JPS59154004A - Manufacture of permanent magnet - Google Patents
Manufacture of permanent magnetInfo
- Publication number
- JPS59154004A JPS59154004A JP58026919A JP2691983A JPS59154004A JP S59154004 A JPS59154004 A JP S59154004A JP 58026919 A JP58026919 A JP 58026919A JP 2691983 A JP2691983 A JP 2691983A JP S59154004 A JPS59154004 A JP S59154004A
- Authority
- JP
- Japan
- Prior art keywords
- sintering
- temperature
- permanent magnet
- liquid phase
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0557—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、希土類金属(R)とコバルト(CO)との
金属間化合物であるRCo、5系。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to RCo, 5 series, which is an intermetallic compound of rare earth metal (R) and cobalt (CO).
R2Co、7系等のR−Co系焼結永久磁石の製造方法
に関するものである。The present invention relates to a method for manufacturing R-Co based sintered permanent magnets such as R2Co and 7 series.
R−Co系の希土類コバルト磁石は、従来のアルニコ、
フェライト磁石に比較して著しく磁気特性がすぐれてい
るため、高価ではあるが最近になりその需要は急速に伸
びている。R-Co rare earth cobalt magnets are conventional alnico,
Their magnetic properties are significantly superior to that of ferrite magnets, so their demand has been rapidly increasing recently, although they are more expensive.
このようなRCo5系、R2C017系等のR−Co系
焼結永久磁石に用いる希土類金属元素としては、Y、L
a、Ce、Pr、Nd、Pm。Rare earth metal elements used in R-Co-based sintered permanent magnets such as RCo5-based and R2C017-based include Y and L.
a, Ce, Pr, Nd, Pm.
Sm、Eu、Gd、Tb、Dy、Ho、Er。Sm, Eu, Gd, Tb, Dy, Ho, Er.
Tm、YbおよびLu“の゛−一種以上含むものである
。一方、コバルト(Co)単体(すなわち、RCo5系
)の他に、COの一部をFe、Cu。It contains one or more of Tm, Yb and Lu". On the other hand, in addition to cobalt (Co) alone (that is, RCo5 type), a part of CO is Fe and Cu.
Ni、Cr、Mn、Ti、Zr、Hf、V。Ni, Cr, Mn, Ti, Zr, Hf, V.
Nb、Ta、Mg、B、Sn、St 、A文。Nb, Ta, Mg, B, Sn, St, A sentence.
Ge、Ir、Mo、Te、Th、W、ZnおよびBeな
どの一種以上で置換した合金(すなわち、R2(Co、
Cu、Fe)r を系、R2(Co、Cu、Fe、M)
t7系)を含むものもある。Alloys substituted with one or more of Ge, Ir, Mo, Te, Th, W, Zn and Be (i.e. R2(Co,
Cu, Fe)r system, R2(Co, Cu, Fe, M)
t7 series).
一般に、RCo5系+ R2CO17系等のR−Co系
の永久磁石合金は、当該磁石合金材料を微粉砕して粉末
をつくり、この粉末を磁場中で一定方向に揃えて成形し
、焼結・熱処理を経て得られるものである。このような
R−Co系永久磁石を粉末冶金法により製造するに際し
ては、高い磁気特性、特に高い残留磁束密度Brを得る
ため焼結体を高密度化する必要がある。Generally, R-Co permanent magnet alloys such as RCo5 series + R2CO17 series are produced by finely pulverizing the magnet alloy material to form a powder, aligning the powder in a certain direction in a magnetic field, shaping it, and then sintering and heat-treating it. It is obtained through the process. When manufacturing such an R-Co permanent magnet by a powder metallurgy method, it is necessary to increase the density of the sintered body in order to obtain high magnetic properties, particularly a high residual magnetic flux density Br.
そこで、従来では焼結体を高密度化するために、原料粉
末に液相添加物を加えたり、あるいは合金の一部が液体
となる温度で液相焼結することが多い。Therefore, conventionally, in order to increase the density of a sintered body, liquid phase additives are often added to the raw material powder, or liquid phase sintering is often performed at a temperature at which a part of the alloy becomes liquid.
