JPH06251917A - Rare earth element permanent magnet - Google Patents

Rare earth element permanent magnet

Info

Publication number
JPH06251917A
JPH06251917A JP5033653A JP3365393A JPH06251917A JP H06251917 A JPH06251917 A JP H06251917A JP 5033653 A JP5033653 A JP 5033653A JP 3365393 A JP3365393 A JP 3365393A JP H06251917 A JPH06251917 A JP H06251917A
Authority
JP
Japan
Prior art keywords
phase
rare earth
permanent magnet
earth element
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5033653A
Other languages
Japanese (ja)
Inventor
Sei Arai
聖 新井
Osamu Kobayashi
理 小林
Fumio Takagi
富美男 高城
Seiji Ihara
清二 伊原
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5033653A priority Critical patent/JPH06251917A/en
Publication of JPH06251917A publication Critical patent/JPH06251917A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To avoid the crazing and cracking in the title rare earth element permanent magnet by a method wherein the title magnet comprising R, Fe, B, Ca as the material basic components manufactured by hot working and heat treatment after molding step has R6Fe11Ga3 phase as the composing phase while containing the alloy composition in a specific composition region. CONSTITUTION:The rare earth element permanent magnet to be manufactured by hot rolling step after melting down and molding step of an alloy using R (R represents rare earth element mainly comprising Pr, Nd) Fe, B, Ga as the material basic components and further heat treatment has R6Fe11Ga3 phase as a composing phase. Furthermore, when the alloy composition is represented by RxFeyBzGa100-x-y-z in atomic ratio, the earth element is to be in the composition region of x>=15, y-14z>0, z>=4, 100-x-y-z<2. In such a constitution, the title rare earth element permanent magnet having high performances and excellent corrosion resistance can be manufactured at low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、R(ただしRはPr,
Ndを主成分とする希土類元素),Fe,B,Gaを原
料基本成分とする希土類永久磁石に関するものである。
The present invention relates to R (where R is Pr,
The present invention relates to a rare earth permanent magnet containing Nd as a main component, Fe, B, and Ga as raw material basic components.

【0002】[0002]

【従来の技術】R−Fe−B系永久磁石は、極めて高い
保磁力とエネルギー積を持つ永久磁石として、1983年の
発表以来、多くの研究開発がなされている。
2. Description of the Related Art R-Fe-B system permanent magnets have been much researched and developed since the announcement in 1983 as permanent magnets having extremely high coercive force and energy product.

【0003】従来、これらR−Fe−B系の高性能異方
性永久磁石の製造方法には、次のようなものがある。
Conventionally, there are the following methods for producing these R—Fe—B type high-performance anisotropic permanent magnets.

【0004】(1)まず、特開昭59-46008号公報やM.Sagaw
a,S.Fujimura,N.Togawa,H.Yamamotoand Y.Matsuura;J.A
ppl.Phys.Vol.55(6),15 March 1984,p2083 等には、原
子百分比で8〜30%のR(ただしRはYを含む希土類元素
の少なくとも1種)、2〜28%のB及び残部Feからなる
磁気異方性焼結体であることを特徴とする永久磁石が粉
末冶金法に基づく焼結によって製造されることが開示さ
れている。
(1) First, Japanese Patent Laid-Open No. 59-46008 and M. Sagaw
a, S.Fujimura, N.Togawa, H.Yamamoto and Y.Matsuura; JA
In ppl.Phys.Vol.55 (6), 15 March 1984, p2083, etc., 8 to 30% of R (where R is at least one rare earth element including Y) and 2 to 28% of B in atomic percentage are described. It is disclosed that a permanent magnet characterized by being a magnetic anisotropic sintered body composed of Fe and the balance Fe is manufactured by sintering based on the powder metallurgy method.

【0005】この焼結法では、溶解・鋳造により合金イ
ンゴットを作製し、粉砕して適当な粒度(数μm)の磁
性粉を得る。磁性粉は成形助剤のバインダーと混練さ
れ、磁場中でプレス成形されて成形体が出来上がる。成
形体はアルゴン中で1100℃前後の温度で1〜5時間程度
焼結され、その後室温まで急冷される。焼結後、600 ℃
前後の温度で熱処理する事により永久磁石はさらに保磁
力を向上させる。
In this sintering method, an alloy ingot is produced by melting and casting and crushed to obtain a magnetic powder having an appropriate particle size (several μm). The magnetic powder is kneaded with a binder, which is a molding aid, and press-molded in a magnetic field to form a molded body. The compact is sintered in argon at a temperature of about 1100 ° C. for about 1 to 5 hours and then rapidly cooled to room temperature. 600 ° C after sintering
The permanent magnet further improves the coercive force by heat treatment at the temperature around.

【0006】また、この焼結磁石の熱処理に関しては特
開昭61-217540 号公報、特開昭62-165305 号公報等に、
多段熱処理の効果が開示されている。
Regarding the heat treatment of this sintered magnet, Japanese Patent Laid-Open No. 61-217540, Japanese Patent Laid-Open No. 62-165305, etc.
The effect of multi-step heat treatment is disclosed.

