以外は実施例1と同
様にして評価した結果を表1に示す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples. (Example 1) Using Sm, Fe, Ti and B having a purity of 99.9% or more, Nos. Each was mixed with a mother alloy composition corresponding to the rare earth nitride magnet powders 1 to 7 and melted in a high frequency melting furnace in an argon gas atmosphere. This master alloy melt was rapidly solidified by a twin roll type strip caster equipped with two copper cooling rolls having a diameter of 300 mm and rapidly solidified under the condition that the peripheral speed of the quenching roll was 1.0 m / sec. Got A typical cross-sectional photograph of this master alloy ribbon is shown in FIG. In FIG. 4, voids and crystal grain boundaries were observed, but αFe was not generated. Next, the mother alloy ribbon was subjected to a hydrogenation / decomposition reaction treatment by heating in 1 atm of hydrogen gas at 680 ° C. for 1 hour. Then hydrogen partial pressure (in vacuum)
A dehydrogenation / recombination reaction treatment was carried out by heating at 800 ° C. for 1.5 hours at 5 to 8 × 10 −2 Torr. Next, in an argon gas atmosphere, an average powder particle size (dp) of 10 to 300 μm was crushed using a jaw crusher and a disc mill. For the measurement of dp, a laser diffraction type particle size distribution measuring device (HELOS / RODOS) manufactured by Sympatec was used. next,
450 crushed powders of each dp in 1 atm of nitriding gas
Nitriding was performed by heating at ℃ × 10 hours and cooled. After that, heat treatment was performed at 400 ° C for 30 minutes in an argon gas stream.
No. Rare earth nitride magnet powders 1 to 7 were obtained. No. 1
Table 7 shows the average crystal grain size (dc) of the hard magnetic phase of each rare earth nitride magnet powder, the saturation magnetization (σ) measured at 25 ° C, and the iHc temperature coefficient (η) at 25 to 100 ° C. Shown in 1. No. of Table 1 FIG. 8 shows a particle size distribution (single peak distribution) of the nitride magnet powder of No. 2 by HELOS / RODOS. In FIG. 8, the horizontal axis is the particle size x (μm), the left vertical axis is the ratio of cumulative volume distribution, and the right vertical axis is (q3l
g) = differential value defined by d (q3) / d (lnx). (Q3lg) is used to determine whether or not there is a one-peak particle size distribution. For measurement of iHc and σ, after mixing each rare earth nitride magnet powder and paraffin wax at a constant ratio, the mixture was packed in a copper container of a vibrating sample magnetometer (VSM) and sealed, and then this container was heated and cooled. The paraffin wax is melted and solidified to fix the nitrided magnet powder, and VSM
Set to. Subsequently, σ and iHc were measured at 25 ° C. in the atmosphere, corrected with only the nitride magnet powder. Then 100 ° C
Σ and iHc were measured by VSM in the state of being heated to.
From these measurement results, iHc at 25 to 100 ° C.
The temperature coefficient (η) of η = [iHc (25 ° C) -iHc
(100 ° C.)] / IHc (25 ° C.) × 100 (%). Next, No. Each of the nitride magnet particles 1 to 7 was embedded in a resin, and an arbitrary 5 fields of view of the polished cross section were subjected to electron diffraction using a transmission electron microscope. as a result,
It was found that any of the nitride magnet particles is composed of a hard magnetic phase having a 2-17 type structure having a rhombohedral hard magnetic phase having a Th 2 Zn 17 type structure as a main phase. αFe was not observed. dc is No. It was determined from a cross-sectional photograph of each nitrided magnet particle in a visual field that matches each electron diffraction result of 1 to 7. A specific measurement example of dc will be described later. Comparative Example 1 A rare earth nitride magnet powder was prepared and evaluated in the same manner as in Example 1 except that dp = 2 and 400 μm. The results are shown in Table 1. 11 and 12 are shown. (Comparative Example 2) No. 21 and 22, Ti
No. with a low content 23 and an excessive number. Table 1 shows the results of evaluation performed in the same manner as in Example 1 except that the composition of 24 rare-earth nitride magnet powders was used as the main component composition.

【0018】[0018]

【表1】 [Table 1]

【0019】表1より、実施例1のNo.1〜7では硬
質磁性相のdcはいずれも0.4μm未満であり、σが
120(emu/g)以上、iHcが9kOe以上、iHcの
温度係数(η)が−0.40(%/℃)より改善されてお
り良好な耐熱性を有することがわかる。これらの良好な
磁気特性はTi含有量が0.5〜10原子%でかつdp
=10〜300μmで得られた。これに対し、比較例1
のNo.11では酸化劣化により、No12では実施例
1に比べて不均一な窒化組織であるために、いずれもσ
およびiHcが低く、ηが悪かった。Tiを含まない比
較例2のNo.21と22、Ti含有量の少ないNo.
23およびTi含有量が過多のNo.24ではいずれも
平均結晶粒径が1μm超の粗大なαFeが面積比率の平
均値で5%超生成しており、iHcが低く、ηが悪かっ
た。Tiを含まないNo.21の窒化磁石粉末の母合金
薄帯の代表的な断面写真を図5に示す。図5において平
均結晶粒径が1μm超の粗大なαFeが黒色の樹枝状に
観察され、その面積比率の平均値は5%超だった。αF
eは窒化後まで消滅することなく存在することが確認さ
れた。
From Table 1, No. 1 of Example 1 is shown. In 1 to 7, the dc of the hard magnetic phase is less than 0.4 μm, σ is 120 (emu / g) or more, iHc is 9 kOe or more, and the temperature coefficient (η) of iHc is −0.40 (% / ° C.). ), And it has good heat resistance. These good magnetic properties have Ti content of 0.5 to 10 atomic% and dp
= 10 to 300 μm. On the other hand, Comparative Example 1
No. In No. 11, because of oxidative deterioration, and in No. 12, the nitriding structure is more inhomogeneous than that of Example 1, and therefore, σ
And iHc were low and η was bad. No. 2 of Comparative Example 2 containing no Ti. Nos. 21 and 22, No. 2 having a small Ti content.
No. 23 and Ti content are excessive. In No. 24, coarse αFe having an average crystal grain size of more than 1 μm was produced in an average area ratio of more than 5%, iHc was low, and η was poor. No. containing no Ti. A representative cross-sectional photograph of the master alloy ribbon of the nitrided magnet powder of No. 21 is shown in FIG. In FIG. 5, coarse αFe having an average crystal grain size of more than 1 μm was observed in a black dendritic form, and the average value of the area ratio was more than 5%. αF
It was confirmed that e exists without disappearing until after nitriding.

