JPH04188805A - Manufacture of rare-earth bonded magnet - Google Patents

Manufacture of rare-earth bonded magnet

Info

Publication number
JPH04188805A
JPH04188805A JP2318811A JP31881190A JPH04188805A JP H04188805 A JPH04188805 A JP H04188805A JP 2318811 A JP2318811 A JP 2318811A JP 31881190 A JP31881190 A JP 31881190A JP H04188805 A JPH04188805 A JP H04188805A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
bonded magnet
rare
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2318811A
Other languages
Japanese (ja)
Inventor
Shigenori Sato
佐藤 成徳
Makoto Oketani
誠 桶谷
Toshiyuki Ishibashi
利之 石橋
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2318811A priority Critical patent/JPH04188805A/en
Publication of JPH04188805A publication Critical patent/JPH04188805A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture an anisotropic R-Fe-B rare-earth bonded magnet, having a high energy product, in a highly efficient manner by treating an alloy consisting of R (contains at least a kind selected from rare-earth elements containing Y)-Fe-B raw material as the fundamental component. CONSTITUTION:R (provided that R contains at least a kind selected from rare- earth elements containing Y), Fe and B are used as the raw material of the fundamental component of a substrate, the alloy composed of the above- mentioned fundamental component is melted, cast, and after the cast alloy has been hot-processed, it is heat-treated in a hydrogen gas atmosphere, and hydrogen is occluded. Then, after a dehydrogenization operation has been conducted in a vacuum atmosphere, the alloy is crushed and used as magnetic powder. In this case, after the crystal axis of coarse crystal grains have been lined up using a hot-processing method, the crystal grains are microscopically formed by conducting a hydrogen treatment, and the direction of crystal axis of the microscopic crystal of the magnetic powder after pulverization is made uniform still more. As a result, a bonded magnet, having high residual magnetic flux density and high coercive force and a high energy product, can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類ボンド磁石の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a rare earth bonded magnet.

[従来の技術] 従来R−Fe−B系希土類ボンド磁石の製造方法には、
次のようなものがある。
[Prior art] Conventional methods for manufacturing R-Fe-B rare earth bonded magnets include:
There are the following:

(1)特開昭59−211549号公報やR,W、Le
e; Appl、Phys、Lett、Vol、46(
8)、15 April 1985.p750には、非
常に微細な結晶性の磁性相を持つ、メルトスピニングさ
れた合金リボンの微細片が樹脂によって接着されたR−
Fe−B磁石が開示されている。
(1) JP-A-59-211549, R, W, Le
e; Appl, Phys, Lett, Vol, 46 (
8), 15 April 1985. p750 is a R-
Fe-B magnets are disclosed.

この永久磁石は、アモルファス合金製造に用いる急冷薄
帯製造装置で、厚さ30μm程度の急冷薄片を作り、そ
の薄片を樹脂と混練してプレス成形することにより製造
される。
This permanent magnet is manufactured by making a quenched thin piece with a thickness of about 30 μm using a quenched ribbon manufacturing apparatus used for manufacturing an amorphous alloy, kneading the thin piece with a resin, and press-molding the thin piece.

(2)特開昭60−100402号公報やR,W、Le
e; Appl、Phys、Lett、Vol、48(
8)、15 April 1985.p750には、前
記(1)の方法で使用した急冷薄帯を、真空中あるいは
不活性雰囲気中で2段階ホットプレス法と呼ばれる方法
で異方性を有するR−Fe−B磁石を得、それを粉砕し
樹脂と混練してプレス成形することによりボンド磁石が
得られることが開示されている。
(2) JP-A-60-100402, R, W, Le
e; Appl, Phys, Lett, Vol, 48 (
8), 15 April 1985. For p750, an R-Fe-B magnet having anisotropy is obtained by using the quenched ribbon used in the method (1) above in a vacuum or in an inert atmosphere by a method called a two-step hot pressing method, and then It is disclosed that a bonded magnet can be obtained by crushing, kneading with resin, and press-molding.