【0007】(2)特開昭59-211549 号公報や R.W.Lee; A
ppl.Phys.Lett.Vol.46(8),15 April1985,p790には、非
常に微細な結晶性の磁性相を持つ、メルトスピニングさ
れた合金リボンの微細片が樹脂によって接着されたR−
Fe−B磁石が開示されている。 この永久磁石は、ア
モルファス合金を製造するに用いる急冷薄帯製造装置
で、厚さ30μm程度の急冷薄片を作り、その薄片を樹脂
と混練してプレス成形することにより製造される。
(2) JP-A-59-211549 and RWLee; A
Vol. 46 (8), 15 April 1985, p790, ppl.
Fe-B magnets are disclosed. This permanent magnet is manufactured by a quenching ribbon production apparatus used for producing an amorphous alloy, by making a quenching thin piece having a thickness of about 30 μm, kneading the thin piece with a resin and press-molding.

【0008】(3)特開昭60-100402号公報や R.W.Lee; Ap
pl. Phys.Lett.Vol.46(8),15 April1985,p790には、前
記(2) の方法で使用した急冷薄片を、真空中あるいは不
活性雰囲気中で2段階ホットプレス法と呼ばれる方法で
緻密で異方性を有するR−Fe−B磁石を得ることが開
示されている。
(3) JP-A-60-100402 and RWLee; Ap
In Pl. Phys. Lett. Vol. 46 (8), 15 April1985, p790, the quenched flakes used in the method of (2) above are prepared by a method called a two-step hot pressing method in vacuum or in an inert atmosphere. It is disclosed to obtain a dense and anisotropic R-Fe-B magnet.

【0009】(4)特開昭64-704号公報には、R,Fe,
B,Cuを基本成分とする合金を溶解・鋳造後、該鋳造
インゴットを 500℃以上の温度で熱間加工することによ
り結晶粒を微細化しまたその結晶軸を特定の方向に配向
せしめて、該鋳造合金を磁気的に異方性化することを特
徴とするいわゆる鋳造・熱間加工法による希土類永久磁
石の製法が開示されている。また特開平1-175206号公報
にはAl15原子%以下、Cu6原子%以下、Ga6原子
%以下を添加した鋳造・熱間加工法による希土類−鉄系
磁石が開示されている。さらに特開平4-105305号公報に
は主相であるR2Fe14B相と第2相であるR-(Ga,
In,Sn)系の低融点相からなる鋳造・熱間加工法に
よる希土類永久磁石が開示されている。
(4) Japanese Patent Laid-Open No. 64-704 discloses R, Fe,
After melting and casting an alloy containing B and Cu as basic components, the cast ingot is subjected to hot working at a temperature of 500 ° C. or higher to refine the crystal grains and to orient the crystal axes in a specific direction. A method for producing a rare earth permanent magnet by a so-called casting / hot working method, which is characterized by magnetically anisotroping a cast alloy, is disclosed. Further, Japanese Patent Application Laid-Open No. 1-175206 discloses a rare earth-iron-based magnet by a casting / hot working method in which Al 15 atomic% or less, Cu 6 atomic% or less, and Ga 6 atomic% or less are added. Further, in JP-A-4-105305, the main phase R 2 Fe 14 B phase and the second phase R- (Ga,
A rare earth permanent magnet made of an In, Sn) -based low melting point phase by a casting / hot working method is disclosed.

【0010】[0010]

【発明が解決しようとする課題】叙上の(1)〜(4)の従来
のR−Fe−B系永久磁石の製造方法は、次のごとき欠
点を有している。
The conventional methods for manufacturing R-Fe-B based permanent magnets (1) to (4) above have the following drawbacks.

【0011】(1)の永久磁石の製造方法は、合金を粉末
にすることを必須とするものであるが、R−Fe−B系
合金はたいへん酸素に対して活性を有するので、粉末化
すると余計酸化が激しくなり、焼結体中の酸素濃度はど
うしても高くなってしまう。
The method for producing a permanent magnet of (1) requires that the alloy be made into a powder. However, since the R-Fe-B type alloy is very active in oxygen, if it is made into a powder. Oxidation becomes excessive, and the oxygen concentration in the sintered body will inevitably increase.

【0012】また粉末を成形するときに、例えばステア
リン酸亜鉛の様な成形助剤を使用しなければならず、こ
れは焼結工程で前もって取り除かれるのであるが、成形
助剤中の数割は、磁石体の中に炭素の形で残ってしま
い、この炭素は著しくR−Fe−B磁石の磁気性能を低
下させ好ましくない。
When molding the powder, it is necessary to use a molding aid, such as zinc stearate, which has been removed beforehand in the sintering process. However, it remains in the form of carbon in the magnet body, and this carbon remarkably deteriorates the magnetic performance of the R-Fe-B magnet, which is not preferable.