【0020】(実施例2)B含有量と磁気特性との相関
を見るために、表2のNo.31〜34の希土類窒化磁
石粉末の主成分組成を選択し、かつdp=80μmとし
た以外は実施例1と同様にして窒化磁石粉末を作製し、
評価した。結果を表2のNo.31〜34に示す。 (比較例3)表2に示すように、B含有量が少ないN
o.41およびB含有量が過多のNo.42の主成分組
成とした以外は実施例1と同様にして窒化磁石粉末を作
製し評価した結果を表2のNo.41、42に示す。
(Example 2) In order to check the correlation between the B content and the magnetic characteristics, the number of No. 2 in Table 2 was determined. Nitride magnet powder was produced in the same manner as in Example 1 except that the main component composition of the rare earth nitride magnet powders 31 to 34 was selected and dp = 80 μm was set.
evaluated. The results are shown in Table 2. 31-34. (Comparative Example 3) As shown in Table 2, N having a low B content
o. No. 41 and B having an excessive B content. No. 42 in Table 2 shows the evaluation results of the nitrided magnet powder prepared in the same manner as in Example 1 except that the main component composition was No. 42. 41 and 42.

【0021】[0021]

【表2】 [Table 2]

【0022】表2のNo.31〜34より、B含有量が
0.1〜4原子%のときに、dc=0.01〜0.33
μmになり、良好なσ、iHc、ηが得られた。No.
31〜34の窒化磁石粒子の磁気特性発現相は実質的に
ThZn17型構造の菱面体晶からなり、αFeは生
成していなかった。これに対し、比較例3のNo.4
1、42の窒化磁石粒子にはいずれも平均結晶粒径が1
μm超の粗大なαFeが面積比率の平均値で5%超生成
しており、iHcが低く、ηが悪かった。B含有量が少
ないNo.41の窒化磁石粉末の母合金薄帯の代表的な
断面写真を図6に示す。図6において、黒色の樹枝状を
呈する平均結晶粒径が1μm超の粗大なαFeが面積比
率の平均値で5%超生成しており、αFeは窒化後まで
消滅することなく残存することが確認された。
No. 2 in Table 2 From 31 to 34, when the B content is 0.1 to 4 atomic%, dc = 0.01 to 0.33
μm, and good σ, iHc, and η were obtained. No.
The magnetic property manifesting phase of the nitride magnet particles 31 to 34 substantially consisted of a rhombohedral crystal having a Th 2 Zn 17 type structure, and αFe was not generated. On the other hand, Comparative Example 3 No. Four
The average crystal grain size of each of the 1 and 42 nitride magnet particles is 1
Coarse αFe of more than μm was produced in an average value of the area ratio of more than 5%, iHc was low, and η was poor. No. B with a small B content. A representative cross-sectional photograph of the master alloy ribbon of the nitrided magnet powder of No. 41 is shown in FIG. In FIG. 6, coarse αFe having a black dendritic average crystal grain size of more than 1 μm is produced in an average area ratio of more than 5%, and it is confirmed that αFe remains without disappearing until nitriding. Was done.

【0023】R含有量、R成分の種類、窒素含有量、M
元素の種類と含有量を各々変化した場合、Feの一部を
Coおよび/またはNiで置換した場合の実施例につい
て以下に説明する。 (実施例3、比較例4)表3の希土類窒化磁石粉末の主
成分組成とした以外は実施例1と同様にして窒化磁石粉
末を作製し、評価した結果を表3に示す。
R content, type of R component, nitrogen content, M
Examples in which the type and content of elements are changed and a part of Fe is replaced with Co and / or Ni will be described below. (Example 3 and Comparative Example 4) Table 3 shows the results of evaluation and evaluation of the nitride magnet powder prepared in the same manner as in Example 1, except that the main component composition of the rare earth nitride magnet powder shown in Table 3 was used.

【0024】[0024]

【表3】 [Table 3]

【0025】表3において、実施例3の各窒化磁石粒子
はいずれもαFeのない2―17型構造の微細な硬質磁
性相からなることが確認された。次に、No.51〜5
3および比較例4のNo.71〜73から、R成分中の
Sm比率が50原子%以上でかつR成分が6〜15原子
%のときに、良好なσ、iHc、ηが得られることがわ
かる。次に、実施例3のNo.54、55および比較例
4のNo.74、75より、窒素含有量が4〜30原子
%のときに良好なσ、iHc、ηが得られることがわか
る。次に、実施例3のNo.56〜59から、Feの
0.5〜30原子%をCoおよび/またはNiで置換す
ることによりηが改善されることがわかる。次に、実施
例3のNo.60、61から、Mに占めるTiの含有量
が0.5原子%以上であれば良好なσ、iHc、ηを得
られることがわかる。
In Table 3, it was confirmed that each nitrided magnet particle of Example 3 was composed of a fine hard magnetic phase of 2-17 type structure without αFe. Next, No. 51-5
No. 3 of Comparative Example 4 and Comparative Example 4. From 71 to 73, it is found that good σ, iHc and η are obtained when the Sm ratio in the R component is 50 atomic% or more and the R component is 6 to 15 atomic%. Next, in No. 3 of the third embodiment. 54 and 55 and No. 4 of Comparative Example 4. From 74 and 75, it is found that good σ, iHc, and η are obtained when the nitrogen content is 4 to 30 atomic%. Next, in No. 3 of the third embodiment. From 56 to 59, it can be seen that η is improved by replacing 0.5 to 30 atomic% of Fe with Co and / or Ni. Next, in No. 3 of the third embodiment. It can be seen from 60 and 61 that good σ, iHc, and η can be obtained when the content of Ti in M is 0.5 atomic% or more.

