JPH04116101A - Magnetic powder for high-coercive-force anisotropic bond magnet and its production - Google Patents

Magnetic powder for high-coercive-force anisotropic bond magnet and its production

Info

Publication number
JPH04116101A
JPH04116101A JP2234107A JP23410790A JPH04116101A JP H04116101 A JPH04116101 A JP H04116101A JP 2234107 A JP2234107 A JP 2234107A JP 23410790 A JP23410790 A JP 23410790A JP H04116101 A JPH04116101 A JP H04116101A
Authority
JP
Japan
Prior art keywords
magnetic powder
rare earth
atomic
powder
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2234107A
Other languages
Japanese (ja)
Inventor
Koji Sezaki
瀬崎 好司
Yasunori Matsunari
靖典 松成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2234107A priority Critical patent/JPH04116101A/en
Publication of JPH04116101A publication Critical patent/JPH04116101A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To impart a high coercive force by forming an alloy powder consisting essentially of rare-earth elements, B, Fe, etc., added with a rare-earth oxide and having a specified particle diameter in a magnetic field, sintering and then crushing the formed body. CONSTITUTION:An alloy powder contg. 90-99wt.% of an alloy powder consisting essentially of 10-30 atomic% of a rare-earth element R (including Y), 2-28% B and 65-82% of M (>=1 kind among Fe, Co and Ni) and 1-10% of a rare-earth oxide consisting of >=1 kind among Nd2O3, Pr6O11, Dy2O3, Tb4O7 and Ho2O3 and with the average particle diameter adjusted to 0.5-50mum is formed in a magnetic field. The formed body is sintered at 900-1200 deg.C in a reducing or nonoxidizing atmosphere to obtain an anisotropic sintered magnet. The magnet is conventionally crushed into a magnetic powder having 20-500mum average particle diameter. The magnetic powder has a high coercive force, and an anisotropic bond magnet is provided with high productivity by using the powder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はR(Rはイツトリウムを含む希土類元素の少な
(とも1種)、ホウ素、M(MはFe、 Co。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is based on R (R is one of rare earth elements including yttrium), boron, M (M is Fe, Co.

Niの少なくとも1種以上)を主成分とし、優れた磁気
特性を有する異方性ボンド磁石用磁粉に関する。
The present invention relates to magnetic powder for use in anisotropic bonded magnets, which contains at least one type of Ni) as a main component and has excellent magnetic properties.

〔従来の技術〕[Conventional technology]

希土類ボンド磁石用の磁粉は、これまで大別して、Sm
−Co系とNd−Fe−B系の磁粉が提案されているが
、前者は全希土類金属中敷原子%しか含まれていないS
mを使用すること、さらに原料供給が不安定なCOを多
量に含んでいることから資源上の問題を抱えている。後
者は近年精力的に研究されている永久磁石材料であり、
高価なCOを含まず、資源的にもSmより豊富なNdを
主体とした永久磁石材料であり、注目されている。これ
まで実用化されているNd−Fe−B系磁石粉に関する
製造方法は、特開昭59−64739号公報に代表され
るように、溶融合金を急冷薄帯製造装置によってアモル
ファスリボンにし、その後熱処理、粉砕することによっ
て磁粉を得る方法である。さらにこの方法による異方性
磁石粉の製造方法は特開昭60−100402号公報に
開示されているように上記の等方性磁粉をホットプレス
によって成形体としだ後(こ、高温下で塑1生変形させ
ることによって異方性の)<ルり磁石を?↓I、その後
粉砕することによって異方性のボンド磁石用磁粉を得て
いる。
Until now, magnetic powder for rare earth bonded magnets has been roughly divided into Sm
-Co-based and Nd-Fe-B-based magnetic powders have been proposed, but the former contains only atomic percent of the total rare earth metal insole, S
It has resource problems because it uses m and also contains a large amount of CO whose raw material supply is unstable. The latter is a permanent magnetic material that has been actively researched in recent years.
It is a permanent magnet material that does not contain expensive CO and is mainly composed of Nd, which is more abundant than Sm in terms of resources, and is attracting attention. The manufacturing method for Nd-Fe-B magnet powder that has been put into practical use so far is as typified by Japanese Patent Application Laid-Open No. 59-64739, in which molten alloy is made into an amorphous ribbon using a quenching ribbon manufacturing device, and then heat-treated. , is a method of obtaining magnetic powder by crushing. Furthermore, as disclosed in JP-A No. 60-100402, the method for manufacturing anisotropic magnetic powder by this method involves hot-pressing the above-mentioned isotropic magnetic powder into a molded body (this method involves molding the powder at a high temperature). 1. Anisotropic by deforming) ↓I, anisotropic magnetic powder for bonded magnets is obtained by pulverization.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかしながら、上記の急冷リボン(こよる方法(よ異方
性の磁粉か得られるものの等方性の磁粉をホットプレス
した後、高温下て据込み加工をするぜ・要があり、複雑
な工程を必要とするばかりでなく、品質的にばらつきが
大きいという問題を有してしする。また、粉末冶金法に
よる異方性焼結磁石を粉砕して磁粉を得る方法はこれま
てのところ粉砕によって大幅に保磁力(iHc)か低下
し、実用に耐えないことか判明している。
However, the above-mentioned quenching ribbon method (which yields highly anisotropic magnetic powder) requires hot pressing of isotropic magnetic powder and then upsetting at high temperatures, which is a complicated process. In addition, the method of obtaining magnetic powder by crushing an anisotropic sintered magnet using a powder metallurgy method has not only been pulverized, but also has the problem of large variations in quality. It has been found that the coercive force (iHc) decreases significantly, making it impractical for practical use.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記の様な従来技術が有する問題を解決し、
高い磁気特性を有する異方性ボンド磁石用の磁粉及びそ
の製造方法を提供することを目的とする。
The present invention solves the problems of the prior art as described above,
An object of the present invention is to provide magnetic powder for anisotropic bonded magnets having high magnetic properties and a method for manufacturing the same.