【0013】成形助剤を加えてプレス成形した後の成形
体はグリーン体と言われ、これは大変脆く、ハンドリン
グが難しい。従って焼結炉にきれいに並べて入れるのに
は、相当の手間が掛かることも大きな欠点である。
The green body after press molding with the addition of a molding aid is called a green body, which is very brittle and difficult to handle. Therefore, it takes a great deal of time to neatly put them side by side in the sintering furnace, which is a big drawback.

【0014】これらの欠点があるので、一般的に言って
R−Fe−B系の焼結磁石の製造には、高価な設備が必
要になるばかりでなく、その製造方法は生産効率が悪
く、結局磁石の製造コストが高くなってしまう。従っ
て、比較的原料費の安いR−Fe−B系磁石の長所を活
かすことが出来ない。
Because of these drawbacks, generally speaking, not only expensive equipment is required for producing an R--Fe--B system sintered magnet, but also the production method thereof has a low production efficiency, Eventually, the manufacturing cost of the magnet increases. Therefore, it is not possible to take advantage of the advantages of the R-Fe-B magnets, which have relatively low raw material costs.

【0015】次に (2)並びに (3)の永久磁石の製造方法
は、真空メルトスピニング装置を使用するが、この装置
は、現在では大変生産性が悪くしかも高価である。
Next, in the manufacturing methods of the permanent magnets of (2) and (3), a vacuum melt spinning device is used, but this device is currently very poor in productivity and expensive.

【0016】(2)の永久磁石は、原理的に等方性である
ので低エネルギー積であり、ヒステリシスループの角形
性も悪く、温度特性に対しても、使用する面においても
不利である。
Since the permanent magnet of (2) is isotropic in principle, it has a low energy product, the squareness of the hysteresis loop is poor, and it is disadvantageous in terms of temperature characteristics and use.

【0017】(3)の永久磁石を製造する方法は、ホット
プレスを二段階に使うというユニークな方法であるが、
実際に量産を考えると非効率であることは否めないであ
ろう。
The method (3) for manufacturing a permanent magnet is a unique method in which hot pressing is used in two steps.
It cannot be denied that it is inefficient considering mass production.

【0018】更にこの方法では、高温例えば 800℃以上
では結晶粒の粗大化が著しく、それによって保磁力iHc
が極端に低下し、実用的な永久磁石にはならない。
Further, in this method, the crystal grains are remarkably coarsened at a high temperature, for example, at 800 ° C. or higher, which causes the coercive force iHc
Becomes extremely low, and it does not become a practical permanent magnet.

【0019】(4)の永久磁石を製造する方法は、粉末工
程を含まず、熱間加工も一段階でよいために、最も製造
工程が簡略化されるが、性能的には(1)-(3)に比してや
や劣るという問題があった。またGaを添加することに
より、磁気特性の向上はみられるが、これは必ずしも特
開平4-105305で述べているように第2相としてR−Ga
系の低融点相が存在する際に得られるものではなく、こ
のような第2相が存在する場合でも磁気特性、特に保磁
力に関してのばらつきは大きく、サンプルによってはか
なり低い保磁力に留まってしまう場合が見られた。
The method of manufacturing a permanent magnet of (4) does not include a powder process and requires only one step of hot working, so that the manufacturing process is most simplified, but the performance is (1)- There was a problem that it was slightly inferior to (3). Although the addition of Ga improves the magnetic properties, this is not always the case as R-Ga as the second phase as described in JP-A-4-105305.
It is not obtained in the presence of the low melting point phase of the system, and even in the presence of such a second phase, there are large variations in the magnetic properties, especially the coercive force, and the coercive force remains quite low depending on the sample. The case was seen.

【0020】本発明は、このような鋳造・熱間圧延法に
於ける欠点を解決するものであり、その目的とするとこ
ろは、高性能かつ低コストな希土類永久磁石の製造方法
を提供することにある。
The present invention solves the drawbacks of the casting / hot rolling method, and an object of the invention is to provide a high-performance and low-cost method for producing a rare earth permanent magnet. It is in.

【0021】[0021]

【課題を解決するための手段】本発明はR(ただしRは
Pr,Ndを主成分とする希土類元素),Fe,B,G
aを原料基本成分とする合金を溶解・鋳造後、熱間圧延
を行い、さらに熱処理を施して得られる希土類永久磁石
において、構成相としてR6Fe11Ga3相を有すること
を特徴とする希土類永久磁石である。
According to the present invention, R (where R is a rare earth element containing Pr, Nd as a main component), Fe, B, G is used.
A rare earth permanent magnet obtained by melting / casting an alloy containing a as a raw material basic component, hot rolling, and further heat-treating the rare earth permanent magnet having a R 6 Fe 11 Ga 3 phase as a constituent phase. It is a permanent magnet.