【0026】次に、本発明の希土類磁石材料の硬質磁性
相のdcの測定例を説明する。表2(実施例2)のN
o.33の窒化磁石粒子を樹脂に埋め込み後研磨してd
c測定用の試料とした、次に、透過型電子顕微鏡により
その試料断面の任意の5視野について撮影したうちの代
表的な写真を図1に、図1のdcの測定要領の説明図を
図2に示す。図1に代表される5視野分の断面写真の各
々に対角線を引いて、各対角線上に存在する結晶粒の占
める線分長さをその結晶粒の数で除してdc1、dc2
を求めた。図1では、左上から右下の対角線評価のdc
1=0.16μm、右上から左下の対角線評価のdc2
=0.15μmを得た。同様にして5視野分の断面写真
について各々のdc1、dc2を求め、これらを平均し
たdc=0.16μmだった。次に、透過型電子顕微鏡
を用いて表1(実施例1)のNo.7の窒化磁石粒子の
断面を電子線回折した結果、図3(a)のThNi
17型構造の六方晶の存在を示す電子線回折パターン
と、図3(b)のThZn17型構造の菱面体晶の存
在を示す電子線回折パターンが得られた。図3(a)は
[001]方向から電子線を入射して撮影した電子線回
折パターンであり、図3(b)は[100]方向から電
子線を入射して撮影した電子線回折パターンである。さ
らに、併行して行ったX線回折および光学顕微鏡観察の
結果とを総合的に考慮した結果、表1のNo.7の窒化
磁石粒子はThZn17型構造の菱面体晶とTh
17型構造の六方晶との混晶の硬質磁性相からなるこ
とが同定された。αFeは観察されなかった。
Next, an example of measuring the dc of the hard magnetic phase of the rare earth magnet material of the present invention will be described. N in Table 2 (Example 2)
o. 33 Nitride magnet particles were embedded in resin and then polished to d
1 is a representative photograph of a sample for c measurement taken by a transmission electron microscope in arbitrary 5 fields of view of the cross section of the sample, and FIG. 1 is an explanatory diagram of the measurement procedure of dc in FIG. 2 shows. Diagonal lines are drawn on each of the cross-sectional photographs for five fields of view typified by FIG. 1, and the line segment length occupied by crystal grains existing on each diagonal line is divided by the number of the crystal grains, dc1 and dc2.
I asked. In FIG. 1, dc of diagonal evaluation from the upper left to the lower right
1 = 0.16 μm, dc2 of diagonal evaluation from upper right to lower left
= 0.15 μm was obtained. Similarly, dc1 and dc2 of each of the cross-sectional photographs for 5 fields of view were determined, and the average was dc = 0.16 μm. Next, using a transmission electron microscope, No. 1 in Table 1 (Example 1) was used. Sectional result of electron beam diffraction of 7 nitride magnet particles, Th 2 Ni in FIGS. 3 (a)
An electron beam diffraction pattern showing the presence of a hexagonal crystal with a 17 type structure and an electron beam diffraction pattern showing the presence of a rhombohedral crystal with a Th 2 Zn 17 type structure of FIG. 3B were obtained. FIG. 3A is an electron beam diffraction pattern photographed by injecting an electron beam from the [001] direction, and FIG. 3B is an electron beam diffraction pattern photographed by injecting an electron beam in the [100] direction. is there. Further, as a result of comprehensively considering the results of X-ray diffraction and optical microscope observation performed in parallel, No. Nitride magnet particles of No. 7 are Th 2 Zn 17 type rhombohedral crystals and Th 2 N
It was identified to consist of a hard magnetic phase of a mixed crystal with a hexagonal crystal having an i 17 type structure. αFe was not observed.

【0027】(実施例4)純度99.9%のSm、F
e、Ti、Bを用いて下記の希土類窒化磁石粉末に対応
した母合金組成に配合後、アルゴンガス雰囲気で高周波
溶解した溶湯を、急冷用ロールの周速を9.5m/秒と
した溶湯急冷条件で凝固して母合金薄帯を得た。次に、
前記母合金薄帯片を雰囲気熱処理炉に仕込み、1atm
の水素ガスを供給しながら500℃まで加熱し水素を吸
収させた後真空にすることにより脱水素を行う工程を繰
り返し平均粉末粒径100μmまで粗粉砕した。次に、
水素化・分解反応の水素ガス圧を1atmにし、かつ表
4の加熱条件で水素化・分解反応処理を行った。続いて
水素分圧を5〜8×10−2Torrにし、かつ表4の
加熱条件で脱水素・再結合反応処理を行った。その後、
別の雰囲気熱処理炉において、1atmの窒化ガス気流
中で460℃×7時間加熱する窒化を行い、室温まで冷
却した。続いてアルゴンガス気流中で400℃×30分
間の熱処理を施し室温まで冷却した。作製した希土類窒
化磁石粉末は、原子%で Sm9.2Fe bal.
1.0Ti6.012.3 の主成分組成を有する、
実質的に2−17型構造の硬質磁性相のみからなりαF
eは観察されなかった。以降は実施例1と同様にして評
価したdc、σ、iHcを表4に示す。 (比較例5)表4の水素化・分解反応および脱水素・再
結合反応の加熱条件とした以外は実施例4と同様にして
窒化磁石粉末を作製し、評価した結果を表4に示す。
(Example 4) Sm and F having a purity of 99.9%
Compatible with the following rare earth nitride magnet powders using e, Ti, and B
After mixing with the master alloy composition,
The melt was melted and the peripheral speed of the quenching roll was set to 9.5 m / sec.
The molten alloy was solidified under quenching conditions to obtain a master alloy ribbon. next,
The mother alloy thin strip was charged into an atmosphere heat treatment furnace and 1 atm
While supplying the hydrogen gas of
Repeat the process of dehydrogenation by collecting and then applying a vacuum.
Coarse pulverization was performed to obtain an average powder particle size of 100 μm. next,
Set the hydrogen gas pressure for hydrogenation / cracking reaction to 1 atm, and
The hydrogenation / cracking reaction treatment was performed under the heating conditions of No. 4. continue
Hydrogen partial pressure is 5-8 × 10-2Torr, and in Table 4
The dehydrogenation / recombination reaction treatment was performed under heating conditions. afterwards,
Nitrogen gas flow of 1 atm in another atmosphere heat treatment furnace
Perform nitriding by heating at 460 ℃ for 7 hours and cool to room temperature.
I rejected it. Subsequently, in an argon gas stream, 400 ° C x 30 minutes
Heat treatment was performed for a period of time and cooled to room temperature. Prepared rare earth nitride
Atomized magnet powder is Sm in atomic%9.2Fe bal.B
1.0Ti6.0N12.3Having a main component composition of
Substantially consisting of a hard magnetic phase of 2-17 type structure αF
e was not observed. Thereafter, the evaluation is performed in the same manner as in Example 1.
Table 4 shows the evaluated dc, σ, and iHc. (Comparative Example 5) Hydrogenation / decomposition reaction and dehydrogenation / regeneration of Table 4
In the same manner as in Example 4 except that the heating conditions for the binding reaction were used.
Table 4 shows the results of the evaluation and evaluation of the nitrided magnet powder.