即ち、本発明の第1は、R(但し、Rはイ・ソトリウム
を含む希土類元素の少なくとも1種):lO〜30原子
%、B(ホウ素):2〜28原子%、M(但し、MはF
e、 Co、 Niの少なくとも1種以上):65〜8
2原子%を主成分とする合金90〜99重量%と希土類
酸化物1〜lO重量%からなる平均粒子径20〜500
μmの高保磁力型異方性ボンド磁石用磁粉であり、本発
明の第2はR(但し、Rはイツトリウムを含む希土類元
素の少なくとも1種):lO〜30原子%、ホウ素=2
〜28原子%、M(但し、MはFe、 Co、 Niの
少なくとも1種以上):65〜82原子%を主成分とす
る合金微粉末90〜99重量%とNd2O5,Pr5O
i+、’DY*Os、 Tb40t’、 HO20!の
うち少なくとも1種以上からなる希土類酸化物1〜lO
重量%を含む組成を有する平均粒子径0.5〜50μm
の合金粉末を磁場中成形し、還元性または非酸化性雰囲
気において900〜1200°Cで焼結する一工程と一
焼結後平均粒子径20〜500μmまで粉砕する工程と
からなる高保磁力型異方性ボンド磁石用磁粉の製造方法
を内容とする。
That is, the first aspect of the present invention is that R (wherein R is at least one rare earth element including isotria): lO to 30 atomic %, B (boron): 2 to 28 atomic %, M (however, M is F
at least one of e, Co, and Ni): 65-8
An average particle diameter of 20 to 500, consisting of 90 to 99 weight % of an alloy mainly containing 2 atomic % and 1 to 10 weight % of a rare earth oxide.
μm high coercive force type anisotropic bonded magnet magnetic powder, and the second aspect of the present invention is R (where R is at least one rare earth element including yttrium): 1O to 30 at%, boron = 2
~28 atomic%, M (where M is at least one of Fe, Co, and Ni): 90 to 99% by weight of alloy fine powder whose main component is 65 to 82 atomic%, and Nd2O5, Pr5O
i+, 'DY*Os, Tb40t', HO20! Rare earth oxides consisting of at least one of the following: 1-1O
Average particle size 0.5-50μm with a composition including weight%
A high coercive force type alloy powder is produced, which consists of one step of compacting the alloy powder in a magnetic field and sintering it at 900 to 1200°C in a reducing or non-oxidizing atmosphere, and one step of crushing it to an average particle size of 20 to 500 μm after sintering. The content is a method of manufacturing magnetic powder for oriented bonded magnets.

