JPH04209505A - Manufacture of rare-earth iron magnet - Google Patents

Manufacture of rare-earth iron magnet

Info

Publication number
JPH04209505A
JPH04209505A JP2400907A JP40090790A JPH04209505A JP H04209505 A JPH04209505 A JP H04209505A JP 2400907 A JP2400907 A JP 2400907A JP 40090790 A JP40090790 A JP 40090790A JP H04209505 A JPH04209505 A JP H04209505A
Authority
JP
Japan
Prior art keywords
earth iron
magnet
rare
powder
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2400907A
Other languages
Japanese (ja)
Inventor
Yoshio Inokoshi
良夫 猪越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2400907A priority Critical patent/JPH04209505A/en
Publication of JPH04209505A publication Critical patent/JPH04209505A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve the corrosion resisting property of a rare-earth iron magnet by using composite magnet powder of rare-earth iron magnet powder respectively coated with an Ni layer having a specific thickness. CONSTITUTION:The surface of each particle of rare-earth iron powder produced by pulverizing the ingot of an Nd15Fe77B8 ternary alloy, etc., is coated with an Ni layer of 0.1-5.0mum in thickness by electroless Ni plating. Then an anisotropic green is obtained by forming the composite powder by a transverse field forming method. Then the formed green is sintered and annealed. Therefore, a high-performed magnet having an excellent corrosion resisting property can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野]本発明は希土類鉄系磁石の製造方
法に関する発明である。詳しくは高耐食性化に関するも
のである。磁石を利用した機器は、モーター等の回転機
器からコンピュータの端末に到るまで幅広く利用されて
いる。とりわけ希土類鉄系磁石は市販されている磁石の
中で最も大きい最大エネルギー積を持ち、磁石を利用し
た機器の高性能化および小型化へ貢献している。 [0002]希土類鉄系磁石は、資源的に豊富なNd。 Ce等を利用でき、しかも磁石の7割(原子百分率)以
上が安価な鉄であることから、希土類コバルト系磁石と
比べ安価に製造できる。また磁気特性の面においても、
最大エネルギー積が希土類コバルト磁石、たとえばSm
Co系磁石のそれと比較し、約1.5倍も大きいため、
近年、希土類磁石市場において急速に普及しつつある。 しかしながら、鉄を主成分とするため容易に錆が発生し
、実用上防錆処理が不可欠である。このため防錆処理の
容易な大型の部材では十分使用可能であるが、小型・微
小磁石部材では磁石体積の減少と共に、防錆処理に伴う
磁石表面層のダメージ比率の増大あるいは表面保護層の
厚みによる磁気特性への影響が無視できなくなり、最大
エネルギー積の低下が著しい。このことは、小型・微小
磁石においては、実用上、希土類鉄系磁石の使用は極め
て困難であることを意味している。 [00031本発明は係る欠点を克服する希土類鉄系磁
石の製造方法において、希土類鉄系磁性粉末の表面(−
厚み0.1〜5,0μmのNi層を持つ複合磁性粉末を
用いることにより、耐食性に優れた高性能希土類鉄系磁
石を作製することができた。本発明の工業的価値は極め
て大きい。 [0004] 【従来の技術】従来は、磁石表面を保護層で被覆するこ
とにより、耐食性を高めるとの発想から、アルミ−クロ
メート処理、エポキシ電着塗装およびNi電着メツキ等
が広く用いられている。 [0005]
[Industrial Application Field] The present invention relates to a method for manufacturing rare earth iron magnets. More specifically, it relates to high corrosion resistance. Devices using magnets are widely used, from rotating devices such as motors to computer terminals. In particular, rare earth iron magnets have the highest maximum energy product among commercially available magnets, contributing to higher performance and smaller size of devices that use magnets. [0002] Rare earth iron magnets include Nd, which is a rich resource. Since it can use materials such as Ce and more than 70% (atomic percentage) of the magnet is cheap iron, it can be manufactured at a lower cost than rare earth cobalt magnets. Also, in terms of magnetic properties,
The maximum energy product is rare earth cobalt magnet, for example Sm
It is about 1.5 times larger than that of Co-based magnets, so
In recent years, rare earth magnets are rapidly becoming popular in the market. However, since it is mainly composed of iron, it easily rusts, and rust prevention treatment is essential for practical purposes. For this reason, it can be used satisfactorily for large components that can be easily treated with rust prevention treatment, but with small and micro magnet components, the magnet volume decreases and the damage ratio of the magnet surface layer increases due to rust prevention treatment, or the thickness of the surface protective layer increases. The influence of this on the magnetic properties can no longer be ignored, and the maximum energy product decreases significantly. This means that it is extremely difficult to use rare earth iron-based magnets in small and micro magnets in practice. [00031 The present invention provides a method for manufacturing a rare earth iron magnet that overcomes the above drawbacks, in which the surface of the rare earth iron magnetic powder (-
By using a composite magnetic powder having a Ni layer with a thickness of 0.1 to 5.0 μm, a high-performance rare earth iron-based magnet with excellent corrosion resistance could be produced. The industrial value of the present invention is extremely large. [0004] Conventionally, aluminum chromate treatment, epoxy electrodeposition coating, Ni electrodeposition plating, etc. have been widely used based on the idea that corrosion resistance can be improved by coating the magnet surface with a protective layer. There is. [0005]