【0022】さらに合金組成が原子比でRxFeyz
100-x-y-zと表わされるとき、 x≧15 y−14z>0 z≧4 100−x−y−z<2 なる組成域にあることを特徴とする希土類永久磁石であ
る。
Further, the alloy composition has an atomic ratio of R x Fe y B z G
When expressed as a 100-xyz , the rare earth permanent magnet is characterized by having a composition range of x ≧ 15 y-14z> 0 z ≧ 4 100-x−y−z <2.

【0023】[0023]

【作用】まずR6Fe11Ga3相について述べる。磁石組
織中においてのこの相の存在の有無は偏光光学顕微鏡に
よる組織観察によって簡単に判別することができる。な
ぜならば特定の偏光に対して非常に強い反射を示すため
である。後述の表1のサンプルNo.1に関して、偏光光
学顕微鏡によって確認した相のEPMAによる組成分析
を行なった。その結果、この相はおよそPr30at%、F
e54at%、Ga14at%と他の微量な元素からなる組成を有
し、PrとFeとGaの原子比がほぼ6:11:3であ
ることがわかった。F. WeitzerらによればPr-Fe-G
aの3元系合金に関する研究に於て正方晶化合物のR6
Fe11Ga3相の存在が確認されており(F. Weitzer et
al; J. Less-Common Met. 167(1990)135)、本発明の
ような鋳造・熱間加工法による磁石中にもこの相が存在
することが判明した。
First, the R 6 Fe 11 Ga 3 phase will be described. The presence or absence of this phase in the magnet structure can be easily determined by observing the structure with a polarization optical microscope. This is because it shows a very strong reflection for a specific polarized light. With respect to Sample No. 1 in Table 1 described later, composition analysis by EPMA of the phase confirmed by a polarization optical microscope was performed. As a result, this phase is approximately Pr30at%, F
It was found that the composition was composed of e54 at% and Ga14 at% and other trace elements, and the atomic ratio of Pr, Fe and Ga was approximately 6: 11: 3. According to F. Weitzer et al., Pr-Fe-G
In the study on the ternary alloy of a, R 6 of tetragonal compound
The existence of the Fe 11 Ga 3 phase has been confirmed (F. Weitzer et.
al; J. Less-Common Met. 167 (1990) 135), and it was found that this phase also exists in the magnet by the casting / hot working method as in the present invention.

【0024】R6Fe11Ga3相を持つR-Fe-B-Ga
系磁石においては良好な磁気特性、特に高い保磁力を得
ることができる。本発明によるこのような磁気特性の向
上は、次のような効果によるものと考えられる。
R-Fe-B-Ga with R 6 Fe 11 Ga 3 phase
In the system magnet, good magnetic characteristics, especially high coercive force can be obtained. It is considered that such improvement of the magnetic characteristics according to the present invention is due to the following effects.

【0025】第1の効果は、粒界相部分において磁化反
転の核となり得る強磁性相の消滅ということである。従
来のR-Fe-B-Ga系磁石においては、粒界相部分に
α-FeあるいはR2Fe17といった保磁力の低い強磁性
相の点在が見られた。このような強磁性相は磁化反転の
核になり、そのため保磁力が激減してしまう。しかしR
6Fe11Ga3相が形成される場合にはこのような強磁性
相が消滅する。R6Fe1 1Ga3相は磁化反転の核として
主相に磁気的な影響を与えることはわずかで、このため
良好な保磁力が得られるものと考えられる。第2の効果
は、主相結晶粒同士の分離の促進と主相結晶粒の粒成長
の抑制ということである。後述の実施例において見られ
るように、粒界にR6Fe11Ga3相が存在しない場合に
は主相粒同士が接触して存在する部分が多くみられる。
このような部分は磁化反転が容易となり、保磁力の低下
を招く。これに対してR6Fe11Ga3相が粒界相部分に
均一に分散して存在する場合は、この相によって主相同
士の磁気的な孤立化がうまく成されており、このため磁
化反転が起こり難くなって高い保磁力が実現できるもの
と考えられる。また組織写真から判断すると、最終の磁
石組織としてR6Fe1 1Ga3相が存在している場合に
は、主相結晶粒径はR6Fe11Ga3相が存在しない場合
よりも小さくなっている。R6Fe11Ga3相が主相結晶
粒径の微細化に直接寄与しているかどうかは不明である
が、このように結果的には微細な主相粒が得られ、高保
磁力が実現される。
The first effect is that the ferromagnetic phase, which can be a nucleus of magnetization reversal in the grain boundary phase portion, disappears. In the conventional R-Fe-B-Ga-based magnet, there were scattered ferromagnetic phases with low coercive force such as α-Fe or R 2 Fe 17 in the grain boundary phase portion. Such a ferromagnetic phase becomes the nucleus of the magnetization reversal, so that the coercive force is drastically reduced. But R
When the 6 Fe 11 Ga 3 phase is formed, such a ferromagnetic phase disappears. The R 6 Fe 1 1 Ga 3 phase rarely exerts a magnetic effect on the main phase as a nucleus of magnetization reversal, and it is considered that a good coercive force is obtained. The second effect is to promote the separation of the main phase crystal grains from each other and to suppress the grain growth of the main phase crystal grains. As will be seen in Examples described later, when the R 6 Fe 11 Ga 3 phase does not exist at the grain boundary, there are many portions where the main phase grains are in contact with each other.
In such a portion, the magnetization reversal becomes easy and the coercive force is lowered. On the other hand, when the R 6 Fe 11 Ga 3 phase exists uniformly dispersed in the grain boundary phase portion, the main phases are magnetically isolated well by this phase, and therefore the magnetization reversal is caused. It is thought that the high coercive force can be realized because it becomes less likely to occur. Judging from the microstructure photograph, when the R 6 Fe 1 1 Ga 3 phase was present as the final magnet structure, the crystal grain size of the main phase was smaller than when the R 6 Fe 11 Ga 3 phase was not present. ing. It is unclear whether the R 6 Fe 11 Ga 3 phase directly contributes to the refinement of the crystal grain size of the main phase, but as a result, fine main phase grains are obtained and a high coercive force is realized. It