(3)日本金属学会秋期大会一般講演概要(1990)
では、合金インゴットを水素ガス雰囲気中で熱処理し合
金に水素を吸蔵した後、真空中で脱水素を行うと均一で
微細な強磁性結晶粒が得られこの合金を粉砕して得たボ
ンド磁石としたときの保磁力の向上をもたらし、またZ
r、  Hf、  Ga等の元素は脱水素により微細な
強磁性R−Fe−B結晶が生成する際にこれらの結晶の
C軸を揃える効果を持っていて、ボンド磁石に成形した
場合の残留磁束密度を上げる働きがある事が開示されて
いる。
(3) Summary of general lectures at the Autumn Conference of the Japan Institute of Metals (1990)
Then, by heat-treating an alloy ingot in a hydrogen gas atmosphere to absorb hydrogen into the alloy, and then dehydrogenating it in a vacuum, uniform and fine ferromagnetic crystal grains are obtained, and bonded magnets obtained by crushing this alloy and It also improves the coercive force when
Elements such as r, Hf, and Ga have the effect of aligning the C axes of fine ferromagnetic R-Fe-B crystals when they are formed by dehydrogenation, and reduce the residual magnetic flux when formed into a bonded magnet. It has been disclosed that it has the effect of increasing density.

(4)特開昭62−276803にはR−Fe−B系合
金を溶解、鋳造して熱間加工し、ついで常温で水素ガス
を吸蔵させ、真空中で脱水素を行った後粉砕しボンド磁
石に成形する方法が開示されている。
(4) In JP-A No. 62-276803, an R-Fe-B alloy is melted, cast, hot worked, absorbed hydrogen gas at room temperature, dehydrogenated in vacuum, and then crushed and bonded. A method of forming into a magnet is disclosed.

〔発明が解決しようとする課M] しかしながら、上述のR−Fe−B系希土類ボンド磁石
の製造方法は以下の様な欠点を有している。
[Problem M to be Solved by the Invention] However, the method for manufacturing the R-Fe-B rare earth bond magnet described above has the following drawbacks.

(1)の方法で製造した希土類ボンド磁石は、原理的に
等方性であるので低エネルギー積であり、ヒシテリシス
ルーブの角型性も悪く使用する面に於て不利である。
The rare earth bonded magnet manufactured by the method (1) is isotropic in principle, so it has a low energy product, and the squareness of the hysteresis loop is also poor, which is disadvantageous in terms of use.

(2)の方法で製造した希土類ボンド磁石は、ホットプ
レスを2段階に使うというユニークな方法であるが、量
産を考えると非効率的である。
The rare earth bonded magnet manufactured by method (2) is a unique method of using hot pressing in two stages, but it is inefficient when considering mass production.

(3)の方法は非常に有効な手段であるが、添加元素に
よる配向では配向が不十分で、残留磁束密度は十分とは
言えない。
Although the method (3) is a very effective means, the orientation by the added element is insufficient, and the residual magnetic flux density cannot be said to be sufficient.

(4)の方法は、熱間加工により結晶軸が配向し高い残
留磁束密度が得られるが、粉砕することにより保磁力が
大きく減少し実用には不十分である。
In method (4), the crystal axes are oriented by hot working and a high residual magnetic flux density can be obtained, but the coercive force is greatly reduced by pulverization and is insufficient for practical use.

そこで本発明は上述のような問題点を解決するもので、
その目的とするところは、異方性を持つ高エネルギー積
のR−Fe−B系希土類ボンド磁石を、効率良く製造す
る方法を提供するところにある。
Therefore, the present invention solves the above-mentioned problems.
The purpose is to provide a method for efficiently manufacturing an anisotropic, high energy product R-Fe-B rare earth bonded magnet.

[課題を解決するための手段] 本発明の希土類ボンド磁石の製造方法は、R(ただしR
はYを含む希土類元素のうち少なくとも1種)、Fe、
Bを原料基本成分とし、該基本成分とする合金を溶解、
鋳造、熱間加工し、あるいは該基本成分の急冷薄帯を熱
間加工し、次いで水素ガス雰囲気中で熱処理し水素を吸
蔵させた後、真空中で脱水素を行った磁石粉末を用いる
事を特徴とする。
[Means for Solving the Problems] The method for manufacturing a rare earth bonded magnet of the present invention includes R (however, R
is at least one rare earth element containing Y), Fe,
B is used as a basic raw material component, and an alloy containing the basic component is melted,
It is possible to use magnet powder that has been cast, hot worked, or hot worked a quenched ribbon of the basic components, then heat treated in a hydrogen gas atmosphere to absorb hydrogen, and then dehydrogenated in a vacuum. Features.