この従来法においては1.より高い温度で焼結すれば焼
結体を高密度化することができるが、結晶粒が粗大化し
、特にRCo5系焼結合金で保磁力Hcの低下を招いた
り、またアルゴン(Ar)などの不活性雰囲気中で液相
焼結を行っても若干の酸素(02)が含まれているため
、長時間の加熱により液相部分の酸化が進行し、その酸
化の進行・に伴って焼結反応が阻害されたり、磁気特性
が劣化したりするなどの欠点があった。In this conventional method, 1. If sintered at a higher temperature, the density of the sintered body can be increased, but the crystal grains will become coarser, leading to a decrease in coercive force Hc, especially in RCo5-based sintered alloys. Even if liquid phase sintering is performed in an inert atmosphere, some oxygen (02) is still included, so oxidation of the liquid phase progresses due to long-term heating, and as the oxidation progresses, sintering There were drawbacks such as reaction inhibition and deterioration of magnetic properties.
そこで、従来の場合には、結晶粒の粗大化防止あるいは
酸化防止と焼結体の高密度化とを考慮して焼結温度が選
択されていた。Therefore, in the conventional case, the sintering temperature has been selected in consideration of preventing coarsening or oxidation of crystal grains and increasing the density of the sintered body.
本発明者らはRCo5系、R2Co、7系等のR−Co
系合金粉末の液相焼結機構を詳細に調べた結果、液相を
伴う温度で第1段目の焼結を短時間行うことにより高密
度化を達成し、その後に前記第1段目の温度より10〜
100°C低い温度で再焼結することにより結晶粒の粗
大化を防止し、液相の酸化を抑制しなが゛らかつ拡散に
よる空隙の除去が行われ、更に高密度化を達成すること
ができることを見出した。The present inventors have discovered that R-Co such as RCo5 series, R2Co, and 7 series
As a result of detailed investigation of the liquid phase sintering mechanism of alloy powders, it was found that high density was achieved by performing the first stage sintering for a short time at a temperature associated with the liquid phase, and then the first stage sintering 10~ from temperature
Re-sintering at a temperature 100°C lower prevents coarsening of crystal grains, suppresses oxidation of the liquid phase, and eliminates voids due to diffusion, achieving even higher density. I discovered that it can be done.
この発明は上記の知見に基づいてなされたもので、RC
o5系+ R2C017系等のR−Co系合金粉末を2
段階以上に分けて焼結することにより、磁気特性の優れ
た永久磁石を製造する方法を提供することを目的とする
。This invention was made based on the above knowledge, and the RC
2 R-Co alloy powders such as o5 series + R2C017 series
The present invention aims to provide a method for manufacturing a permanent magnet with excellent magnetic properties by sintering it in stages or more.
すなわち、この発明は、RCo5系、R2C017系等
のR”Co系合金粉末を成形・焼結・熱処理して永久磁
石を製造するにあたり、前記焼結工程において、部分的
に液相を伴う温度で第1段目の焼結を行った後、前記第
1段目の温度より10〜ioo’c低い温度で第2段目
の焼結を行うことを特徴としている。That is, the present invention provides a method for producing a permanent magnet by molding, sintering, and heat treating R"Co alloy powder such as RCo5 series and R2C017 series, and in the sintering process, at a temperature partially accompanied by a liquid phase. After the first stage sintering is performed, the second stage sintering is performed at a temperature 10 to ioo'c lower than the first stage temperature.
以下、この発明の詳細な説明する。The present invention will be described in detail below.
この発明法に供されるRCo5系、R2O。RCo5 series, R2O subjected to this invention method.
17系等のR−Co系合金粉末は、希土類金属(R)と
コバル)(Co’)との金属間化合物からなるものであ
る。この希土類金属(R)としては、Y、La、Ce、
Pr、Nd、Pm、Sm。R-Co alloy powder such as No. 17 alloy powder is composed of an intermetallic compound of a rare earth metal (R) and cobal (Co'). This rare earth metal (R) includes Y, La, Ce,
Pr, Nd, Pm, Sm.