本発明における希土類元素(R)はイツトリウム(Y)
を含む希土類元素の1種以上であって、ネオジム(Nd
)、プラセオジム(Pr)、  ランタン(La)。
The rare earth element (R) in the present invention is ythtrium (Y)
One or more rare earth elements including neodymium (Nd
), praseodymium (Pr), lanthanum (La).

セリウム(Ce)、サマリウム(Sm)、ガドリニウム
(Gd)、プロメジウム(Pm)、ユーロピウム(Eu
) 、 ルテチウム(Lu)などが例示される。イツト
リウム(Y)は希土類元素ではないか本発明ては他の希
土類元素と同様に扱える。希土類元素(R)の含有量が
10原子%以下であると、保磁力(iHc)か低くなり
、30原子%以上であると残留磁束密度(Br)か低く
なり高性能磁石となり得ない。また、Bの含有量が2原
子%未満であると保磁力が低くなり、28原子%以上で
あると残留磁束密度が低くなる。
Cerium (Ce), samarium (Sm), gadolinium (Gd), promedium (Pm), europium (Eu)
), lutetium (Lu), and the like. Isn't yttrium (Y) a rare earth element? In the present invention, it can be treated in the same way as other rare earth elements. If the rare earth element (R) content is less than 10 atomic %, the coercive force (iHc) will be low, and if it is 30 atomic % or more, the residual magnetic flux density (Br) will be low, making it impossible to obtain a high-performance magnet. Further, if the B content is less than 2 atomic %, the coercive force will be low, and if it is 28 atomic % or more, the residual magnetic flux density will be low.

さらに、本発明における希土類酸化物はNd2O5,P
r5O++、 llY2O3+、 Tb4O7,HO’
203が例示できるか、好ましくはDy202.Tb4
0□が高磁気性能を発揮し得るものである。本発明の組
成物は上記のR−Fe−B合金と希土類酸化物から成る
か、希土類酸化物の添加量が1重量%未満であると高い
保磁力が得られなく、10重量%以上であると残留磁束
密度が低下し、高性能な磁石材料となり得ない。粉砕後
の磁粉の平均粒子径か20μmより小さいと保磁力か大
幅に低下してしまい永久磁石としての性能か満足にてき
るレベルになく、500μm以上であるとボンド磁石に
成形した時、寸法精度、表面の平滑性に問題かあり実用
的でなくなる。さらに希土類酸化物の平均粒子径が0.
51μm以下であると焼結密度か低下してしまい、10
μm以上であると希土類か主相である、例えばNd2F
e+J+相に均一に拡散しない。
Furthermore, the rare earth oxides in the present invention include Nd2O5, P
r5O++, llY2O3+, Tb4O7,HO'
Dy202.203 is an example, preferably Dy202. Tb4
0□ can exhibit high magnetic performance. The composition of the present invention is composed of the above-mentioned R-Fe-B alloy and rare earth oxide, or if the amount of rare earth oxide added is less than 1% by weight, high coercive force cannot be obtained; As a result, the residual magnetic flux density decreases, and it cannot be used as a high-performance magnetic material. If the average particle diameter of the magnetic powder after pulverization is smaller than 20 μm, the coercive force will be significantly reduced and the performance as a permanent magnet will not be satisfactory. If it is 500 μm or more, the dimensional accuracy will be reduced when formed into a bonded magnet. , there are problems with surface smoothness, making it impractical. Furthermore, the average particle diameter of the rare earth oxide is 0.
If it is less than 51 μm, the sintered density will decrease, and 10
If it is larger than μm, the main phase is rare earth, for example Nd2F.
It does not diffuse uniformly into the e+J+ phase.