従来例(3)によると鋳造インゴットを水素中で熱処理
すると、初め数10μmの強磁性結晶が水素を吸蔵し一
旦RH2,Fe、Fe2B等の化合物に分解する。その
後真空中で脱水素する事により分解した元素が再結合し
0.3μmオーダーの微細なR−Fe−B化合物が形成
される。この時Ga、Zr、Hf等の微量元素が存在す
ると、再結合した微細なR−Fe−B結晶は、水素によ
り分解される以前の結晶軸方向にその結晶軸を揃える傾
向がある。したがって水素処理により作られる微細な結
晶は数10μmの範囲で結晶軸を揃えておりこの方法で
ボンド磁石を製造した場合ある程度の異方性が得られる
事になる。しかしながら、このような狭い範囲での結晶
粒の配向では、粉砕した磁性粉内に異なった結晶軸方向
を持つ微細結晶の混在が不可避であり、それがボンド磁
石にした場合の異方化を低める事になる。
According to Conventional Example (3), when a cast ingot is heat-treated in hydrogen, ferromagnetic crystals of several tens of micrometers initially absorb hydrogen and decompose into compounds such as RH2, Fe, and Fe2B. Thereafter, by dehydrogenation in vacuum, the decomposed elements are recombined to form a fine R-Fe-B compound on the order of 0.3 μm. If trace elements such as Ga, Zr, and Hf are present at this time, the recombined fine R--Fe--B crystals tend to align their crystal axes in the direction of the crystal axes before being decomposed by hydrogen. Therefore, the fine crystals produced by hydrogen treatment have their crystal axes aligned within a range of several tens of micrometers, and when a bonded magnet is manufactured by this method, a certain degree of anisotropy can be obtained. However, with crystal grain orientation in such a narrow range, it is inevitable that fine crystals with different crystal axis directions coexist within the crushed magnetic powder, which reduces anisotropy when made into a bonded magnet. It's going to happen.

そこで本発明では従来例(4)による熱間加工の方法に
より予め粗大な結晶粒の結晶軸を揃えてから、上述の水
素処理による結晶粒の微細化を行い、粉砕後の磁性粉末
中の微細結晶の結晶軸方向をより多く揃える事をによっ
て高残留磁束密度と高保磁力を持ち、高エネルギー積を
持つボンド磁石を製造できる事を見いだした。
Therefore, in the present invention, the crystal axes of coarse crystal grains are aligned in advance by the hot working method according to conventional example (4), and then the crystal grains are refined by the above-mentioned hydrogen treatment. We discovered that by aligning more of the crystal axis directions of the crystals, it is possible to produce bonded magnets with high residual magnetic flux density, high coercive force, and high energy product.

以下、本発明における希土類ボンド磁石の好ましい組成
範囲について説明する。
The preferred composition range of the rare earth bonded magnet in the present invention will be explained below.

希土類としては、Y、  La、  Ce、  Pr、
  Nd。
Rare earths include Y, La, Ce, Pr,
Nd.

Sm、  Eu、  Gd、  Tb、  Dy、  
Ho、  Er、  Tm、Yb、Luが候補として挙
げられ、これらのうち1種あるいは2種以上を組み合わ
せて用いる。
Sm, Eu, Gd, Tb, Dy,
Candidates include Ho, Er, Tm, Yb, and Lu, and one or more of these may be used in combination.

最も高い磁気特性はPrで得られるので、実用的には、
 Pr、  Pr−Nd合金、Cr−Pr−Nd合金等
が用いられる。少量の重希土元素、例えばDy、’rb
等は保磁力の向上に有効である。
The highest magnetic properties are obtained with Pr, so in practical terms,
Pr, Pr-Nd alloy, Cr-Pr-Nd alloy, etc. are used. Small amounts of heavy rare earth elements, e.g. Dy, 'rb
etc. are effective for improving coercive force.

R−Fe−B系磁石の主相はR2FezBである。The main phase of the R-Fe-B magnet is R2FezB.

従ってRが8原子%未満では、もはや上記化合物合物を
形成せず高磁気特性は得られない。一方Rが30原子%
を越えると非磁性のRリッチ相が多くなり磁気特性は著
しく低下する。よってRの範囲は8〜30W、子%が適
当である。しかし高い残留磁束密度のためには、好まし
くはR8〜25原子%が適当である。
Therefore, if R is less than 8 at %, the above compound is no longer formed and high magnetic properties cannot be obtained. On the other hand, R is 30 atomic%
If the value exceeds 100%, the amount of nonmagnetic R-rich phase increases and the magnetic properties deteriorate significantly. Therefore, the appropriate range for R is 8 to 30 W and %. However, for high residual magnetic flux density, preferably R8 to 25 at % is suitable.