【0028】[0028]

【表4】 [Table 4]

【0029】表4の実施例4から水素化・分解反応の加
熱条件を675〜900℃×0.5〜8時間とし、さら
に脱水素・再結合反応の加熱条件を700〜900℃×
0.5〜10時間とすることによりdcが1μm未満に
なり、高いσとiHcとが得られた。これに対し、水素
化・分解反応温度未満のNo.91、水素化・分解反応
温度が高すぎるNo.92、脱水素・再結合反応温度が
低すぎるNo.93、脱水素・再結合反応温度が高すぎ
るNo.94ではいずれもdcが1μm超になった。
From Example 4 in Table 4, the heating conditions for the hydrogenation / cracking reaction were 675 to 900 ° C. × 0.5 to 8 hours, and the heating conditions for the dehydrogenation / recombination reaction were 700 to 900 ° C. ×
By setting the time to 0.5 to 10 hours, dc became less than 1 μm, and high σ and iHc were obtained. On the other hand, No. 1 below the hydrogenation / decomposition reaction temperature was used. 91, the hydrogenation / decomposition reaction temperature is too high. 92, the dehydrogenation / recombination reaction temperature is too low. 93, the dehydrogenation / recombination reaction temperature is too high. In all of 94, dc exceeded 1 μm.

【0030】(実施例5)ボンド磁石特性の評価のため
に、αFeが生成していない、dc=0.2〜0.3μ
mの2−17型硬質磁性相から実質的になる表5の各d
pの希土類窒化磁石粉末に対し、各々2wt%相当のエ
ポキシ樹脂を配合し混練してコンパウンドを作製した。
次に、プレス圧10ton/cmで圧縮成形し、さら
に大気中で140℃×1時間の加熱硬化熱処理を施して
等方性ボンド磁石を得た。25℃、着磁磁界強度25k
Oeで測定した各等方性ボンド磁石のiHc、(BH)
max、25〜100℃におけるボンド磁石のiHcの温
度係数(η’)、密度(ρ)を表5に示す。ボンド磁石
のiHcの温度係数(η’)は、25℃、着磁磁界強度
25kOeでiHcを測定後、100℃、着磁磁界強度
25kOeでiHcを測定して、η’=[ボンド磁石の
iHc(25℃)−ボンド磁石のiHc(100℃)]
÷[ボンド磁石のiHc(25℃)]×100(%)の
定義式から求めた。 (比較例6)溶湯急冷法における冷却ロールの周速を4
5m/秒にして、表5に示す比較例6の希土類窒化磁石
粉末の主成分組成に対応した母合金溶湯を急冷凝固して
薄片を得、以後は実施例1と同様にして表5の希土類窒
化磁石粉末を作製した。次に、実施例5と同様にして等
方性のボンド磁石を作製し、評価した結果を表5に示
す。
(Embodiment 5) To evaluate the properties of the bonded magnet, αFe was not produced, and dc = 0.2 to 0.3 μm.
Each d in Table 5 consisting essentially of the 2-17 type hard magnetic phase of m
2 wt% of an epoxy resin was mixed with each rare earth nitride magnet powder of p and kneaded to prepare a compound.
Next, compression molding was carried out at a pressing pressure of 10 ton / cm 2 , and heat curing heat treatment was carried out at 140 ° C. for 1 hour in the atmosphere to obtain an isotropic bonded magnet. 25 ° C, magnetizing magnetic field strength 25k
IHc of each isotropic bonded magnet measured by Oe, (BH)
Table 5 shows the temperature coefficient (η ') and density (ρ) of iHc of the bonded magnet at max 25 to 100 ° C. The temperature coefficient (η ′) of iHc of the bonded magnet is 25 ° C., iHc is measured at a magnetic field strength of 25 kOe, and then iHc is measured at 100 ° C. and a magnetic field strength of 25 kOe. (25 ° C) -iHc of bonded magnet (100 ° C)]
÷ [iHc of bonded magnet (25 ° C)] x 100 (%). (Comparative Example 6) The peripheral speed of the cooling roll in the molten metal quenching method was set to 4
At 5 m / sec, the melt of the mother alloy corresponding to the main component composition of the rare earth nitride magnet powder of Comparative Example 6 shown in Table 5 was rapidly solidified to obtain flakes, and thereafter, in the same manner as in Example 1, the rare earth of Table 5 was prepared. Nitride magnet powder was produced. Next, an isotropic bonded magnet was prepared in the same manner as in Example 5, and the evaluation results are shown in Table 5.

【0031】[0031]

【表5】 [Table 5]

【0032】表5から実施例5の等方性ボンド磁石の密
度はいずれも6.1g/cm超であり、8.0MGO
e以上の高い(BH)maxが得られた。これは実施例5で
用いた窒化磁石粉末は0.05〜10m/秒という比較
的遅い溶湯急冷ロールの周速度で急冷凝固した母合金を
用いて窒化しているので、窒化磁石粉末が比較例6のも
のに比べて丸みを帯びた粒子形状を呈し、高い密度を実
現できたものといえる。
From Table 5, the isotropic bonded magnets of Example 5 all have a density of more than 6.1 g / cm 3 and have a density of 8.0 MGO.
A high (BH) max of e or more was obtained. This is because the nitrided magnet powder used in Example 5 is nitrided using the mother alloy rapidly solidified at the peripheral speed of the molten metal quenching roll of 0.05 to 10 m / sec. It can be said that a particle having a rounded shape was exhibited and a higher density could be realized as compared with the No. 6 sample.