本発明における粉砕前の異方性焼結磁石の製造方法は一
般に公知な粉末冶金法を用いることができる。すなわち
、所定の組成の溶解・鋳造合金を微粉砕した後に磁場プ
レスで成形体を作製し、102Torr以上の真空状態
またはArガス中で900〜1200°Cの温度で焼結
し異方性焼結磁石を得ることかできる。さらに、焼結磁
石の粉砕は通常の機械的粉砕法または焼結磁石に水素を
吸蔵させて崩壊させる水素吸蔵法によって行うこともで
きる。機械的粉砕法においては粉砕時の磁粉の急激な酸
化を防止するために不活性ガス中または有機溶剤中にお
いて粉砕することか好ましい。さらに、より高性能な磁
粉を得るためには、粉砕後の磁粉を不活性ガス中もしく
は1O−2Torr以上の高真空下て500〜1000
°Cの温度で熱処理を施すことによって、特に保磁力の
向上を果たすことかできる。
In the present invention, a generally known powder metallurgy method can be used for manufacturing the anisotropic sintered magnet before pulverization. That is, after pulverizing a melted and cast alloy of a predetermined composition, a molded body is produced using a magnetic field press, and the molded body is sintered at a temperature of 900 to 1200°C in a vacuum state of 102 Torr or more or in Ar gas to perform anisotropic sintering. Can you get a magnet? Furthermore, the sintered magnet can be pulverized by a normal mechanical pulverization method or a hydrogen occlusion method in which the sintered magnet absorbs hydrogen and disintegrates. In the mechanical pulverization method, it is preferable to pulverize in an inert gas or an organic solvent in order to prevent rapid oxidation of the magnetic powder during pulverization. Furthermore, in order to obtain magnetic powder with higher performance, the magnetic powder after pulverization must be heated at 500 to 1000 in an inert gas or under a high vacuum of 10-2 Torr or higher.
By performing heat treatment at a temperature of °C, it is possible to particularly improve the coercive force.

本発明によるポンド磁石か優れた性能を発揮しうるメカ
ニズムをNd、 Fe並びにBを主成分とする合金と希
土類酸化物であるDy2Q3を含む合金粉末を用いた場
合を例にとって説明する。即ち、本発明のように、希土
類酸化物、特に重希土類酸化物を混合し、異方性焼結磁
石を作製した場合、焼結の際に、希土類酸化物か液相と
して出現するNdによって還元され主相であるNd2F
e l 4 B +相のNdサイトを置換し、異方性磁
場の値を大幅に向上させる。
The mechanism by which the pound magnet according to the present invention exhibits excellent performance will be explained by taking as an example the case where an alloy powder containing an alloy mainly composed of Nd, Fe, and B and an alloy powder containing Dy2Q3, which is a rare earth oxide, is used. That is, when an anisotropic sintered magnet is produced by mixing rare earth oxides, especially heavy rare earth oxides, as in the present invention, during sintering, reduction is caused by the rare earth oxides or Nd appearing as a liquid phase. The main phase is Nd2F.
The Nd site of the e l 4 B + phase is replaced, and the anisotropy field value is greatly improved.

代わって酸化されたNdか主相の周りの粒界に偏在する
か、この酸化Nd相は機械的にもろい相であるため粉砕
時に優先的に且つ容易に破壊され、主相の破壊を極力抑
えた粉砕が可能となる。以上のような機構によって粉砕
後の磁粉は高い保磁力を有し、高性能なボンド磁石用磁
粉になり得ると考えられる。
Instead, oxidized Nd is unevenly distributed in the grain boundaries around the main phase, or because this oxidized Nd phase is a mechanically fragile phase, it is preferentially and easily destroyed during pulverization, minimizing the destruction of the main phase. It becomes possible to crush the powder. Due to the above-described mechanism, the magnetic powder after pulverization has a high coercive force, and it is thought that it can be used as a high-performance magnetic powder for bonded magnets.

〔実施例〕〔Example〕

以下、本発明を実施例により説明するか、本発明はこれ
らにより何ら制限されるものではない。
EXAMPLES Hereinafter, the present invention will be explained with reference to examples, but the present invention is not limited to these in any way.

実施例1〜3 出発原料としてNd:15原子%、Feニア7原子%。Examples 1-3 As starting materials, Nd: 15 at%, Fe nia: 7 at%.