Bは、R2Fe+tB 相を形成するための必須元素で
あり、2原子%未満では菱面体のR−Fe系になるため
に高保磁力は望めない。また28原子%を越えるとBに
富む非磁性相が多くなり、残留磁束密度は著しく低下し
てくる。しかじ高保磁力を得るためには、好ましくはB
88原子以下がよく、それ以上では微細なR2Fe+a
B相を得ることが困難で、保磁力は小さい。
B is an essential element for forming the R2Fe+tB phase, and if it is less than 2 atomic %, it becomes a rhombohedral R-Fe system, so a high coercive force cannot be expected. Moreover, when it exceeds 28 at %, the amount of B-rich nonmagnetic phase increases, and the residual magnetic flux density decreases significantly. However, in order to obtain a high coercive force, preferably B
It is better to have 88 atoms or less, and if it is more than 88 atoms, fine R2Fe+a
It is difficult to obtain phase B, and the coercive force is small.

Cu、Ag、Au、Pd等の元素は保磁力著しく増加さ
せる効果を有する。しかし、これらの元素は非磁性元素
であるため、その量を増すと残留磁束密度が減少するの
で、6原子%以下が好ましい。
Elements such as Cu, Ag, Au, and Pd have the effect of significantly increasing coercive force. However, since these elements are non-magnetic elements, increasing the amount will reduce the residual magnetic flux density, so it is preferably 6 at % or less.

Coは本系磁石のキュリー点を増加させるのに有効な元
素であるが、保磁力を小さくするので50原子%以下が
よい。
Co is an effective element for increasing the Curie point of the present magnet, but since it reduces the coercive force, it is preferably 50 atomic % or less.

Zr、Hf、Ga等の元素は脱水素により微細な強磁性
R−Fe−B結晶が生成する際にこれらの結晶のC軸を
揃える効果を持っているが、これらの元素は非磁性であ
るため多すぎると残留磁束密度は低下しまた同時に保磁
力の低下をまねくので5原子%以下が好ましい。
Elements such as Zr, Hf, and Ga have the effect of aligning the C axes of fine ferromagnetic R-Fe-B crystals when they are generated by dehydrogenation, but these elements are nonmagnetic. Therefore, if the content is too large, the residual magnetic flux density will decrease and at the same time, the coercive force will decrease, so the content is preferably 5 at % or less.

熱間加工における温度は再結晶温度以上が望ましく、本
発明R−Fe−B系合金においては好ましくは500℃
以上である。
The temperature during hot working is desirably higher than the recrystallization temperature, preferably 500°C in the R-Fe-B alloy of the present invention.
That's all.

水素吸蔵および脱水素を行う温度は、強磁性相の希土類
元素と水素との反応温度によって決定されるが、大気圧
の水素と合金では500°C以下では微細結晶生成のた
めの反応が起こらず、また1000℃を超えるとR2F
e口Bが急激に粒成長して保磁力を失うのでそれ以下が
望ましい。
The temperature at which hydrogen absorption and dehydrogenation occur is determined by the reaction temperature between the rare earth element in the ferromagnetic phase and hydrogen, but with hydrogen and alloys at atmospheric pressure, the reaction to produce fine crystals does not occur below 500°C. , and when the temperature exceeds 1000℃, R2F
E-port B rapidly grows grains and loses coercive force, so it is desirable that it is less than that.

[実施例] (実施例1) アルゴン雰囲気中で誘導加熱炉を用いて、第1表に示し
た組成の合金を溶解し、峙遺した。この時、希土類、鉄
及び銅の原料としては99,9%の純度のものを用い、
ボロンはフェロボロンを用いた。
[Example] (Example 1) Using an induction heating furnace in an argon atmosphere, alloys having the compositions shown in Table 1 were melted and left to stand. At this time, rare earth, iron and copper raw materials with a purity of 99.9% were used.
Ferroboron was used as boron.