【0033】次に、着磁性を改善した実施例を説明す
る。 (実施例6、比較例7)純度99.9%以上のSm、L
a、Fe、TiおよびBを用いて表6に示す窒化磁石粉
末に対応する母合金組成に各々配合した。次に、アルゴ
ンガス雰囲気の高周波溶解炉で溶解した各母合金溶湯
を、直径300mmの銅製の冷却ロール2本を設置した
双ロール式ストッリップキャスターにより冷却ロールの
周速が0.5m/秒の条件で急冷凝固して母合金薄帯を
得た。各母合金にはαFeが生成していなかった。次
に、各母合金薄帯を1atmの水素ガス中で675℃×
1時間加熱する水素化・分解反応処理を行い、続いて水
素分圧(真空中)3〜6×10−2Torrで790℃
×1.5時間加熱する脱水素・再結合反応処理を行っ
た。次に、アルゴンガス雰囲気中で約80μmのdpに
粉砕した。次に、1atmの窒化ガス中で440℃×1
0時間加熱する窒化処理を行い冷却した。その後、アル
ゴンガス気流中で400℃×30分間熱処理して表6の
各希土類窒化磁石粉末を得た。表6の各窒化磁石粉末を
用いて、以降は実施例5と同様にして等方性ボンド磁石
を作製し、25℃、着磁磁界強度25kOeで評価した
(BH)max、Hkを表6に示す。また、表6のNo.12
2(実施例6)、表5のNo.101(実施例5)の等
方性ボンド磁石の、着磁磁界強度に対する(BH)max
を図7(a)に、着磁磁界強度に対するHkを図7
(b)に示す。
Next, an example in which the magnetizability is improved will be described. (Example 6, Comparative Example 7) Sm and L having a purity of 99.9% or more
Using a, Fe, Ti, and B, they were each compounded into a master alloy composition corresponding to the nitrided magnet powder shown in Table 6. Next, each mother alloy melt melted in a high frequency melting furnace in an argon gas atmosphere was cooled by a twin roll type strip caster equipped with two cooling rolls made of copper having a diameter of 300 mm, and the peripheral speed of the cooling roll was 0.5 m / sec. The alloy alloy ribbon was obtained by rapid solidification under the conditions. ΑFe was not formed in each mother alloy. Next, each master alloy ribbon was 675 ° C. in 1 atm of hydrogen gas.
A hydrogenation / decomposition reaction treatment is performed by heating for 1 hour, and subsequently at a hydrogen partial pressure (in vacuum) of 3 to 6 × 10 −2 Torr at 790 ° C.
A dehydrogenation / recombination reaction treatment of heating for 1.5 hours was performed. Next, it was pulverized in an argon gas atmosphere to a dp of about 80 μm. Next, 440 ° C x 1 in 1 atm of nitriding gas
A nitriding treatment of heating for 0 hours was performed and the resulting mixture was cooled. Then, heat treatment was performed at 400 ° C. for 30 minutes in an argon gas stream to obtain each rare earth nitride magnet powder shown in Table 6. Using each of the nitrided magnet powders in Table 6, an isotropic bonded magnet was manufactured thereafter in the same manner as in Example 5, and evaluated at 25 ° C. and a magnetic field strength of 25 kOe.
Table 6 shows (BH) max and Hk. In addition, No. 12
No. 2 (Example 6) and No. 5 in Table 5. (BH) max of the 101 (Example 5) isotropic bonded magnet with respect to the magnetizing magnetic field strength.
Is shown in FIG. 7A, and Hk with respect to the magnetic field strength is shown in FIG.
It shows in (b).

【0034】[0034]

【表6】 [Table 6]

【0035】表5のNo.121と表6の結果から、L
a含有量が0.05〜1原子%のときに25kOeで着
磁した場合の(BH)max、Hkが向上することがわか
る。
No. in Table 5 From the results of 121 and Table 6, L
It can be seen that (BH) max and Hk are improved when magnetized at 25 kOe when the a content is 0.05 to 1 atomic%.

【0036】次に、Sm(−La)−Fe−M−N系の
窒化磁石粉末の例について説明する。(参考例1、比較
例8)純度99.9%以上のSm、FeおよびM元素を
用いて表7の各窒化磁石粉末に対応する母合金組成に各
々配合後、高周波溶解して母合金を得た。次に、アルゴ
ンガス雰囲気中で1100℃×10時間の均質化熱処理
を施した。次に、アルゴンガス雰囲気中でdp=200
〜210μmに粉砕した。次に、1atmの水素ガス中
で680℃×1時間加熱する水素化・分解反応処理を行
い、続いて水素分圧(真空中)5〜8×10−2Tor
rで800℃×1時間加熱する脱水素・再結合反応処理
を行った。次に、アルゴンガス雰囲気中で、ジョークラ
ッシャーとディスクミルを用いてdp=80〜85μm
に粉砕した。次に、各粉砕粉末を1atmの窒化ガス中
で440℃×10時間加熱する窒化処理を行い冷却し
た。その後、アルゴンガス気流中で400℃×30分間
熱処理して表7の各窒化磁石粉末を得た。表7の各窒化
磁石粉末にはいずれもαFeが生成しておらず、dc=
0.4〜0.5μmの2―17型構造の硬質磁性相から
なっていた。以降は、実施例5と同様にして等方性ボン
ド磁石を作製し、評価した。結果を表7に示す。
Next, an example of the Sm (-La) -Fe-M-N based nitride magnet powder will be described. Reference Example 1 and Comparative Example 8 Sm, Fe and M elements having a purity of 99.9% or more were used to mix the respective master alloy compositions corresponding to the respective nitrided magnet powders in Table 7 and then high frequency melting was performed to form the master alloy. Obtained. Next, homogenization heat treatment was performed at 1100 ° C. for 10 hours in an argon gas atmosphere. Next, dp = 200 in an argon gas atmosphere.
It was crushed to ˜210 μm. Next, a hydrogenation / decomposition reaction treatment is performed by heating at 680 ° C. for 1 hour in 1 atm of hydrogen gas, and subsequently, hydrogen partial pressure (in vacuum) 5 to 8 × 10 −2 Tor.
A dehydrogenation / recombination reaction treatment was performed by heating at 800 ° C. for 1 hour. Next, in an argon gas atmosphere, using a jaw crusher and a disc mill, dp = 80 to 85 μm
Crushed into Next, each pulverized powder was subjected to a nitriding treatment of heating at 440 ° C. for 10 hours in a nitriding gas of 1 atm, and was cooled. Then, heat treatment was performed at 400 ° C. for 30 minutes in an argon gas stream to obtain each nitrided magnet powder shown in Table 7. ΑFe was not generated in each of the nitride magnet powders in Table 7, and dc =
The hard magnetic phase had a 2-17 type structure of 0.4 to 0.5 μm. After that, an isotropic bonded magnet was produced and evaluated in the same manner as in Example 5. The results are shown in Table 7.