B:8原子%の組成に調整した合金をアーク溶解によっ
て作製した。得られた合金スタンプミルによって50〜
500μmに粗粉砕し、平均粒子径が1μmのDy20
sを第1表に示した混合比になるように混合し、エタノ
ールとともにボールミルによって微粉砕を行った。得ら
れた微粉砕粉を20kOeの磁場中てプレス成形した後
、1080’Cの温度で、真空中1時間、Arガス中1
時間の焼結を行い、焼結後は室温まで急冷した。その後
、Ar中で700°C12時間の熱処理を施して異方性
焼結磁石を得た。
B: An alloy whose composition was adjusted to 8 atomic % was produced by arc melting. 50 ~ by the obtained alloy stamp mill
Dy20 coarsely ground to 500 μm and with an average particle size of 1 μm
s were mixed at the mixing ratio shown in Table 1, and pulverized together with ethanol in a ball mill. The obtained finely pulverized powder was press-molded in a magnetic field of 20 kOe, and then molded in Ar gas at a temperature of 1080'C for 1 hour in a vacuum.
Sintering was performed for several hours, and after sintering, it was rapidly cooled to room temperature. Thereafter, heat treatment was performed at 700° C. for 12 hours in Ar to obtain an anisotropic sintered magnet.

得られた異方性焼結磁石をスタンプミルによって50〜
300μmの粒度範囲となるように粉砕し、その後、磁
粉含率が97重量%となるようにエポキシ樹脂を混合し
、ボンド磁石用混合物を得た。続いて、20kOeの磁
場中てこれらの混合物をプレス成形し、本発明に係わる
異方性ボンド磁石を得た。
The obtained anisotropic sintered magnet is stamped by a stamp mill for 50~
The powder was pulverized to a particle size range of 300 μm, and then an epoxy resin was mixed so that the magnetic powder content was 97% by weight to obtain a bonded magnet mixture. Subsequently, these mixtures were press-molded in a magnetic field of 20 kOe to obtain an anisotropic bonded magnet according to the present invention.

得られたポンド磁石の磁気特性を第1表に示す。The magnetic properties of the obtained pound magnet are shown in Table 1.

実施例4 希土類酸化物か平均粒子径1μmのTb4O7てあり、
且つ混合比か5重量%である以外は実施例1と同様の方
法で異方性ボンド磁石を得た。結果を第1表に示す。
Example 4 A rare earth oxide is Tb4O7 with an average particle size of 1 μm,
An anisotropic bonded magnet was obtained in the same manner as in Example 1 except that the mixing ratio was 5% by weight. The results are shown in Table 1.

実施例5 実施例2と同様の組成、製造方法で作製した異方性磁粉
をArガス中において700°Cて1時間熱処理し、そ
の後室温まで急冷して熱処理磁粉を得た。
Example 5 Anisotropic magnetic powder produced using the same composition and manufacturing method as Example 2 was heat-treated in Ar gas at 700°C for 1 hour, and then rapidly cooled to room temperature to obtain heat-treated magnetic powder.

この磁粉を用いて実施例2と同様の方法で異方性ボンド
磁石を作製した。結果を第1表に示す。
An anisotropic bonded magnet was produced using this magnetic powder in the same manner as in Example 2. The results are shown in Table 1.

比較例1 実施例において希土類酸化物を添加しないでその他は同
様の方法で異方性ボンド磁石を作製した。
Comparative Example 1 An anisotropic bonded magnet was produced in the same manner as in Example except that the rare earth oxide was not added.

結果を第1表に示す。The results are shown in Table 1.

比較例2 実施例1において合金組成をNd:12原子%、Dy:
3原子%、Feニア7原子%、B:8原子%に調整し、
希土類酸化物を添加しない組成で、その他は実施例1と
同様の方法で異方性ボンド磁石を作製した。結果を第1
表に示す。
Comparative Example 2 In Example 1, the alloy composition was changed to Nd: 12 atomic %, Dy:
Adjusted to 3 at%, Fe 7 at%, B: 8 at%,
An anisotropic bonded magnet was produced in the same manner as in Example 1 except that the composition did not include the addition of rare earth oxides. Results first
Shown in the table.

第1表に示した実施例1〜3のデーターに示されるよう
に、Dy20aの添加量の増加に対応して保磁力は向上
し、比較例1. 2に比べて極めて優れた磁気特性を有
するボンド磁石が得られることかわかった。また希土類
酸化物としてTb40□を用いた実施例4でも高い保磁
力を有するボンド磁石が得られることがわかった。更に
、実施例5のデータか示すように、熱処理を施すことに
よって保磁力の更なる向上が望めることもわかる。
As shown in the data of Examples 1 to 3 shown in Table 1, the coercive force improves as the amount of Dy20a added increases, and that of Comparative Example 1. It was found that a bonded magnet having extremely superior magnetic properties compared to No. 2 could be obtained. It was also found that a bonded magnet having a high coercive force could be obtained even in Example 4 using Tb40□ as the rare earth oxide. Furthermore, as shown in the data of Example 5, it can be seen that further improvement in coercive force can be expected by applying heat treatment.