Eu、Gd、Tb、DV、Ha、Er、Tm。Eu, Gd, Tb, DV, Ha, Er, Tm.
Yb、Luの一種以上の希土類元素から選ばれるもので
あり、一方、コバル)(Co)は、Co単体(すなわち
、RCo5系)である他に、Coの一部をFe、Cu、
Ni、Cr、Mn、Ti 。It is selected from one or more rare earth elements such as Yb and Lu. On the other hand, Cobal (Co) is not only Co alone (i.e. RCo5 system) but also contains a part of Co such as Fe, Cu,
Ni, Cr, Mn, Ti.
Zr、Hf 、V、Nb、Ta、Mg、B、Sn。Zr, Hf , V, Nb, Ta, Mg, B, Sn.
St、AJlj、Ge、Ir、Mo、Te、Th。St, AJlj, Ge, Ir, Mo, Te, Th.
W、ZnおよびBeなとの一種以上で置換した合金系(
すなわち、R2(Co、Cu、Fe)+ 7系、R2(
Co−、Cu 、Fe 、M)+ 7系)も含まれる。Alloy system substituted with one or more of W, Zn and Be (
That is, R2 (Co, Cu, Fe) + 7 system, R2 (
Co-, Cu, Fe, M) + 7 series) are also included.
永久磁石の製造に際しては、これらのRCo5系+ R
2C017系等のR−Co系合金素材を1種または2種
以上選んで所定の平均粒子径になるように微粉砕して微
粉末とし、Co(および他の金属)に対して希土類元素
が所定含有量になるように各粉末を秤量しへ混合して焼
結原料とする。When manufacturing permanent magnets, these RCo5 series + R
One or more types of R-Co alloy materials such as 2C017 series are selected and pulverized to a predetermined average particle size to form a fine powder, and rare earth elements are added to Co (and other metals) at a predetermined level. Each powder is weighed and mixed to make a sintering raw material.
次いで、原料粉末を成形型に充填し、磁場中で一定方向
に揃えて圧縮成形し、中間成形体を得る。次いで、中間
成形体を焼結・熱処理して最終製品である永久磁石を製
造する。Next, the raw material powder is filled into a mold and compression molded in a magnetic field in a fixed direction to obtain an intermediate molded body. Next, the intermediate compact is sintered and heat treated to produce a final product, a permanent magnet.
この発明は、上記焼結工程において、部分的に液相を伴
う温度で第1段目の焼結を行った後、その温度より1o
−ioo℃低い温度で第2段目の焼結を行うところに特
徴を有している。すなわち、第1段目の焼結は、微粉末
から成形した中間成形体をアルゴン(Ar)などの不活
性雰囲気中において、部分的に液相を伴う温度で短時間
に行う。この第1段目の焼結時間は、好ましくは5〜6
0分程度の短時間とし、焼結体の高密度化を図るととも
に、短い焼結時間によって結晶粒の粗大化を防止すると
同時に液相の酸化を防止する。In the above-mentioned sintering step, the present invention performs the first stage sintering at a temperature partially accompanied by a liquid phase, and then
The feature is that the second stage sintering is performed at a temperature lower than -ioo°C. That is, the first stage of sintering is carried out for a short time on an intermediate molded body formed from fine powder in an inert atmosphere such as argon (Ar) at a temperature that is partially accompanied by a liquid phase. The sintering time of this first stage is preferably 5 to 6
The short sintering time is approximately 0 minutes to increase the density of the sintered body, and the short sintering time prevents coarsening of crystal grains and at the same time prevents oxidation of the liquid phase.