こうして得られた鋳造インゴットを鉄製のカプセルに入
れ、脱気し、密封した。これに、 950℃で加工度3
0%の熱間圧延を空気中で 4回行い、最終的な加工度
が76%になるようにした。
The cast ingot thus obtained was placed in an iron capsule, degassed, and sealed. To this, processing degree 3 at 950℃
0% hot rolling was performed four times in air to give a final working degree of 76%.

またこの熱間加工時においては、合金の押される方向に
平行になるように結晶の磁化容易軸は配向した。
Further, during this hot working, the axis of easy magnetization of the crystal was oriented parallel to the direction in which the alloy was pressed.

この圧延材を雰囲気管理出来るステンレス銅製の電気炉
に入れた後、電気炉を10−’Torrまで排気し76
0Torrの水素ガスで置換した。
After putting this rolled material into a stainless steel electric furnace where the atmosphere can be controlled, the electric furnace was evacuated to 10-'Torr.
It was replaced with hydrogen gas at 0 Torr.

その後800°Cに加熱し3時間保持し水素を合金に吸
蔵させた後ふたたび1時間かけて10−’T。
After that, it was heated to 800°C and held for 3 hours to absorb hydrogen into the alloy, and then heated again for 1 hour at 10-'T.

rrまで排気して脱水素を行いアルゴンガスで急冷した
。水素処理の終わった合金インゴットをスタンプミルで
10分、ライカイ機で30分粉砕したのち1.5wt%
のエポキシ樹脂と混練し15koeの磁場中7ton/
cm−2でプレスしキュアー処理を行いボンド磁石を作
製した。
The reactor was evacuated to rr to perform dehydrogenation and quenched with argon gas. The hydrogen-treated alloy ingot was crushed in a stamp mill for 10 minutes and in a Raikai machine for 30 minutes, resulting in 1.5wt%.
7 tons/kneaded with epoxy resin in a 15 koe magnetic field.
A bonded magnet was produced by pressing and curing at cm-2.

また水素処理の効果を比較するため同じ組成の合金をア
ルゴンガス雰囲気中で1000℃24時間の熱処理をし
、次に475℃において2時間の熱処理を施したインゴ
ットを同様に粉砕、樹脂と混練、成形した。
In addition, in order to compare the effects of hydrogen treatment, an alloy with the same composition was heat treated at 1000°C for 24 hours in an argon gas atmosphere, and then an ingot that was heat treated at 475°C for 2 hours was crushed in the same way, kneaded with resin, Molded.

さらに熱間加工の効果を比較するために、熱間加工を行
わず、鋳造インゴットをそのまま水素処理し同様な条件
で成形したボンド磁石も作製した。
Furthermore, in order to compare the effects of hot working, a bonded magnet was also produced by hydrogen-treating the cast ingot without hot working and molding it under similar conditions.

成形したボンド磁石の磁気特性を最大印加磁場25kO
eのB−Hトレーサーで測定した結果が第2表である。
The magnetic properties of the molded bonded magnet are determined by applying a maximum magnetic field of 25 kO.
Table 2 shows the results measured using the B-H tracer of e.

第  1  表 第  2  表 第2表に示されているように、本発明の熱間加工後水素
処理を行った磁石粉末で作製したボンド磁石はその他の
比較例と比べて高い保磁力が得られており、また熱間加
工により高残留磁束密度が得られ、高エネルギー積のボ
ンド磁石が得られることがわかる。
As shown in Table 1, Table 2, and Table 2, the bonded magnet made from the magnet powder that was hydrogen-treated after hot working of the present invention had a higher coercive force than other comparative examples. It can also be seen that a high residual magnetic flux density can be obtained by hot working, and a bonded magnet with a high energy product can be obtained.

(実施例2) 第1表に示されている組成の合金を、単ロール真空メル
トスピニング装置を用いてロール速度20m/秒程度で
急冷薄帯とした。この急冷薄帯を鉄製のカプセルにつめ
て、脱気し、密封した。これに、 950°Cで加工度
30%の熱間圧延を空気中で4回行い、最終的な加工度
が76%になるようにした。
(Example 2) An alloy having the composition shown in Table 1 was made into a quenched ribbon using a single roll vacuum melt spinning device at a roll speed of about 20 m/sec. This quenched ribbon was packed into an iron capsule, degassed, and sealed. This was then hot-rolled four times in air at 950°C with a working degree of 30%, so that the final working degree was 76%.