これらに対し、希土類酸化物の添加を行わなかった比較
例1. 2ではその保磁力は極めて低いレベルにしかな
らなかった。
Compared to these, Comparative Example 1 in which no rare earth oxide was added. 2, the coercive force was only at an extremely low level.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したように本発明によれば高い保磁力を有す
る異方性ボンド磁石用磁粉を作製することか可能であり
、かかる磁粉を用いた異方性ボンド磁石を良好な生産性
をもって提供することができる。
As detailed above, according to the present invention, it is possible to produce magnetic powder for anisotropic bonded magnets having a high coercive force, and it is possible to provide anisotropic bonded magnets using such magnetic powder with good productivity. can do.

第1表Table 1

Claims (5)

【特許請求の範囲】[Claims] (1)R(但し、Rはイットリウムを含む希土類元素の
少なくとも1種):10〜30原子%、ホウ素:2〜2
8原子%、M(但し、MはFe,Co,Niの少なくと
も1種以上):65〜82原子%を主成分とする合金9
0〜99重量%と希土類酸化物1〜10重量%からなる
平均粒子径20〜500μmの高保磁力型異方性ボンド
磁石用磁粉。
(1) R (where R is at least one rare earth element including yttrium): 10 to 30 atomic%, boron: 2 to 2
Alloy 9 whose main component is 8 atomic %, M (where M is at least one of Fe, Co, and Ni): 65 to 82 atomic %
Magnetic powder for a high coercive force type anisotropic bonded magnet having an average particle diameter of 20 to 500 μm and consisting of 0 to 99% by weight and 1 to 10% by weight of rare earth oxide.
(2)希土類酸化物がNd_2O_3,Pr_6O_1
_1,Dy_2O_3,Tb_4O_7,Ho_2O_
3のうち、少なくとも1種以上を含むことを特徴とする
特許請求の範囲第1項記載の高保磁力型異方性ボンド磁
石用磁粉。
(2) Rare earth oxides are Nd_2O_3, Pr_6O_1
_1, Dy_2O_3, Tb_4O_7, Ho_2O_
The magnetic powder for a high coercive force type anisotropic bonded magnet according to claim 1, characterized in that the magnetic powder contains at least one kind of the following.
(3)R(但し、Rはイットリウムを含む希土類元素の
少なくとも1種):10〜30原子%、ホウ素:2〜2
8原子%、M(但し、MはFe,Co,Niの少なくと
も1種以上):65〜82原子%を主成分とする合金微
粉末90〜99重量%とNd_2O_3,Pr_6O_
1_1,Dy_2O_3,Tb_4O_7,Ho_2O
_3のうち少なくとも1種以上からなる希土類酸化物1
〜10重量%を含む組成を有する平均粒子径0.5〜5
0μmの合金粉末を磁場中成形し、還元性または非酸化
性雰囲気において900〜1200℃で焼結する工程と
、焼結後平均粒子径20〜500μmまで粉砕する工程
とからなる高保磁力型異方性ボンド磁石用磁粉の製造方
法。
(3) R (where R is at least one rare earth element including yttrium): 10 to 30 atomic%, boron: 2 to 2
8 atomic%, M (where M is at least one of Fe, Co, and Ni): 90 to 99% by weight of alloy fine powder whose main component is 65 to 82 atomic%, and Nd_2O_3, Pr_6O_
1_1, Dy_2O_3, Tb_4O_7, Ho_2O
Rare earth oxide 1 consisting of at least one of _3
Average particle size 0.5-5 with a composition containing ~10% by weight
A high coercive force type anisotropic process consisting of a step of compacting 0 μm alloy powder in a magnetic field, sintering it at 900 to 1200°C in a reducing or non-oxidizing atmosphere, and pulverizing it to an average particle size of 20 to 500 μm after sintering. A method for producing magnetic powder for bonded magnets.
(4)希土類酸化物の平均粒子径が0.5〜10μmで
あることを特徴とする特許請求の範囲第3項記載の高保
磁力型異方性ボンド磁石用磁粉の製造方法。
(4) The method for producing magnetic powder for a high coercivity type anisotropic bonded magnet according to claim 3, wherein the average particle diameter of the rare earth oxide is 0.5 to 10 μm.
(5)粉砕によって得られた異方性磁粉を不活性ガス中
または10^−^2Torr以上の高真空中で500〜
1000℃の温度で熱処理することを特徴とする特許請
求の範囲第3項記載の高保磁力型異方性ボンド磁石用磁
粉の製造方法。
(5) The anisotropic magnetic powder obtained by pulverization is heated to 500 to 500 m
The method for producing magnetic powder for a high coercive force type anisotropic bonded magnet according to claim 3, wherein the magnetic powder is heat-treated at a temperature of 1000°C.
JP2234107A 1990-09-03 1990-09-03 Magnetic powder for high-coercive-force anisotropic bond magnet and its production Pending JPH04116101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2234107A JPH04116101A (en) 1990-09-03 1990-09-03 Magnetic powder for high-coercive-force anisotropic bond magnet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2234107A JPH04116101A (en) 1990-09-03 1990-09-03 Magnetic powder for high-coercive-force anisotropic bond magnet and its production