【発明が解決しようとする課題】従来の表面処理による
方法では、小型・微小部材においては、最大エネルギー
積が低下することから、利用できないのが現状である。 小型・微小部材においては、磁石地金そのものの耐食性
を高める必要がある。 [0006]
[Problems to be Solved by the Invention] Currently, conventional surface treatment methods cannot be used for small and minute components because the maximum energy product decreases. For small and minute components, it is necessary to improve the corrosion resistance of the magnet metal itself. [0006]

【課題を解決するための手段】希土類鉄系磁石の製造方
法において、希土類鉄系磁性粉末の表面に、厚み041
〜5.0μmのNi層を持つ複合磁性粉末を用いること
により、課題を解決した。Ni層の厚みを限定した理由
は0. 1μm以下の厚みでは、耐食性改善への効果が
小さいためであり、逆に5.0μm以上の厚みでは、残
留磁化、保磁力共に低下し、最大エネルギー積の低下が
著しいためである。 [0007] 【実施例] Nd+5F e778g  3元合金をア
ーク溶解により、溶製し出発原料とした。次に本合金イ
ンゴットをボールミルを用いて粉砕化した。この時得ら
れた粉末の粒度は3. 0〜3. 5μm (F、  
S、  S、  S)であった。 本粉末に無電解Niメツキにより、Niを粉末表面にコ
ーティングした。本複合粉末は横磁界成型(磁界方向千
成型方向)法により、圧力2.  Ot on/cm2
、印加磁界20koeの条件にて成型し異方性グリーン
とした。 [00081次に異方性グリーンを1050℃〜113
0℃で1時間保持することにより焼結を行った。更に保
磁力の改善を目的に、600℃で1時間焼きなましだ後
、徐冷し試料とした。磁気特性の評価は試料を切断器を
用いて円柱状に切り出した後、水平同軸補償サーチコイ
ルを用いてB−Hカーブを測定し、レコーダー上に描か
れた減磁曲線を直続することにより求めた。 [0009]耐食性の評価は40℃で95%の温度の環
境に、試料を500時間被晒させ、試料の露出断面積あ
たりの重量変化により評価した。ここで、試料の重量変
化はほとんど錆に起因することから、重量変化が小さい
ほど耐食性が高いと考えて良い。 (図1に示す)[0
0101 【発明の効果]耐食性に優れた高性能希土類鉄系磁石を
提供する。従来のS m Co系磁石と比べ、コスト磁
気特性および耐食性の面で同等もしくはそれを凌ぐ効果
が得られたものである。
[Means for Solving the Problems] In a method for manufacturing a rare earth iron magnet, the surface of the rare earth iron magnetic powder has a thickness of 041 mm.
The problem was solved by using a composite magnetic powder with a Ni layer of ~5.0 μm. The reason for limiting the thickness of the Ni layer is 0. This is because if the thickness is 1 μm or less, the effect on improving corrosion resistance is small, and if the thickness is 5.0 μm or more, both residual magnetization and coercive force decrease, and the maximum energy product decreases significantly. [0007] [Example] A ternary alloy of Nd+5F e778g was melted by arc melting and used as a starting material. Next, this alloy ingot was pulverized using a ball mill. The particle size of the powder obtained at this time was 3. 0-3. 5 μm (F,
S, S, S). The powder surface was coated with Ni by electroless Ni plating. This composite powder was produced using a transverse magnetic field molding method (magnetic field direction: 1,000 molding directions) under a pressure of 2. Oton/cm2
It was molded under the conditions of an applied magnetic field of 20 koe to obtain an anisotropic green. [00081 Next, anisotropic green is heated to 1050℃~113℃
Sintering was performed by holding at 0°C for 1 hour. Furthermore, in order to improve the coercive force, the sample was annealed at 600° C. for 1 hour and then slowly cooled. The magnetic properties were evaluated by cutting the sample into a cylindrical shape using a cutter, measuring the B-H curve using a horizontal coaxial compensation search coil, and directly connecting the demagnetization curve drawn on the recorder. I asked for it. [0009] Corrosion resistance was evaluated by exposing the sample to an environment of 95% temperature at 40° C. for 500 hours, and evaluating the weight change per exposed cross-sectional area of the sample. Here, since most of the weight change of the sample is due to rust, it can be considered that the smaller the weight change, the higher the corrosion resistance. (shown in Figure 1) [0
[Effects of the Invention] A high performance rare earth iron magnet with excellent corrosion resistance is provided. Compared to conventional S m Co-based magnets, it has the same or better effects in terms of cost magnetic properties and corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