またこの熱間加工時においては、合金の押される方向に
平行になるように結晶の磁化容易軸は配向した。
Further, during this hot working, the axis of easy magnetization of the crystal was oriented parallel to the direction in which the alloy was pressed.

この後、水素雰囲気中、実施例1と同様に水素雰囲気中
で750°C3時間の熱処理により水素を吸蔵させ、排
気により脱水素処理を施し急冷した圧延材を、実施例1
と同様に粉砕、樹脂と混線、成形し磁気特性を測定した
Thereafter, hydrogen was absorbed by heat treatment at 750°C for 3 hours in a hydrogen atmosphere in the same manner as in Example 1, and the rolled material was dehydrogenated by exhaust gas and rapidly cooled.
In the same manner as above, it was crushed, mixed with resin, molded, and its magnetic properties were measured.

また水素処理の効果を比較するため同じ組成の急冷薄帯
を圧延後アルゴン雰囲気中1000°Cで24時間熱処
理し、次に475°Cで2時間熱処理したサンプルを同
様にボンド磁石に成形し磁気特性を作製した。
In addition, in order to compare the effects of hydrogen treatment, a sample of quenched ribbon with the same composition was heat-treated at 1000°C for 24 hours in an argon atmosphere after rolling, and then heat-treated at 475°C for 2 hours, and then formed into a bonded magnet in the same way. The characteristics were created.

さらに熱間加工の効果を比較するために、熱間加工を行
わず、訪造インゴットをそのまま水素処理し同様な条件
で成形したボンド磁石も作製した。
Furthermore, in order to compare the effects of hot working, a bonded magnet was also produced by hydrogen-treating the manufactured ingot without hot working and molding it under similar conditions.

成形したボンド磁石の磁気特性を最大印加磁場25kO
eのB−Hトレーサーで測定した結果が第3表である。
The magnetic properties of the molded bonded magnet are determined by applying a maximum magnetic field of 25 kO.
Table 3 shows the results measured using the B-H tracer of e.

第  3  表 第3表に示されているように、急冷薄帯を用いた場合に
おいても本発明の熱間加工後水素処理を行った磁石粉末
で作製したボンド磁石はその他の比較例と比べて高い保
磁力が得られており、また熱間加工により高残留磁束密
度が得られ、高エネルギー積のボンド磁石が得られるこ
とがわかる。
Table 3 As shown in Table 3, even when a quenched ribbon is used, the bonded magnet made from the magnet powder subjected to hydrogen treatment after hot processing of the present invention is superior to other comparative examples. It can be seen that a high coercive force is obtained, a high residual magnetic flux density is obtained by hot working, and a bonded magnet with a high energy product can be obtained.

[発明の効果コ 上述のように本発明によるれば、R(ただしRはYを含
む希土類元素のうち少なくとも1種)、Fe、Bを原料
基本成分とし、該基本成分とする合金を溶解、訪造、熱
間加工し、あるいは該基本成分の急冷薄帯を熱間加工し
、次いで水素ガス雰囲気中で熱処理し水素を吸蔵させた
後、真空中で脱水素を行った磁石粉末を用でボンド磁石
を製造する事により次のような効果を持つ。
[Effects of the Invention] As described above, according to the present invention, R (where R is at least one rare earth element including Y), Fe, and B are used as basic raw material components, and an alloy containing the basic components is melted, Magnet powder is produced by on-site production, hot processing, or by hot processing a quenched ribbon of the basic component, then heat-treated in a hydrogen gas atmosphere to absorb hydrogen, and then dehydrogenated in a vacuum. Manufacturing bonded magnets has the following effects.

(1)水素処理により強磁性結晶粒が微細化により、保
磁力iHcを高める事ができる。また熱間加工による結
晶軸の機械的配向により、高残留磁束密度、高エネルギ
ー積のボンド磁石が実現でき(2)従来の方法に比べて
大量の処理が可能であるので、製造コストを下げる事が
できる。
(1) Coercive force iHc can be increased by making ferromagnetic crystal grains finer by hydrogen treatment. In addition, by mechanically orienting the crystal axes through hot working, bonded magnets with high residual magnetic flux density and high energy product can be realized. I can do it.

また高い磁気特性を持つ磁石の安定供給により、モータ
ー及びモーターを組み込んだ電子機器の小型化、信頼性
向上に多大の効果を有するものである。
In addition, the stable supply of magnets with high magnetic properties has a great effect on downsizing and improving the reliability of motors and electronic devices incorporating motors.