【0026】上述したように磁石組織中に構成相として
6Fe11Ga3相が存在することにより高い磁気特性が
得られる。しかし、さらに合金組成を適切に選ぶことに
よって、熱間圧延時における圧延材の割れ・クラックを
大幅に抑制できることが可能となり、高い歩留まりが実
現でき、低コスト化が可能となる。熱間圧延時の圧延材
に於ける割れ・クラックの発生は希土類元素R量が15
原子%未満になった場合に激しくなる。これは粒界にお
いて熱間圧延温度で液体状態となっているRリッチ相の
存在比が少なくなり、半溶融加工を容易に行なうために
充分な液相量が得られないためと考えられる。またGa
の添加量も割れ・クラックの発生に大きな影響を及ぼし
ている。具体的には添加量が2原子%以上になると割れ
の量が大幅に増加してしまう。この原因ははっきりとは
しないが、圧延時のせん断応力によるクラックの進展が
容易となるためではないかと考えられる。合金組成中の
Fe量に関しては粒界相としてR6Fe11Ga3相を存在
させるためにFeがすべて主相中で消費されないような
組成域、具体的にはy−14z>0にあることが必要で
ある。またB量に関しては4原子%未満では主相量が不
足し、満足な磁気特性が得られなくなる。
As described above, the presence of the R 6 Fe 11 Ga 3 phase as a constituent phase in the magnet structure makes it possible to obtain high magnetic characteristics. However, by appropriately selecting the alloy composition, it is possible to significantly suppress the cracking / cracking of the rolled material during hot rolling, and it is possible to realize a high yield and reduce costs. The occurrence of cracks and cracks in the rolled material during hot rolling is due to the rare earth element R content of 15
It becomes violent when it becomes less than atomic%. It is considered that this is because the abundance ratio of the R-rich phase, which is in a liquid state at the hot rolling temperature at the grain boundary, becomes small, and a sufficient amount of liquid phase is not obtained to easily perform the semi-melt processing. Also Ga
The addition amount of has a great influence on the occurrence of cracks and cracks. Specifically, if the addition amount is 2 atomic% or more, the amount of cracks increases significantly. The reason for this is not clear, but it is thought that the cracks easily develop due to shear stress during rolling. Regarding the amount of Fe in the alloy composition, the composition range is such that all Fe is not consumed in the main phase because the R 6 Fe 11 Ga 3 phase is present as a grain boundary phase, specifically, y-14z> 0. is necessary. If the amount of B is less than 4 atomic%, the amount of main phase will be insufficient and satisfactory magnetic properties will not be obtained.

【0027】また割れ・クラックの発生により磁石中に
存在する酸素濃度が高くなり耐食性に悪影響を及ぼす。
特開平4-62903号公報には磁石中の酸素濃度が1500ppmを
越えると耐食性が劣化することが開示されているが、割
れ・クラックが発生した場合にはそこから酸化が進行
し、酸素濃度が1500ppmを越えて耐食性が劣化する。こ
のため合金組成を本発明のような組成域に設定すること
により、良好な耐食性を確保できるという二次的な効果
も挙げることができる。
Further, the generation of cracks / cracks increases the concentration of oxygen present in the magnet, which adversely affects the corrosion resistance.
Japanese Patent Laid-Open No. 4-62903 discloses that the corrosion resistance deteriorates when the oxygen concentration in the magnet exceeds 1500 ppm, but if cracks or cracks occur, oxidation proceeds from there and the oxygen concentration increases. Corrosion resistance deteriorates beyond 1500ppm. Therefore, by setting the alloy composition in the composition range as in the present invention, it is possible to obtain a secondary effect that good corrosion resistance can be secured.

【0028】熱間圧延の条件は既に前出特許などで公知
となっている条件で行なえばよい。具体的には主相の再
結晶温度以上とすることが望ましく、本発明の合金に関
して言えば500℃以上とすることが好ましい。
The hot rolling conditions may be those already known in the above-mentioned patents and the like. Specifically, it is desirable that the temperature is not less than the recrystallization temperature of the main phase, and in the case of the alloy of the present invention, it is preferably not less than 500 ° C.