次の第2段目の焼結は、第1段目の焼結温度より10〜
100℃低い温度で行う。この第2段目の焼峙温度を第
1段目の焼結温度よりも10〜100°C低い温度に限
定した理由は、第1段目の焼結温度より10°C以上の
差がないと、焼結体の密度は高くなるものの、結晶粒の
粗大化あるいは液相部の酸化を防止することができず、
第2段目の焼結をする効果がないためであり、一方、そ
の差が100°Cを越える低い温度では、焼結温度が低
すぎて、合金元素の拡散が遅く、焼結反応が極端に悪く
なるためである。従って、実用上は第1段目の焼結温度
より10〜100℃低い温度が好ましい。The next second stage sintering is performed at a temperature of 10 to
Perform at a temperature 100°C lower. The reason why the sintering temperature of this second stage was limited to a temperature 10 to 100°C lower than the sintering temperature of the first stage is that there is no difference of more than 10°C from the sintering temperature of the first stage. Although the density of the sintered body becomes higher, coarsening of crystal grains or oxidation of the liquid phase cannot be prevented.
This is because there is no effect of sintering in the second stage. On the other hand, at low temperatures where the difference exceeds 100°C, the sintering temperature is too low, the diffusion of alloying elements is slow, and the sintering reaction is extremely This is because it becomes worse. Therefore, in practice, the temperature is preferably 10 to 100° C. lower than the first stage sintering temperature.
このように、中間成形体を2段で焼結することは、焼結
体の高密度化を図ることができると共に、結晶粒子の粗
大化および液相部の酸化を防止することができ、磁気特
性の優れた永久磁石を製造することが可能になった。In this way, sintering the intermediate compact in two stages not only makes it possible to increase the density of the sintered compact, but also prevents coarsening of crystal grains and oxidation of the liquid phase. It has become possible to manufacture permanent magnets with excellent properties.
そのほか、3段ないしは4段以上に分けて焼結すること
も可能であるが、製造コストが上昇する割には効果の著
しい増大は認められず、二段に分けて焼結するだけで十
分良好な効果を得ることができた。In addition, it is also possible to sinter the product in three or four or more stages, but this increases the manufacturing cost and does not significantly increase the effectiveness, so sintering in two stages is sufficient. I was able to get a great effect.
以下、この発明法の実施例を挙げ更に詳細に説明する。Hereinafter, examples of this invention method will be given and explained in more detail.
実施例1
この実施例はRC・cl゛5系の永久磁石を製造する一
例であって、まず、34.5重量%Sm−C。Example 1 This example is an example of manufacturing a permanent magnet of RC-Cl5 series, and first, 34.5% by weight of Sm-C.
合金および60重量%Sm−Co合金をそれぞれ平均粒
径が4牌になるまで微粉砕し、S重量が36重量%にな
るように上記微粉末をそれぞれ秤量して混合した後、成
形圧力1 ton / cm2で磁場中にて圧縮成形し
て中間成形体を得る。次いで中間成形体をAr雰囲気の
下に1240°Cの温度で15分間の第1段目の焼結を
行い、引き続き1180℃で3時間の第2段目の焼結を
行った。The alloy and the 60% by weight Sm-Co alloy were each finely pulverized until the average particle size became 4 tiles, and the above fine powders were weighed and mixed so that the S weight was 36% by weight, and then a compacting pressure of 1 ton was applied. /cm2 in a magnetic field to obtain an intermediate molded body. Next, the intermediate compact was subjected to a first stage sintering at a temperature of 1240° C. for 15 minutes under an Ar atmosphere, followed by a second stage sintering at a temperature of 1180° C. for 3 hours.
焼結した焼結体を室温まで徐冷した後、さらに900℃
で1時間の熱処理を追加して永久磁石を製造した。比較
のために同一組成の合金粉末を素材として従来の焼結法
により永久磁石を製造して、焼結体の特性を比較した。After the sintered body was slowly cooled to room temperature, it was further heated to 900°C.
A permanent magnet was manufactured by adding heat treatment for 1 hour. For comparison, permanent magnets were manufactured using a conventional sintering method using alloy powders of the same composition, and the properties of the sintered bodies were compared.
その結果は第1表に示す如くである。The results are shown in Table 1.