【0037】[0037]

【表7】 [Table 7]

【0038】表7において、参考例1のNo.141〜
143および比較例8のNo.161、162から、T
i含有量が0.5〜10原子%のときに実用に耐える高
いiHc、(BH)maxおよびη’が得られることがわ
かる。また、表7のNo.144〜155から、Ti以
外の他のM元素を所定量含有する場合にも実用に耐える
高いiHc、(BH)maxおよびη’が得られることが
わかる。
In Table 7, No. 1 of Reference Example 1 was used. 141 ~
143 and Comparative Example 8. From 161, 162, T
It can be seen that when the i content is 0.5 to 10 atomic%, high iHc, (BH) max and η'that can be practically used can be obtained. In addition, No. From 144 to 155, it can be seen that high iHc, (BH) max and η ′ that can be practically used can be obtained even when a predetermined amount of M element other than Ti is contained.

【0039】(参考例2、比較例9)純度99.9%以
上のSm、La、Fe、Tiを用いて表8に示す窒化磁
石粉末に対応する母合金組成に各々配合した。次に、ア
ルゴンガス雰囲気の高周波溶解炉で溶解して母合金を得
た。以降は参考例1と同様にして窒化磁石粉末を作製
し、続いて等方性ボンド磁石を作製し、着磁性を評価し
た。結果を表8に示す。
(Reference Example 2 and Comparative Example 9) Sm, La, Fe and Ti having a purity of 99.9% or more were used and compounded into the mother alloy composition corresponding to the nitrided magnet powder shown in Table 8. Next, a master alloy was obtained by melting in a high frequency melting furnace in an argon gas atmosphere. Thereafter, a nitride magnet powder was produced in the same manner as in Reference Example 1, and subsequently an isotropic bonded magnet was produced, and the magnetizability was evaluated. The results are shown in Table 8.

【0040】[0040]

【表8】 [Table 8]

【0041】表8より、Bを含有しない場合でもLaの
含有による着磁性の改善効果が確認された。
From Table 8, it was confirmed that even if B was not contained, the effect of improving the magnetizability by containing La was confirmed.

【0042】参考例1、2では、高周波溶解法により作
製した母合金を用いた。これに替えて、本発明の希土類
窒化磁石材料に対応した主成分組成に配合された希土類
酸化物を含む混合原料に対し、所定量の金属Caを添加
し、還元/拡散後、反応生成物を抽出してR−T−M
(−B)系母合金を得、以降は参考例1と同様の均質化
熱処理、水素化・分解反応処理、脱水素・再結合反応処
理、窒化を行うことにより本発明の希土類磁石材料粉末
を作製してもよい。その場合、(BH)maxを高めるた
めにCa含有量を0.1重量%以下、酸素含有量を0.
25重量%以下、炭素含有量を0.1重量%以下にする
ことが好ましい。また、アトマイズ法またはアーク溶解
法により作製したR−T−M(−B)系母合金に対し、
参考例7と同様の均質化熱処理、水素化・分解反応処
理、脱水素・再結合反応処理、窒化を行うことにより本
発明の希土類磁石材料粉末を作製してもよい。また、実
施例1の溶湯急冷法による母合金薄帯に対し、以降は参
考例1と同様の均質化熱処理、水素化・分解反応処理、
脱水素・再結合反応処理、窒化を行うことにより本発明
の希土類磁石材料粉末を作製してもよい。
In Reference Examples 1 and 2, a mother alloy produced by the high frequency melting method was used. Instead of this, a predetermined amount of metal Ca is added to a mixed raw material containing a rare earth oxide compounded in a main component composition corresponding to the rare earth nitride magnet material of the present invention, and a reaction product is obtained after reduction / diffusion. Extract and R-T-M
A rare earth magnet material powder of the present invention is obtained by obtaining a (-B) type master alloy and thereafter performing homogenization heat treatment, hydrogenation / decomposition reaction treatment, dehydrogenation / recombination reaction treatment, and nitriding similar to those in Reference Example 1. You may produce. In that case, in order to increase (BH) max, the Ca content is 0.1% by weight or less, and the oxygen content is 0.
It is preferable that the carbon content is 25% by weight or less and the carbon content is 0.1% by weight or less. Further, with respect to the R-T-M (-B) -based master alloy produced by the atomizing method or the arc melting method,
The rare earth magnet material powder of the present invention may be produced by performing the same homogenization heat treatment, hydrogenation / decomposition reaction treatment, dehydrogenation / recombination reaction treatment, and nitriding as in Reference Example 7. Further, for the mother alloy ribbon obtained by the molten metal quenching method of Example 1, thereafter, the same homogenization heat treatment, hydrogenation / cracking reaction treatment, and the like as in Reference Example 1 were performed.
The rare earth magnet material powder of the present invention may be produced by performing dehydrogenation / recombination reaction treatment and nitriding.