【0029】熱間加工後の熱処理条件はR6Fe11Ga3
相を形成できるような条件で行なうことが望ましく、具
体的には400〜800℃の温度範囲に於て熱処理を施すこと
が望ましい。さらには、この熱処理に先立って800〜110
0℃の温度で熱処理を行なう2段熱処理を施すことが好
ましい。
The heat treatment conditions after hot working are R 6 Fe 11 Ga 3
It is desirable to carry out under the condition that a phase can be formed, and specifically it is desirable to carry out heat treatment in the temperature range of 400 to 800 ° C. Furthermore, 800-110 prior to this heat treatment
It is preferable to perform a two-step heat treatment in which the heat treatment is performed at a temperature of 0 ° C.

【0030】次に本発明の実施例について述べる。Next, examples of the present invention will be described.

【0031】[0031]

【実施例】【Example】

(実施例1)表1に示す組成の合金を、アルゴン雰囲気
中で高周波誘導加熱溶解炉を用いて溶解し、次いで金型
中に鋳造した。希土類、鉄及び銅の原料としては99.9%
の純度のものを用い、ボロンはフェロボロン合金を用い
た。
(Example 1) An alloy having the composition shown in Table 1 was melted in an argon atmosphere using a high frequency induction heating melting furnace, and then cast in a mold. 99.9% as raw material for rare earth, iron and copper
Of the above-mentioned purity, and a ferroboron alloy was used as boron.

【0032】次ぎに、この鋳造インゴットを鉄製のカプ
セルに入れ、脱気し、密封した。これに 950℃で加工度
30%の熱間圧延を空気中で4回行い、最終的に加工度が7
6%になるようにした。
Next, the cast ingot was placed in an iron capsule, deaerated and sealed. Degree of processing at 950 ℃
30% hot rolling is performed 4 times in air, and finally the workability is 7
I made it 6%.

【0033】熱間圧延時においては、合金の押される方
向に平行になるように主相(R2Fe14B相)の磁化容
易軸は配向した。
During hot rolling, the easy axis of magnetization of the main phase (R 2 Fe 14 B phase) was oriented so as to be parallel to the pushing direction of the alloy.

【0034】この後、アルゴン雰囲気中にて1025℃×20
h+500℃×6hの2段熱処理を施した。
After this, 1025 ° C. × 20 in an argon atmosphere
A two-stage heat treatment of h + 500 ° C. × 6 h was performed.

【0035】この時の組織を偏光をかけて光学顕微鏡で
観察したところ、主相以外の粒界相としてR6Fe11
3相が存在するものとしないものの両方が観察され
た。ここで両者の代表的な組織観察結果の模式図を図1
および図2に示す。図1は粒界相としてR6Fe11Ga3
相が存在するもので主相同士の分離が促進され、粒径も
小さい組織となっている。図2は粒界相としてR6Fe
11Ga3相が存在しない組織であり、主相同士の孤立化
がうまく成されておらず、また主相粒径も粗大化してい
る。
When the structure at this time was observed by an optical microscope with polarized light, R 6 Fe 11 G was observed as a grain boundary phase other than the main phase.
Both what does and does not a 3-phase is present is observed. Here, a schematic diagram of the typical structure observation results of both is shown in FIG.
And shown in FIG. Figure 1 shows R 6 Fe 11 Ga 3 as the grain boundary phase.
Due to the existence of phases, the separation of the main phases is promoted and the grain size is small. Figure 2 shows R 6 Fe as the grain boundary phase.
This structure has no 11 Ga 3 phase, the main phases are not well isolated from each other, and the main phase grain size is coarse.

【0036】表2には表1に示した合金組成の圧延磁石
における磁気特性と、光学顕微鏡観察を行なった結果か
ら判断したR6Fe11Ga3相の有無を示す。この場合の
磁気特性はサンプルを40kOeのパルス磁場で着磁した
後、最大印加磁場25kOeでB-Hトレーサーにより測定し
た。
Table 2 shows the magnetic properties of the rolled magnets having the alloy compositions shown in Table 1 and the presence / absence of the R 6 Fe 11 Ga 3 phase judged from the results of observation with an optical microscope. The magnetic characteristics in this case were measured by a BH tracer with a maximum applied magnetic field of 25 kOe after the sample was magnetized with a pulsed magnetic field of 40 kOe.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】以上のように構成相としてR6Fe11Ga3
相を持つR-Fe-B-Ga系永久磁石は高い磁気特性、
特に高保磁力を実現することができる。
As described above, R 6 Fe 11 Ga 3 is used as the constituent phase.
R-Fe-B-Ga permanent magnets with phases have high magnetic characteristics,
In particular, a high coercive force can be realized.