第1表から明らかなように、本発明法による永久磁石N
o、 lは密度が8 、35 (g/cm3)と高く
かつ磁気特性も優れていることが判った。一方、従来法
において、No、 2の永久磁石は高温で焼結している
が焼結時間が短すぎるため焼結が十分に行われず、磁気
特性はさほど良いとはいえないものであった。またNo
、 、3の永久磁石は高温(1240°C)で長時間焼
結したので高密度化を図ることができたが、結晶粒が粗
大化したため保磁力(RHO)が4.1KOeと極めて
低く、さらに、より低い温度で焼結したNo、 5 、
6の永久磁石では焼結温度が低いため密度が低く、その
ため残留磁束密度(B r)がいずれも低くなっている
ことが判った。As is clear from Table 1, the permanent magnet N according to the method of the present invention
It was found that O and L had a high density of 8.35 (g/cm3) and excellent magnetic properties. On the other hand, in the conventional method, permanent magnets No. 2 were sintered at a high temperature, but the sintering time was too short, so sintering was not performed sufficiently, and the magnetic properties were not so good. No again
The permanent magnets of , , and 3 were sintered at high temperature (1240°C) for a long period of time, which made it possible to increase the density, but the coercive force (RHO) was extremely low at 4.1 KOe due to coarse crystal grains. Furthermore, No. 5, sintered at a lower temperature
It was found that permanent magnet No. 6 had a low density due to the low sintering temperature, and therefore the residual magnetic flux density (Br) was low in all cases.
実施例2
16.8重量%Sm−16.3重量%Pr−Co合金お
よび60重量%Sm−Co合金をそれぞれ平均粒径4ル
まで微粉砕し′、94:6の割合で混合した後、実施例
1ど同様に磁場中で圧縮成形して中間成形体を得た。次
いで、中間成形体に対し1150°Cで10分間の第1
段目の焼結を行った後、1120°Cで4時間の第2段
目の焼結を行い、さらに室温に冷却した後に900℃で
1時間の熱処理を追加した。比較のために同一組成の合
金粉末を素材としで従゛来の焼結法により永久磁石を製
造してこれらの特性を調べた。その結果は第2表に示す
通りである。Example 2 A 16.8 wt % Sm-16.3 wt % Pr-Co alloy and a 60 wt % Sm-Co alloy were each finely ground to an average particle size of 4 l, and mixed at a ratio of 94:6. As in Example 1, compression molding was performed in a magnetic field to obtain an intermediate molded product. Next, the intermediate molded body was subjected to a first heating at 1150°C for 10 minutes.
After performing the second stage sintering, a second stage sintering was performed at 1120°C for 4 hours, and after cooling to room temperature, a heat treatment was added at 900°C for 1 hour. For comparison, permanent magnets were manufactured using the conventional sintering method using alloy powders of the same composition, and their properties were investigated. The results are shown in Table 2.
第2表に示すように、本発明法による永久磁石N007
では密度が高く、磁気特性もすぐれたものであった。こ
れに対して従来の永久磁石No、 8 。As shown in Table 2, permanent magnet N007 according to the method of the present invention
It had a high density and excellent magnetic properties. On the other hand, conventional permanent magnet No. 8.
9では磁気特性があまりよくなかった。9, the magnetic properties were not very good.
実施例3
この実施例はR2Co、7系の永久磁石を製造した一例
であって、26重量%Sm−12重量%Cu−8重量%
Fe−Co合金を平均粒径4ルまで微粉砕し、成形圧力
1 ton /am2で磁場中にて圧縮成形して中間成
形体を得た。次いで、得られた中間成形体に対し124
0℃で20分間の第1段目の焼結を行った後、1220
°Cで1時間の第2段目の焼結を行った。さらに、11
90℃で2時間の溶体化処理を行った後、室温まで急冷
した。次いで、800℃で2時間時効し、400℃まで
1’07m1nの速度で徐冷し、400℃に保持して1
0時間時効した。その結果を従来法と併せて第3表に示
す。Example 3 This example is an example of manufacturing an R2Co, 7-based permanent magnet, in which 26% by weight Sm-12% by weight Cu-8% by weight
The Fe--Co alloy was finely pulverized to an average particle size of 4 l, and compression molded in a magnetic field at a molding pressure of 1 ton/am2 to obtain an intermediate compact. Then, the obtained intermediate molded body was heated to 124
After the first stage sintering at 0°C for 20 minutes, 1220
A second stage sintering was carried out for 1 hour at °C. Furthermore, 11
After performing solution treatment at 90° C. for 2 hours, it was rapidly cooled to room temperature. Next, it was aged at 800°C for 2 hours, slowly cooled to 400°C at a rate of 1'07 ml, and kept at 400°C for 1 hour.