Publications (1)

Publication Number Publication Date
JPH04116101A true JPH04116101A (en) 1992-04-16

Family

ID=16965741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2234107A Pending JPH04116101A (en) 1990-09-03 1990-09-03 Magnetic powder for high-coercive-force anisotropic bond magnet and its production

Country Status (1)

Country Link
JP (1) JPH04116101A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952592A1 (en) * 1998-04-22 1999-10-27 Sanei Kasei Co., Ltd. A composition for a permanent magnet
JP2005183781A (en) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd Rare earth magnet and its manufacturing method
CN105489335A (en) * 2016-01-14 2016-04-13 北京科技大学 Method for improving magnetic performance of sintered NdFeB through grain boundary diffusion
CN109440182A (en) * 2018-11-28 2019-03-08 北京工业大学 The method that the monocrystalline neodymium iron boron particles and hydrogen of a kind of reduction-diffusion process manufacture size adjustable abolish calcium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952592A1 (en) * 1998-04-22 1999-10-27 Sanei Kasei Co., Ltd. A composition for a permanent magnet
JP2005183781A (en) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd Rare earth magnet and its manufacturing method
US7608153B2 (en) 2003-12-22 2009-10-27 Nissan Motor Co., Ltd. Rare earth magnet and method therefor
CN105489335A (en) * 2016-01-14 2016-04-13 北京科技大学 Method for improving magnetic performance of sintered NdFeB through grain boundary diffusion
CN105489335B (en) * 2016-01-14 2017-08-11 北京科技大学 A kind of method that grain boundary decision improves sintered NdFeB magnetic property
CN109440182A (en) * 2018-11-28 2019-03-08 北京工业大学 The method that the monocrystalline neodymium iron boron particles and hydrogen of a kind of reduction-diffusion process manufacture size adjustable abolish calcium

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
US5565043A (en) Rare earth cast alloy permanent magnets and methods of preparation
US5049203A (en) Method of making rare earth magnets
JPS6393841A (en) Rare-earth permanent magnet alloy
JP2002015907A (en) Switching spring magnet powder and its manufacturing method
JPS6181606A (en) Preparation of rare earth magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH0551656B2 (en)
JPH0320046B2 (en)
JPS6181603A (en) Preparation of rare earth magnet
JPH04116101A (en) Magnetic powder for high-coercive-force anisotropic bond magnet and its production
JPS6181607A (en) Preparation of rare earth magnet
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JP3037917B2 (en) Radial anisotropic bonded magnet
JPH0549737B2 (en)
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JPH04116102A (en) Magnetic powder for anisotropic bond magnet and its production
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH044383B2 (en)
JPH04188805A (en) Manufacture of rare-earth bonded magnet
JPS61207546A (en) Manufacture of magnet containing rare earth element
JPH03222304A (en) Manufacture of permanent magnet
JPH0426524B2 (en)
JPH04342104A (en) Magnetic powder for anisotropic bonded magnet; its manufacture
JPH0570810A (en) Rare-earth element-iron-boron-based anisotropic magnet powder and its production