【0040】(実施例2)表3に示すような組成の合金
を溶解・鋳造後、実施例1と同条件で圧延を行った。
Example 2 Alloys having the compositions shown in Table 3 were melted and cast, and then rolled under the same conditions as in Example 1.

【0041】圧延終了後冷却し、鉄製カプセル中から圧
延材を取り出した。得られた圧延材の圧下方向と圧延方
向を含む断面を観察し、割れ・クラックの有無を目視に
より評価した。その結果を表4に示す。
After the completion of rolling, the material was cooled and the rolled material was taken out from the iron capsule. The cross section including the rolling direction and the rolling direction of the obtained rolled material was observed, and the presence or absence of cracks / cracks was visually evaluated. The results are shown in Table 4.

【0042】得られた圧延材について1025℃×20h+500
℃×6hの2段熱処理を施し、磁石サンプルを得た。いず
れの磁石組織中にも構成相としてR6Fe11Ga3相が確
認された。これらのサンプルについて測定した磁気特性
を表4に併せて示す。この場合の磁気特性はサンプルを
40kOeのパルス磁場で着磁した後、最大印加磁場25kOeで
B-Hトレーサーにより測定した。
Regarding the obtained rolled material, 1025 ° C. × 20 h + 500
A two-stage heat treatment of ℃ × 6h was applied to obtain a magnet sample. The R 6 Fe 11 Ga 3 phase was confirmed as a constituent phase in all the magnet structures. The magnetic properties measured for these samples are also shown in Table 4. In this case, the magnetic characteristics of the sample
After magnetizing with a pulsed magnetic field of 40kOe, the maximum applied magnetic field is 25kOe.
Measured by BH tracer.

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】以上のようにx≧15、y−14z>0、
z≧4、100−x−y−z<2なる組成域にある合金を
熱間圧延することによって割れ・クラックが無く、かつ
磁気特性の良好な希土類永久磁石を得ることが可能とな
る。
As described above, x ≧ 15, y-14z> 0,
By hot rolling an alloy in the composition range of z ≧ 4, 100−x−y−z <2, it is possible to obtain a rare earth permanent magnet having no cracks and good magnetic properties.

【0046】上表4と同一の磁石についてサンプル中の
酸素濃度を測定した。測定結果を表5に示す。また各磁
石サンプルを所望の形状に切断・研磨し、磁石表面にス
プレー法によりエポキシ樹脂で膜厚が20μmとなるよ
うにコーティングを施し、次いで耐食性試験を温度60
℃、湿度90%の雰囲気条件にて行い、外観状況を観察
して耐食性の評価を行った。表5にその結果を併せて示
す。
The oxygen concentration in the sample was measured for the same magnets as in Table 4 above. The measurement results are shown in Table 5. Also, each magnet sample is cut and polished into a desired shape, and the magnet surface is coated with an epoxy resin to a film thickness of 20 μm by a spray method, and then a corrosion resistance test is performed at a temperature of 60
Corrosion resistance was evaluated by observing the appearance and observing under atmospheric conditions of 90 ° C. and 90% humidity. The results are also shown in Table 5.

【0047】[0047]

【表5】 [Table 5]

【0048】以上のように圧延材に於て割れ・クラック
の発生しないx≧15、y−14z>0、z≧4、10
0−x−y−z<2なる組成域にある合金においては酸
素濃度が低く抑えられ、その結果良好な耐食性が実現さ
れる。これに対し、割れ・クラックの発生している磁石
サンプルに関しては酸素濃度が1500ppmを越えており、
耐食性も劣化している。
As described above, x ≧ 15, y-14z> 0, z ≧ 4, 10 in which no cracks or cracks occur in the rolled material.
In the alloy having a composition range of 0-x-yz- <2, the oxygen concentration is suppressed to be low, and as a result, good corrosion resistance is realized. On the other hand, the oxygen concentration of the magnet sample with cracks / cracks exceeds 1500 ppm,
Corrosion resistance is also deteriorated.

【0049】[0049]

【発明の効果】叙上のごとく本発明のようなR,Fe,
B,Gaを原料基本成分とし、鋳造後熱間加工および熱
処理を施すことによって製造され、構成相としてR6
11Ga3相を持つ希土類永久磁石においては高い磁気
特性、特に高保磁力が得られる。さらに合金組成が x≧15、y−14z>0、z≧4、100−x−y−z
<2 なる組成域にある場合は、割れ・クラックがなく量産性
に優れ、かつ良好な耐食性を持った希土類永久磁石を製
造することが可能となる。このため従来の焼結法および
メルトスピニング法に比べて低コストで高性能が得られ
るという鋳造・熱間加工法の利点が更に助長される。
According to the present invention, as described above, R, Fe,
It is manufactured by subjecting B and Ga to the raw material basic components and subjecting to hot working and heat treatment after casting, and R 6 F as a constituent phase.
In the rare earth permanent magnet having the e 11 Ga 3 phase, high magnetic characteristics, especially high coercive force can be obtained. Further, the alloy composition is x ≧ 15, y-14z> 0, z ≧ 4, 100-x−y−z
When the composition range is <2, it is possible to manufacture a rare earth permanent magnet having no cracks / cracks, excellent mass productivity, and good corrosion resistance. Therefore, the advantage of the casting / hot working method that the high performance can be obtained at a low cost is further promoted as compared with the conventional sintering method and melt spinning method.