It was aged for 0 hours. The results are shown in Table 3 together with the conventional method.
第3表に示すように、本発明法による永久磁石は密度が
高く、磁気特性もすぐれたものであった。これに対して
従来の永久磁石No、11゜12.13ではいずれも磁
気特性があまりよくなかった。As shown in Table 3, the permanent magnet produced by the method of the present invention had a high density and excellent magnetic properties. On the other hand, conventional permanent magnet No. 11°12.13 did not have very good magnetic properties.
実施例4
25重量%Sm−4重量%Cu−22重量%Fe−3重
量%Zr−0,05重量%B−Co合金を平均粒径4K
まで微粉砕し、l ton 7cm2の圧力で磁場中に
て成形し、得られた中間成形体に対し1220℃で15
分間の第1段目の焼結を行った後、1210°Cで1時
間の第2段目の焼結を行った。さらに、1170°Cで
2時間の溶体化処理を行った後、室温まで急冷した。さ
らに、825℃で15時間時効し、400℃まで1℃/
minの速度で徐冷し、400 ’Oで10時間保持し
て時効した。その結果を従来法とともに第4表に示す。Example 4 25 wt% Sm-4 wt% Cu-22 wt% Fe-3 wt% Zr-0.05 wt% B-Co alloy with average grain size 4K
The resulting intermediate compact was pulverized at 1220°C for 15 min.
After performing the first stage sintering for 1 minute, the second stage sintering was performed at 1210°C for 1 hour. Furthermore, after performing solution treatment at 1170°C for 2 hours, it was rapidly cooled to room temperature. Furthermore, it was aged at 825℃ for 15 hours and 1℃/1℃ up to 400℃.
The sample was cooled slowly at a rate of 10 min, and aged at 400'O for 10 hours. The results are shown in Table 4 along with the conventional method.
第4表に示すように、本発明法による永久磁石は密度が
高く、磁気特性もすぐれたものであった。これに対して
従来の永久磁石No、15゜16.17では磁気特性が
あまりよくなかった。As shown in Table 4, the permanent magnet produced by the method of the present invention had a high density and excellent magnetic properties. On the other hand, the magnetic properties of the conventional permanent magnet No. 15°16.17 were not so good.
以上の説明から明らかなように、この発明によれば、R
Co5系+ R2Co17系等(7)R−C。As is clear from the above description, according to the present invention, R
Co5 system + R2Co17 system etc. (7) R-C.
系合金粉末を成形・焼結・熱処理して永久磁石を製造す
るにあたり、前記焼結工程を複数段階に分′ けて行い
、に第1段目の焼結において、高温での液相焼結を短時
間で行って、高密度化で図るようにし、その後、第2段
目の焼結において、第1段目の焼結温度より低い温度で
長時間焼結することにより、結晶粒の粗大化を防止する
と共に、液相の酸化を完全に防止しつつ、焼結体の高密
度化をさらに促進するようにしたから、焼結体の密度が
高くかつ結晶粒の粗大化が生じずきわめて優れた磁気特
性を有するR−Co系の永久磁石を得ることができると
いう顕著な効果がある。When producing permanent magnets by molding, sintering, and heat treating alloy powder, the sintering process is divided into multiple stages, and in the first stage, liquid phase sintering at high temperature is performed. After that, in the second stage of sintering, the crystal grains are coarsened by sintering for a long time at a temperature lower than the first stage's sintering temperature. In addition to completely preventing oxidation of the liquid phase, we further promote the densification of the sintered body, so the sintered body has a high density and does not coarsen the crystal grains. This has the remarkable effect that an R-Co permanent magnet having excellent magnetic properties can be obtained.
Claims (1)
るにあたり、前記焼結工程において、部分的に液相を伴
う温度で第1段目の焼結を行った後、前記第1段目の温
度より10〜100℃低い温度で第2段目の焼結を行う
ことを特徴とする永久磁石の製造方法。(1) R-G such as RCo5 series + R2COl 7 series. In producing a permanent magnet by molding, sintering, and heat treating the alloy powder, in the sintering step, after performing the first stage sintering at a temperature partially accompanied by a liquid phase, the first stage A method for manufacturing a permanent magnet, characterized in that the second stage of sintering is performed at a temperature 10 to 100° C. lower than the eye temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58026919A JPS59154004A (en) | 1983-02-22 | 1983-02-22 | Manufacture of permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58026919A JPS59154004A (en) | 1983-02-22 | 1983-02-22 | Manufacture of permanent magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59154004A true JPS59154004A (en) | 1984-09-03 |
Family
ID=12206595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58026919A Pending JPS59154004A (en) | 1983-02-22 | 1983-02-22 | Manufacture of permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59154004A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002083728A (en) * | 2000-09-08 | 2002-03-22 | Santoku Corp | Method of manufacturing rare earth permanent magnet |
KR100936016B1 (en) | 2007-11-23 | 2010-01-11 | 한양대학교 산학협력단 | Method of fabricating a sputtering target of molybdenum having ultrafine crystalline and sputtering target of molybdenum prepared thereby |
CN107895620A (en) * | 2017-11-30 | 2018-04-10 | 北京航空航天大学 | A kind of high Fe content samarium-cobalt permanent-magnetic material and preparation method |
-
1983
- 1983-02-22 JP JP58026919A patent/JPS59154004A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002083728A (en) * | 2000-09-08 | 2002-03-22 | Santoku Corp | Method of manufacturing rare earth permanent magnet |
JP4680357B2 (en) * | 2000-09-08 | 2011-05-11 | 株式会社三徳 | Rare earth permanent magnet manufacturing method |
KR100936016B1 (en) | 2007-11-23 | 2010-01-11 | 한양대학교 산학협력단 | Method of fabricating a sputtering target of molybdenum having ultrafine crystalline and sputtering target of molybdenum prepared thereby |
CN107895620A (en) * | 2017-11-30 | 2018-04-10 | 北京航空航天大学 | A kind of high Fe content samarium-cobalt permanent-magnetic material and preparation method |
CN107895620B (en) * | 2017-11-30 | 2019-09-13 | 北京航空航天大学 | A kind of high Fe content samarium-cobalt permanent-magnetic material and preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1420418A1 (en) | R-Fe-B sintered magnet | |
JPH06340902A (en) | Production of sintered rare earth base permanent magnet | |
JP2904667B2 (en) | Rare earth permanent magnet alloy | |
JP2002038245A (en) | Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet | |
JPH01219143A (en) | Sintered permanent magnet material and its production | |
JP3368295B2 (en) | Method for producing anisotropic rare earth alloy powder for permanent magnet | |
JPS59154004A (en) | Manufacture of permanent magnet | |
JPH0146575B2 (en) | ||
JP3151265B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPS62173704A (en) | Manufacture of permanent magnet | |
JPH0146574B2 (en) | ||
JP3126199B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPS61264133A (en) | Permanent magnet alloy and its manufacture | |
JPH04247604A (en) | Rare earth-fe-co-b anisotropic magnet | |
JPH0524975B2 (en) | ||
JP3254232B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPH0418441B2 (en) | ||
JPH02192102A (en) | Permanent magnet | |
JP3143181B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPS61143553A (en) | Production of material for permanent magnet | |
JPS6238841B2 (en) | ||
JPH04246803A (en) | Rare earth-fe-b anisotropic magnet | |
JPH0796694B2 (en) | Method of manufacturing permanent magnet material | |
JPH01127643A (en) | Manufacture of rare earth magnetic material | |
JPH05182816A (en) | Manufacture of rare earth permanent magnet |