【0043】上記実施例の各希土類磁石材料粉末はいず
れも酸素含有量が0.1重量%以下、炭素含有量が0.
1重量%未満のものである。このため、実用に耐える高
い磁気特性が得られており、かつαFeの低減に寄与し
ているものと判断する。また、上記実施例では圧縮成形
した等方性ボンド磁石の場合を記載したが、例えば前記
窒化磁石粉末と熱可塑性樹脂(ポリアミド樹脂等)とを
用いて射出成形用または押出成形用のコンパウンドを作
製し、所定の成形装置により射出または押出成形すれ
ば、等方性の射出成形品または押出成形品を得られる。
Each of the rare earth magnet material powders in the above examples has an oxygen content of 0.1% by weight or less and a carbon content of 0.
It is less than 1% by weight. For this reason, it is judged that high magnetic characteristics that can withstand practical use are obtained and that it contributes to the reduction of αFe. Further, in the above-mentioned examples, the case of the compression-molded isotropic bonded magnet is described. For example, a compound for injection molding or extrusion molding is produced by using the nitride magnet powder and a thermoplastic resin (polyamide resin etc.). Then, if injection or extrusion molding is performed by a predetermined molding device, an isotropic injection molded product or extrusion molded product can be obtained.

【0044】[0044]

【発明の効果】(1)R−T−M(−B)−N系合金で
あり、αFeが非常に少ないかあるいは全く含まない、
2−17型構造の微細な硬質磁性相から実質的になる希
土類磁石材料およびそれを用いた高性能の等方性希土類
ボンド磁石を提供することができる。 (2)R−T−M(−B)−N系合金であり、RがSm
とLaとから実質的になる希土類磁石材料およびそれを
用いた着磁性の良好な等方性の希土類ボンド磁石を提供
することができる。
EFFECTS OF THE INVENTION (1) R-T-M (-B) -N type alloys containing very little or no αFe.
It is possible to provide a rare earth magnet material substantially composed of a fine hard magnetic phase having a 2-17 type structure and a high-performance isotropic rare earth bonded magnet using the rare earth magnet material. (2) R-T-M (-B) -N based alloy, where R is Sm
It is possible to provide a rare earth magnet material consisting essentially of La and La, and an isotropic rare earth bonded magnet having good magnetizability using the rare earth magnet material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の希土類磁石材料の断面組織の一例を示
す透過型電子顕微鏡写真である。
FIG. 1 is a transmission electron micrograph showing an example of a cross-sectional structure of a rare earth magnet material of the present invention.

【図2】図1の平均結晶粒径の測定要領を説明する図で
ある。
FIG. 2 is a diagram illustrating a procedure for measuring the average crystal grain size in FIG.

【図3】本発明の希土類磁石材料の断面を透過型電子顕
微鏡により電子線回折した結果を示しており、Th
17型構造の六方晶の存在を示す電子線回折パターン
(a)、ThZn17型構造の菱面体晶の存在を示す
電子線回折パターン(b)である。
Shows the results of electron diffraction by transmission electron microscope cross-section of a rare earth magnet material of the present invention; FIG, Th 2 N
An electron beam diffraction pattern (a) showing the presence of a hexagonal crystal having an i 17 type structure and an electron beam diffraction pattern (b) showing the presence of a rhombohedral crystal having a Th 2 Zn 17 type structure.

【図4】本発明の希土類磁石材料に用いる母合金の断面
組織の一例を示す写真である。
FIG. 4 is a photograph showing an example of a cross-sectional structure of a mother alloy used for the rare earth magnet material of the present invention.

【図5】比較例の母合金の断面組織を示す写真である。FIG. 5 is a photograph showing a cross-sectional structure of a master alloy of a comparative example.

【図6】比較例の母合金の断面組織を示す写真である。FIG. 6 is a photograph showing a cross-sectional structure of a master alloy of a comparative example.

【図7】等方性ボンド磁石において、着磁磁界強度とB
rとの関係を示す図(a)、着磁磁界強度とHkとの関
係を示す図(b)である。
FIG. 7 shows a magnetic field strength and B of an isotropic bonded magnet.
FIG. 4A is a diagram showing a relationship with r, and FIG. 4B is a diagram showing a relationship between magnetizing magnetic field strength and Hk.

【図8】本発明の希土類磁石材料の1山粒径分布の一例
を示す図である。
FIG. 8 is a diagram showing an example of single-peak particle size distribution of the rare earth magnet material of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−260302(JP,A) 特開 平4−142703(JP,A) 特開 平8−316018(JP,A) 特開 平7−197102(JP,A) 特開 昭63−155601(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/00 - 1/117 B22F C22C ─────────────────────────────────────────────────── ───Continuation of front page (56) References JP-A-4-260302 (JP, A) JP-A-4-142703 (JP, A) JP-A-8-316018 (JP, A) JP-A-7- 197102 (JP, A) JP-A-63-155601 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 1/00-1/117 B22F C22C