【図面の簡単な説明】[Brief description of drawings]

【図1】 R6Fe11Ga3相の存在する圧延磁石組織の
模式図。
FIG. 1 is a schematic diagram of a rolled magnet structure in which an R 6 Fe 11 Ga 3 phase exists.

【図2】 R6Fe11Ga3相の存在しない圧延磁石組織
の模式図。
FIG. 2 is a schematic view of a rolled magnet structure in which an R 6 Fe 11 Ga 3 phase does not exist.

【符号の説明】[Explanation of symbols]

1 R2Fe14B相 2 R−リッチ相 3 R6Fe11Ga31 R 2 Fe 14 B phase 2 R-rich phase 3 R 6 Fe 11 Ga 3 phase

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊原 清二 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 (72)発明者 秋岡 宏治 長野県諏訪市大和3丁目3番5号セイコー エプソン株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Seiji Ihara 3-5 Yamato, Suwa City, Nagano Prefecture Seiko Epson Co., Ltd. (72) Inventor Koji Akioka 3-3-5 Yamato, Suwa City, Nagano Prefecture Seiko Epson Within the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 R(ただしRはPr,Ndを主成分とす
る希土類元素),Fe,B,Gaを原料基本成分とする
合金を溶解・鋳造後、熱間圧延を行い、さらに熱処理を
施して得られる希土類永久磁石において、構成相として
6Fe11Ga3相を有することを特徴とする希土類永久
磁石。
1. An alloy containing R (where R is a rare earth element containing Pr, Nd as a main component), Fe, B, and Ga as a raw material basic component is melted and cast, followed by hot rolling and further heat treatment. A rare earth permanent magnet obtained by the above method, having an R 6 Fe 11 Ga 3 phase as a constituent phase.
【請求項2】 合金組成が原子比でRxFeyzGa
100-x-y-zと表わされるとき、 x≧15 y−14z>0 z≧4 100−x−y−z<2 なる組成域にあることを特徴とする請求項1記載の希土
類永久磁石。
2. The alloy composition has an atomic ratio of R x Fe y B z Ga.
The rare earth permanent magnet according to claim 1, wherein when expressed as 100-xyz , x ≧ 15 y-14z> 0 z ≧ 4 100-x−y−z <2.
JP5033653A 1993-02-23 1993-02-23 Rare earth element permanent magnet Pending JPH06251917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5033653A JPH06251917A (en) 1993-02-23 1993-02-23 Rare earth element permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5033653A JPH06251917A (en) 1993-02-23 1993-02-23 Rare earth element permanent magnet

Publications (1)

Publication Number Publication Date
JPH06251917A true JPH06251917A (en) 1994-09-09

Family

ID=12392414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5033653A Pending JPH06251917A (en) 1993-02-23 1993-02-23 Rare earth element permanent magnet

Country Status (1)

Country Link
JP (1) JPH06251917A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112720A (en) * 2019-02-15 2019-07-11 Tdk株式会社 Alloy for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet
CN110957092A (en) * 2019-12-19 2020-04-03 厦门钨业股份有限公司 R-T-B series magnet material, raw material composition, preparation method and application
JP2022542188A (en) * 2019-11-21 2022-09-29 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112720A (en) * 2019-02-15 2019-07-11 Tdk株式会社 Alloy for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet
JP2022542188A (en) * 2019-11-21 2022-09-29 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application
CN110957092A (en) * 2019-12-19 2020-04-03 厦门钨业股份有限公司 R-T-B series magnet material, raw material composition, preparation method and application

Similar Documents

Publication Publication Date Title
KR101306880B1 (en) Method for producing rare-earth magnet
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPWO2008139556A1 (en) R-T-B sintered magnet
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JPH1070023A (en) Permanent magnet and manufacture thereof
JPH045740B2 (en)
JPH06251917A (en) Rare earth element permanent magnet
JPH06302419A (en) Rare earth permanent magnet and its manufacture
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
JP2573865B2 (en) Manufacturing method of permanent magnet
JPH05315119A (en) Rare earth permanent magnetic and its manufacture
JPH0475303B2 (en)
JPH05315120A (en) Rare earth sintered magnet and its manufacture
JPH06244012A (en) Manufacture of permanent magnet
JPH06224016A (en) Manufacture of rare earth element permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPH05135921A (en) Rare earth permanent magnet and its manufacture
JPS63287005A (en) Permanent magnet and manufacture thereof
JPH05315169A (en) Manufacture of rare earth magnet
JPH03115501A (en) Alloy powder composition for permanent magnet
JPH0316766B2 (en)