以上 出願人 セイコーエプソン株式会社that's all Applicant: Seiko Epson Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)R(ただしRはYを含む希土類元素のうち少なく
とも1種)、Fe、Bを原料基本成分とし、該基本成分
とする合金を溶解、鋳造し、鋳造合金を熱間加工した後
、水素ガス雰囲気中で熱処理し水素を吸蔵させた後、真
空中で脱水素を行ってから粉砕した磁石粉末を用いる事
を特徴とする希土類ボンド磁石の製造方法。
(1) R (where R is at least one rare earth element including Y), Fe, and B are used as basic raw material components, and after melting and casting the alloy as the basic components and hot working the cast alloy, A method for producing a rare earth bonded magnet, which uses magnet powder that is heat-treated in a hydrogen gas atmosphere to absorb hydrogen, dehydrogenated in a vacuum, and then ground.
(2)請求項1記載の組成を持つ急冷薄帯を熱間加工し
、次いで水素ガス雰囲気中で熱処理し水素を吸蔵させた
後、真空中で脱水素を行ってから粉砕した磁石粉末を用
いる事を特徴とする希土類ボンド磁石の製造方法。
(2) Use magnet powder obtained by hot processing a quenched ribbon having the composition described in claim 1, then heat-treating it in a hydrogen gas atmosphere to absorb hydrogen, dehydrogenating it in a vacuum, and then pulverizing it. A method for producing a rare earth bonded magnet, which is characterized by:
JP2318811A 1990-11-22 1990-11-22 Manufacture of rare-earth bonded magnet Pending JPH04188805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2318811A JPH04188805A (en) 1990-11-22 1990-11-22 Manufacture of rare-earth bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2318811A JPH04188805A (en) 1990-11-22 1990-11-22 Manufacture of rare-earth bonded magnet

Publications (1)

Publication Number Publication Date
JPH04188805A true JPH04188805A (en) 1992-07-07

Family

ID=18103211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2318811A Pending JPH04188805A (en) 1990-11-22 1990-11-22 Manufacture of rare-earth bonded magnet

Country Status (1)

Country Link
JP (1) JPH04188805A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595477A1 (en) * 1992-10-29 1994-05-04 Mitsubishi Materials Corporation Method of manufacturing powder material for anisotropic magnets and method of manufacturing magnets using the powder material
EP0761833A1 (en) * 1995-08-21 1997-03-12 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
US5932369A (en) * 1996-04-25 1999-08-03 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595477A1 (en) * 1992-10-29 1994-05-04 Mitsubishi Materials Corporation Method of manufacturing powder material for anisotropic magnets and method of manufacturing magnets using the powder material
EP0761833A1 (en) * 1995-08-21 1997-03-12 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
US5932369A (en) * 1996-04-25 1999-08-03 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy

Similar Documents

Publication Publication Date Title
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
JPH01704A (en) Rare earth-iron permanent magnet
CA2124395C (en) Magnetically anisotropic spherical powder
JPS62276803A (en) Rare earth-iron permanent magnet
US6056830A (en) Anisotropic magnet powders and their production method
JPH04188805A (en) Manufacture of rare-earth bonded magnet
JP3597615B2 (en) Method for producing RTB based anisotropic bonded magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH04143221A (en) Production of permanent magnet
JPH0142338B2 (en)
JPH04196108A (en) Manufacture of rare-earth bonded magnet
JPH04116101A (en) Magnetic powder for high-coercive-force anisotropic bond magnet and its production
JPH06112019A (en) Nitride magnetic material
JPH0422104A (en) Method of manufacturing permanent magnet
JPS63216307A (en) Alloy powder for magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JPH023203A (en) Permanent magnet and its manufacture
JPH04134806A (en) Manufacture of permanent magnet
JPH04116102A (en) Magnetic powder for anisotropic bond magnet and its production
JPH04214806A (en) Manufacture of rare earth anisotropic permanent magnet powder
JPS61270316A (en) Production of raw material powder for resin bonded permanent alloy
JPS63107009A (en) Manufacture of permanent magnet
JPS63287007A (en) Manufacture of permanent magnet
JPH04324916A (en) Manufacture of rare earth/iron permanent magnet
JPH01161802A (en) Manufacture of permanent magnet