【図11Ni層の厚みによる特性図である。 【図1】FIG. 11 is a characteristic diagram according to the thickness of the Ni layer. [Figure 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】希土類鉄系磁石の製造方法において、希土
類鉄系磁石粉末の表面に、厚み0.1〜5.0μmのN
i層を持つ複合磁性粉末を用いることを特徴とする希土
類鉄系磁石の製造方法。
Claim 1: In a method for manufacturing a rare earth iron magnet, N is applied to the surface of rare earth iron magnet powder to a thickness of 0.1 to 5.0 μm.
A method for producing a rare earth iron magnet, characterized by using a composite magnetic powder having an i-layer.
JP2400907A 1990-12-07 1990-12-07 Manufacture of rare-earth iron magnet Pending JPH04209505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2400907A JPH04209505A (en) 1990-12-07 1990-12-07 Manufacture of rare-earth iron magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2400907A JPH04209505A (en) 1990-12-07 1990-12-07 Manufacture of rare-earth iron magnet

Publications (1)

Publication Number Publication Date
JPH04209505A true JPH04209505A (en) 1992-07-30

Family

ID=18510772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2400907A Pending JPH04209505A (en) 1990-12-07 1990-12-07 Manufacture of rare-earth iron magnet

Country Status (1)

Country Link
JP (1) JPH04209505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903826A (en) * 2014-04-04 2014-07-02 北京工业大学 Corrosion-resistant neodymium, iron and boron permanent magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284002A (en) * 1986-05-02 1987-12-09 Tohoku Metal Ind Ltd Magnetic alloy powder consisting of rare earth element
JPS6415301A (en) * 1987-07-08 1989-01-19 Kawasaki Steel Co Rare earth metal-iron group alloy powder for resin combination type permanent magnet having excellent corrosion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284002A (en) * 1986-05-02 1987-12-09 Tohoku Metal Ind Ltd Magnetic alloy powder consisting of rare earth element
JPS6415301A (en) * 1987-07-08 1989-01-19 Kawasaki Steel Co Rare earth metal-iron group alloy powder for resin combination type permanent magnet having excellent corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903826A (en) * 2014-04-04 2014-07-02 北京工业大学 Corrosion-resistant neodymium, iron and boron permanent magnet

Similar Documents

Publication Publication Date Title
CN108962523B (en) Preparation method of SmCu alloy-doped samarium-cobalt-based nano composite permanent magnet
JPWO2012036294A1 (en) Rare earth magnet manufacturing method
CN104823249A (en) Rare-earth permanent magnetic powders, bonded magnet comprising same, and device using bonded magnet
EP3667685A1 (en) Heat-resistant neodymium iron boron magnet and preparation method therefor
CN104505247A (en) Solid diffusion process with capability of improving performances of Nd-Fe-B magnet
JP6613730B2 (en) Rare earth magnet manufacturing method
KR100204256B1 (en) Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JP2018174314A (en) R-T-B based sintered magnet
CN103219145B (en) The preparation method of a kind of SmCo and iron cobalt built-up magnet
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
CN110895984A (en) Strong texture SmCo5Base nano composite permanent magnetic material and its preparation method
Gould Permanent magnets
JPH0353505A (en) Bonded magnet and magnetization thereof
JPH04209505A (en) Manufacture of rare-earth iron magnet
JPH01100242A (en) Permanent magnetic material
CN113782331B (en) Preparation method of high-performance double-hard-magnetic-phase nanocomposite magnet
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH04293206A (en) Pare earth elements-fe-b based anisotropic permanent magnet
JPS619551A (en) Rare earth element-iron type permanent magnet alloy
JP3649291B2 (en) Method for producing R-T-B system anisotropic magnetic powder for bonded magnet
JPS61245505A (en) Manufacture of rare-earth iron magnet
JPH06251917A (en) Rare earth element permanent magnet
CN116825469A (en) High-coercivity and high-corrosion-resistance neodymium-iron-boron magnet and preparation method thereof
JPH04134806A (en) Manufacture of permanent magnet
JPH02276210A (en) Anisotropic ring-shaped magnet and manufacture thereof