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原子%でRα100−(α+β+γ+δ)
βγδ(RはYを含む希土類元素の1種または2
種以上でありSmを必ず含む、TはFeまたはFeとC
o、MはAl、Ti、V、Cr、Mn、Cu、Ga、Z
r、Nb、Mo、Hf、Ta、W、Znの1種または2
種以上でありTiを必ず含み、6≦α≦15,0.5≦
β≦10,0.1≦γ≦4,4≦δ≦30)で表される
主成分組成を有する母合金を用い、冷却用ロールの周速
を0.05〜10m/秒として溶湯急冷した、平均結晶
粒径が0.01〜1μmの2−17型構造の硬質磁性相
から実質的になり、かつαFeの面積比率の平均値が5
%以下であることを特徴とする等方性ボンド磁石用の
土類磁石材料。
1. R α T 100- (α + β + γ + δ) in atomic%
M β B γ N δ (R is one or two of rare earth elements including Y)
T is Fe or Fe and C, which is more than one species and always contains Sm
o and M are Al, Ti, V, Cr, Mn, Cu, Ga, Z
1 or 2 of r, Nb, Mo, Hf, Ta, W, Zn
At least one species and always contains Ti, 6 ≦ α ≦ 15, 0.5 ≦
using a master alloy have a main component composition represented by β ≦ 10,0.1 ≦ γ ≦ 4,4 ≦ δ ≦ 30), the peripheral speed of the cooling roll
Of the hard magnetic phase having a 2-17 type structure having an average crystal grain size of 0.01 to 1 μm, and an average value of the area ratio of αFe is 5
% Or less, a rare earth magnet material for an isotropic bonded magnet .
【請求項2】 RがSm、Laおよび不可避不純物から
なるとともに、原子%でLa含有量が0.05〜1%で
ある請求項1に記載の希土類磁石材料。
2. The rare earth magnet material according to claim 1, wherein R is composed of Sm, La and unavoidable impurities, and the La content is 0.05 to 1% in atomic%.
【請求項3】 硬質磁性相がThZn17型構造の菱
面体晶とThNi17型構造の六方晶との混晶からな
る請求項1または2に記載の希土類磁石材料。
3. A rare earth magnet material according to claim 1 or 2 hard magnetic phase consists of a mixed crystal of hexagonal rhombohedral and Th 2 Ni 17 type structure of Th 2 Zn 17 -type structure.
【請求項4】 1山粒径分布を有し、平均粒径が10〜
300μmの粉末である請求項1乃至のいずれかに記
載の希土類磁石材料。
4. A single-peak particle size distribution having an average particle size of 10 to 10.
The rare earth magnet material according to any one of claims 1 to 3 , which is a powder of 300 µm.
【請求項5】 不可避不純物として重量%で0.25%
以下の酸素、0.1%以下の炭素を含有する請求項1乃
のいずれかに記載の希土類磁石材料。
5. An unavoidable impurity of 0.25% by weight.
The rare earth magnet material according to any one of claims 1 to 4 , which contains the following oxygen and 0.1% or less of carbon.
【請求項6】 請求項1乃至のいずれかに記載の希土
類磁石材料の粉末を樹脂で結着したことを特徴とする希
土類ボンド磁石。
6. A rare earth bonded magnet, characterized in that the powder of the rare earth magnet material according to any one of claims 1 to 5 is bound with a resin.
【請求項7】 結着樹脂が熱硬化性樹脂であり、圧縮成
形後に加熱硬化処理を施した、密度が6.1g/cm
超のものである請求項に記載の希土類ボンド磁石。
7. The binder resin is a thermosetting resin, which has a density of 6.1 g / cm 3 after being subjected to a heat curing treatment after compression molding.
The rare earth bonded magnet according to claim 6 , which is an extra magnet.
【請求項8】 シート状成形体とした請求項6に記載の
希土類ボンド磁石。
8. The sheet-shaped molded article according to claim 6.
Rare earth bonded magnet.
JP14314899A 1998-05-26 1999-05-24 Rare earth magnet material and rare earth bonded magnet using the same Expired - Fee Related JP3370013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14314899A JP3370013B2 (en) 1998-05-26 1999-05-24 Rare earth magnet material and rare earth bonded magnet using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16137598 1998-05-26
JP10-161375 1998-05-26
JP14314899A JP3370013B2 (en) 1998-05-26 1999-05-24 Rare earth magnet material and rare earth bonded magnet using the same

Publications (2)

Publication Number Publication Date
JP2000049006A JP2000049006A (en) 2000-02-18
JP3370013B2 true JP3370013B2 (en) 2003-01-27

Family

ID=26474944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14314899A Expired - Fee Related JP3370013B2 (en) 1998-05-26 1999-05-24 Rare earth magnet material and rare earth bonded magnet using the same

Country Status (1)

Country Link
JP (1) JP3370013B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100437841C (en) * 2006-09-19 2008-11-26 北京大学 Anisotropic rare-earth permanent magnet material and its magnetic powder and magnet mfg. method
JP6332259B2 (en) * 2015-12-24 2018-05-30 日亜化学工業株式会社 Anisotropic magnetic powder and method for producing the same
JP6447768B2 (en) 2017-05-17 2019-01-09 日亜化学工業株式会社 Secondary particle for anisotropic magnetic powder and method for producing anisotropic magnetic powder
EP3978164A4 (en) * 2019-05-31 2023-01-18 Murata Manufacturing Co., Ltd. Samarium-iron-nitrogen-based magnetic material
JP2023143398A (en) * 2022-03-25 2023-10-06 Tdk株式会社 Samarium-iron-nitrogen based magnet powder and samarium-iron-nitrogen based magnet

Also Published As

Publication number Publication date
JP2000049006A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
JP3171558B2 (en) Magnetic materials and bonded magnets
US6413327B1 (en) Nitride type, rare earth magnet materials and bonded magnets formed therefrom
JP2001189206A (en) Permanent magnet
WO2004029998A1 (en) Method for producing r-t-b based rare earth element permanent magnet
JPH1197222A (en) Anisotropic rare earth permanent magnet material and magnet powder
JP3317646B2 (en) Manufacturing method of magnet
JP2004253697A (en) Permanent magnet and material thereof
JP3370013B2 (en) Rare earth magnet material and rare earth bonded magnet using the same
JP2002057017A (en) Isotropic powdery magnet material, its manufacturing method, and bonded magnet
JP2001135509A (en) Isotropic rare earth magnet material, isotropic bond magnet, rotating machine and magnet roll
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JPH07130522A (en) Manufacture of permanent magnet
JP3856869B2 (en) Resin-containing rolled sheet magnet and method for producing the same
JP2002015909A (en) Method for manufacturing magnet powder and bonded magnet, and the bonded magnet
JP2000294416A (en) Rare earth bonded magnet
JP2017135268A (en) Hybrid magnet
JP3623564B2 (en) Anisotropic bonded magnet
JP2708578B2 (en) Bonded magnet
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JPH0845718A (en) Magnetic material and its manufacture
JP3357381B2 (en) Magnet material, method of manufacturing the same, and bonded magnet
JP3652751B2 (en) Anisotropic bonded magnet
JPH11121215A (en) Manufacture of rare-earth magnetic powder
JP3795694B2 (en) Magnetic materials and bonded magnets
JPH08144024A (en) Magnetic material having stable coercive force and its production

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees